
Supplementary Material

In the following sections, we provide additional details with respect to various elements of the
paper which could not be fully expanded upon in the main paper. This begins with an in depth
explanation of the proposed dataset, including its exact contents, and the manner in which they
were produced. This is followed by a closer look into the various aspects of touch chart prediction
including architectures, experimental procedures, hyper-parameters, and additional results. Finally,
a comprehensive examination of the prediction of vision charts is provided, again with detailed
explanations of architectures, experimental procedures, hyper-parameters, and additional results.

1 Visuotactile Dataset

This section describes the multi-modal dataset of simulated 3D touches, which this paper contributes
and makes use of. This includes both the methods by which each component of the dataset was
produced, and its exact contents.

1.1 Dataset content

For each object-grasp example in the dataset, the following are recorded:

• A dense point cloud of 10,000 points representing the object’s surface, Sobj .

• Four local point clouds of at most 10,000 points, each representing the surface of the object
at each touch site, {Sloci }4i=1.

• Four orthographic depth maps representing orthographic distance from the plane of the each
touch sensor to any object geometry in front of them, {Di}4i=1.

• Four simulated touch signals T = [Ri, Pi,Mi]
nt=4
i=1 , where Ri is one touch sensor reading,

Pi its corresponding position and rotation in space, andMi a binary mask indicating whether
the touch is successful (i.e. the sensor is in contact with the object).

• Two vision signals Vu and Vo, corresponding to an image of the object alone (unoccluded
vision) and an image of the object being grasped by the hand (occluded vision), respectively.

1.2 3D Objects and Hand

3D Objects: The 3D objects used for this dataset are from the 3D Warehouse data [1]. These are
CAD objects and so possess geometry and texture information. For each object we want to grasp,
Sobj is extracted from its surface using the technique defined in [?].

Hand: The Allegro hand [12] is used for grasping the objects. The URDF definition of this hand was
altered to add the shape of a sensor to the finger tips and thumb tip of the hand. To make the hand
easier to manipulate and render, its mesh components were altered by removing non-surface vertices
and faces, and decimating the mesh. Note that this hand pre-processing has practically no impact on
its behavior nor appearance.

1.3 Simulating Grasps

The 3D robotics simulator PyBullet [4] was used for producing the touch interactions. The process by
which grasps are produced in PyBullet is displayed in Figure 1. First, the object and the Allegro hand
are loaded into the simulator in a fixed pose (see first two images from left to right). The Allegro
hand is then placed such that its palm is tangent to a random point on the object’s surface (see third
image). The distance from the object and the rotation of the hand on the tangent plane is also random.
Using inverse kinematics, the joints of the hand are then rotated such that each of the hand’s touch

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Load Hand into Scene Load Object into Scene Move Hand to Surface Grasp the Object

Figure 1: Visualization of the procedure used to create grasps in PyBullet.

sensors meet the surface of the object, so long as physical integration of the hand and object allow it
(see fourth image). This is repeated multiple times until sufficiently many grasps are recorded with
successful touches. The pose information Pi, and the masks Mi from the best 5 grasps (with respect
to the number of successful touches) are saved for use in the dataset.

1.4 Simulating Vision

To simulate the vision signals for each grasp, two RGB images Vu and Vo are rendered using Blender
[3]. The object is placed at position [0, 0, 0.6] in its canonical 3D Warehouse pose, and the camera
is placed at position [0.972, 0.461, 0.974], with rotation [70.458◦, 4.940◦, 113.540◦]. Both images
have resolution of 256× 256× 3, and are produced with constant lighting from a single lamp.

1.5 Simulating Touch

For each grasp, to simulate the touch signal, T , at a successful touch site, and in particular its readings
Ri, the 3D mesh of its corresponding object is first loaded into PyTorch [9]. Then, a 100× 100 grid
of points is created with the same size, position, shape, and orientation as the sensor. The dimensions
of this grid define the resolution of the sensor: 100 × 100 pixels. The grid of points is projected
orthogonally towards the surface of the object using sphere tracing, and so halts exactly at the touch
site of the sensor. The distance these points move during this projection defines an orthographic
depth map, Di, for each touch sensor. The final position of the points defines the local structure of
the surface, which the sensor interacts with. The depth maps of each touch site are saved, along with
the points in the point cloud which correspond to depths smaller than the true depth of the sensor. We
find the depth of the impression into the touch sensor as:

D′i = ReLU(w −Di), (1)

where w is the depth of the sensor. Then, each position x, y in D′i is projected into a 3D point cloud
Sloci as follows: [x/100, y/100, D′i[x, y]].

To obtain the simulated RGB touch reading Ri from Sloci , three lights of pure red, green and blue are
defined in a triangular shape above this surface at positions Pr, Pg, and Pb. We then use the Phong
reflection model [10], where we assume zero specular or ambient lighting. The intensity values for
the red colour channel of the simulated touch reading, Ri ∈ R100×100×3, are then defined as:

Ri = λ ∗ n̂ ∗ l̂, (2)

where λ is the diffuse reflection constant, n̂ is the unit normal of the plane (broadcasted for shape
compatibility), defined as

n =

[
−dD′i

dx
,−dD′i

dy
, 1

]
, (3)

n̂ =
n

‖n‖
, (4)

and l̂ is the normalized light direction, defined as

l̂ =
Pr − Sloci
‖Pr − Sloci ‖

, (5)

where Pr is broadcast for shape compatibility. The intensity values for the green and blue colour
channels are defined in the same manner.

2

Class Objects Grasps Touches % Successful

Bottle 487 2435 9740 71.8
Knife 416 2080 8320 54.1
Cellphone 493 2465 9860 67.2
Rifle 335 1675 6700 53.6

Table 1: Per-Class dataset statistics of the number of objects, grasps, touches and percentage of
successful touches in each class.

1.6 Dataset Statistics

Five classes from 3D Warehouse were used in the dataset: the bottle, knife, cellphone, and rifle
classes, for a total of 1731 objects. We split the dataset into a training set with 1298 objects, a
validation set with 258 objects, and a test set with 175 objects. Statistics on the size, number of
grasps, number of touches, and the percentage of those that were successful are provided in in Table
1. With respect to the distribution of successful touches over grasps, 9.47% of grasps possess only
1 successful touch, 26.08% possess 2, 53.83% possess 3, and finally 10.61% possess 4. Additional
dataset examples are displayed in Figure 2.

2 Local Touch Chart Predictions

In the following section, additional details are provided with respect to how predictions of local touch
charts are created. These include details surrounding the architecture of models used, the range of
hyperparameters considered, optimization details, additional results, runtime, and hardware used.

2.1 Model Architecture Details

To predict local charts we first predict a depth map. As described in the paper, a U-Net-based
architecture [11] is leveraged for this task. The exact architecture for this network is displayed in
Table 5.

2.2 Optimization Details

The model was trained using the Adam optimizer [8] with learning rate 5e-5 on 8 Tesla V100 GPUs
with 16 CPU cores each, and batch size of 32. The learning rate for this experiment was tuned on the
following grid [0.001, 0.0001, 0.00005, 0.00003, 0.00001]. The model was trained for a maximum
number of 114 epochs (a total of 3 hours), it was evaluated every epoch on the validation set, and the
best performing model across these evaluations was selected.

Moreover, it is worth noting that when optimizing the model’s parameters, we compute the loss only
for those positions in the touch sensor that interacted with the object. To do that, we first calculate the
difference between the touch reading (sensor-object interaction) and an untouched sensor reading (no
sensor-object interaction), and then compute the pixelwise `22 of the resulting differences. Finally, we
apply a threshold of 0.001 and only consider those positions with a greater value.

2.3 Converting Point Clouds to Charts

As explained in the paper, the trained U-Net-based model produces a local point cloud for each touch
signal in the dataset. Each point cloud is then used to produce a touch chart. To do this, a planar,
triangular mesh with 81 vertices and 128 faces is first placed in the same position, orientation, shape,
and size as the touch sensor which produced the touch signal. Then, using Adam[8] and learning rate
0.003, the position of the vertices in the chart is optimized so that it emulates the surface of the point
cloud. The loss used for this optimization is the Chamfer distance between the point cloud and points
uniformly sampled on the surface of the chart as in [13]. The optimization scheme halts when the
loss is lower than 0.0006.

2.4 Additional Results

Additional visual reconstruction results are displayed in Figure 3. From these visualization, it can be
seen that the predicted point clouds almost perfectly match the ground truth point clouds, though
with a small degree of extrapolation beyond the observed surface. It can also be observed that the
corresponding chart predictions almost perfectly match the predicted point clouds.

3

x

Vision Signals Touch Signals Object Surface with Touch Sites Highlighted

Vision Signals Touch Signals Object Surface with Touch Sites Highlighted

x

Vision Signals Touch Signals Object Surface with Touch Sites Highlighted

x

Vision Signals Touch Signals Object Surface with Touch Sites Highlighted

x

Figure 2: Visualization examples from the dataset showing an occluded (by hand) and unoccluded
RGB image, 4 RGB images representing touch readings and a 3D object surface with touch sites
highlighted.

4

Touch Signal Predicted Depth Predicted Local Points Predicted Touch Chart Ground Truth Local Points

Figure 3: Local predictions of structure at each touch chart together with the corresponding charts
produced from them.

3 Global Vision Chart Predictions

In the following section, additional details are provided with respect to how vision charts are deformed
around known touch charts, such that their combination emulates the target surface. These include
details such as the models’ architectures, the range of hyperparameters considered, optimization
details, additional results, runtime, and hardware used.

3.1 Chart Feature Initialization

Vision and touch charts must have features defined over their vertices before they can be combined
and passed to the Graph Convolutional Network (GCN) to be deformed. Three types of features are
defined over all charts: image features, position of the vertex, and a masking feature indicating if the
chart corresponds to a successful touch or not. For touch charts, the position and mask feature of each
of their vertices are predefined. The initial position of vision charts is defined such that they combine
to form a closed sphere, only touching at their boundary. This arrangement is highlighted in Figure 4.
Their mask feature is set to 0 as they do not correspond to successful touches. The image features
of both vision and touch charts are defined using perceptual feature pooling [15]. Here images are
passed through a Convolutional Neural Network (CNN) and feature maps from intermediate layers
are extracted. For any given vertex, its 3D position in space is projected onto the 2D plane of the
input image using known camera parameters. The location of this projection in the pixel space of the
image corresponds exactly to a position in each feature map. The vertex’s image features are then
defined as the bilinear interpolation between the four closest features to the projection in each feature
map.

3.2 Model Architecture Details

Two networks are used to deform the positions of vision charts. The first is the CNN which defines
image features for perceptual feature pooling, and the second is the GCN which updates the vertex
positions. The network architectures for each model evaluated on the test set are displayed in Tables
7, 8, 9, 10, and 6. The GCN layers in each architecture are zero-neighbor layers as defined in [13].

3.3 Optimization Details

Each model type was trained using Adam [8] with learning rate 3e-5 and batch size 16 on a Tesla
V100 GPU with 16 CPU cores. Each model was allowed to train for a maximum of 260 epoch
(roughly 12 hours), was evaluated every epoch on the validation set and the best performing model
across these evaluations was selected. Models were early-stopped if they failed to improve on the

5

Figure 4: Initial positions of vision charts in a closed sphere. Charts have been separated slightly to
improve their distinction.

Multiples of Touch Sensor Size x1 x2 x3 x4 x5

Occluded Vision 6.687e-5 5.938e-5 5.305e-5 5.038e-5 4.841e-5
Occluded Vision + Touch 2.569e-5 2.970e-5 3.257e-5 3.393e-5 3.528e-5
Unoccluded Vision 4.553e-5 4.333e-5 4.080e-5 3.922e-5 3.866e-5
Unoccluded Vision + Touch 1.510e-5 1.944e-5 2.243e-5 2.494e-5 2.736e-5

Table 2: Local Chamfer distance in increasingly large square rings around each touch sites.

validation set for 70 epochs. The best performing model with occluded vision and touch was selected
on epoch 113. The best performing model with only occluded vision was selected on epoch 114.
The best performing model with unoccluded vision and touch was selected on epoch 122. The best
performing model with only unoccluded vision was selected on epoch 99. The best performing model
with only touch was selected on epoch 90.

3.4 Hyperparameter Details

The hyper-parameters tuned for the experiments in this setting were the learning rate, the number of
layers in the CNN, the number of layers in the GCN, and the number of features per GCN layer. The
possible settings for the learning rate were [1e-4, 3e-5, 1e-5]. The possible settings for the number of
CNN layers were [12, 15, 18]. The possible settings for the number of GCN layers were [15, 20, 25].
The possible settings for the number of features per GCN layer were [150, 200, 250].

3.5 Additional Results

Additional reconstruction results for each class are visualized in Figure 5. Numerical results for
the mutli-grasp experiment are displayed in Table 3. Numerical results for the experiment which
examined the local Chamfer distance at expanding distances around each touch site are displayed in
Table 2.

3.6 Single Image 3D Object Reconstruction

As mentioned in the main paper, and as a sanity check, the chart-based approach to 3D object
reconstruction was also applied to the task of single image 3D object reconstruction to validate that
it is competitive with other vision exclusive methods for 3D shape reconstruction. We used the 3D
models with rendered images from [2], and compared using the evaluation setup released by [6]. The
model was trained for a maximum of 40 epochs (roughly 3 days of training), was evaluated after each

Number of Grasps 1 2 3 4 5

Unoccluded Vision + Touch 0.804 0.714 0.689 0.695 0.654
Touch 3.05 1.769 1.479 1.296 1.237

Table 3: Chamfer distance when increasing the number of grasps provided to the models.

6

Vision Signal 1 Grasp + No Vision 1 Grasp + Vision 3 Grasps + Vision 5 Grasps + Vision

Figure 5: Reconstruction results of our method for each class across different input modalities and
number of grasps. For vision signal, we use an unoccluded RGB image.

epoch, and the best performing model across these evaluations was selected. The model was trained
with the Adam optimizer [8] with learning rate e-5 and batch size 64 on a Tesla V100 GPU with 16
CPU cores. In this set up, we removed touch charts from our prediction pipeline and used exclusively
vision signals. The architecture used for this experiment is displayed in Table 11.

We highlight the results of the evaluation in Table 4. The Chamfer Distance shown is the same metric
as in the main paper, however, the scaling and density of points is different and so not comparable
to other experiments. For a given distance threshold τ , F1τ is the harmonic mean of the precision
(percentage of predicted points with distance at most τ from any ground truth point) and recall
(percentage of ground truth points with distance at most τ from any predicted point) of predicted and
ground truth point clouds. The table demonstrates that we are competitive with other vision based
approaches to 3D shape reconstruction, only failing to outperform the newly released MeshRCNN
algorithm [6]. It should be noted that our approach has not been heavily tuned for this specific dataset
or task, and so failing to overtake the most recent state of the art method is not wholly surprising.

7

Table 4: Single image 3D shape reconstructing results on the 3D Warehouse Dataset. This evaluation
is performed using the evaluation standard from [6] and [15].

Chamfer Distance(↓) F1τ (↑) F12τ (↑)
N3MR [7] 2.629 3.80 47.72
3D-R2N2 [2] 1.445 39.01 54.62
PSG [5] 0.593 48.58 69.78
MVD [?] - 66.39 -
GEOMetrics [13] - 67.37 -
Pixel2Mesh [15] 0.463 67.89 79.88
MeshRCNN [6] (Pretty) 0.391 69.83 81.76
MeshRCNN [6] (Best) 0.306 74.84 85.75

Ours 0.369 69.52 82.33

Table 5: Architecture for the U-Net style network used to predict point cloud positions for our local
touch charts.

Index Input Operation Output Shape

(1) Input Conv (3 × 3) + BN + ReLU 64 × 100 × 100
(2) (1) Conv (3 × 3) + BN + ReLU 64 × 100 × 100
(3) (2) MaxPooling (2 × 2) 64 × 50 × 50
(4) (3) Conv (3 × 3) + BN + ReLU 128 × 50 × 50
(5) (4) Conv (3 × 3) + BN + ReLU 128 × 50 × 50
(6) (5) MaxPooling (2 × 2) 128 × 25 × 25
(7) (6) Conv (3 × 3) + BN + ReLU 256 × 25 × 25
(8) (7) Conv (3 × 3) + BN + ReLU 256 × 25 × 25
(9) (8) MaxPooling (2 × 2) 256 × 12 × 12
(10) (8) Conv (3 × 3) + BN + ReLU 512 × 12 × 12
(11) (10) Conv (3 × 3) + BN + ReLU 512 × 12 × 12
(12) (11) MaxPooling (2 × 2) 512 × 6 × 6
(13) (12) Conv (3 × 3) + BN + ReLU 1024 × 6 × 6
(14) (13) Conv (3 × 3) + BN + ReLU 1024 × 6 × 6
(15) (14) DeConv (2 × 2) 512 × 12 × 12
(16) (15) (11) Concatenate 1024 × 12 × 12
(17) (16) Conv (2 × 2) + BN + ReLU 512 × 12 × 12
(18) (17) DeConv (2 × 2) 256 × 25 × 25
(19) (18) (8) Concatenate 512 × 25 × 25
(20) (19) Conv (2 × 2) + BN + ReLU 256 × 25 × 25
(21) (20) DeConv (2 × 2) 128 × 50 × 50
(22) (21) (5) Concatenate 256 × 50 × 50
(23) (22) Conv (2 × 2) + BN + ReLU 128 × 50 × 50
(24) (23) DeConv (2 × 2) 64 × 100 × 100
(25) (24) (2) Concatenate 128 × 100 × 100
(26) (25) Conv (2 × 2) + BN + ReLU 64 × 100 × 100
(27) (26) Conv (1 × 1) 1 × 100 × 100

Table 6: Architecture for deforming charts with touch information only (|V|x3).

Index Input Operation Output Shape

(1) Vertex Inputs GCN Layer |V| × 250
(2) (1) GCN Layer |V| × 250
...

(15) (14) GCN Layer |V| × 3

8

Table 7: Architecture for deforming charts with occluded vision signals and touch information. The
input to this model is an RGB image (4x256x256), and vertex features (|V|x4). BN refers to batch
normalization.

Index Input Operation Output Shape

(1) Image Input Conv (3 × 3) + BN + ReLU 16 × 127 × 127
(2) (1) Conv (3 × 3) + BN + ReLU 16 × 125 × 125
(3) (2) Conv (3 × 3) + BN + ReLU 16 × 123 × 123
(4) (3) Conv (3 × 3) + BN + ReLU 16 × 121 × 121
(5) (4) Conv (3 × 3) + BN + ReLU 16 × 119 × 119
(6) (5) Conv (3 × 3) (stride 2) + BN + ReLU 32 × 59 × 59
(7) (6) Conv (3 × 3) + BN + ReLU 32 × 57 × 57
(8) (7) Conv (3 × 3) + BN + ReLU 32 × 55 × 55
(9) (8) Conv (3 × 3) + BN + ReLU 32 × 53 × 53

(10) (9) Conv (3 × 3) + BN + ReLU 32 × 51 × 51
(11) (10) Conv (3 × 3) (stride 2) + BN + ReLU 64 × 25 × 25
(12) (11) Conv (3 × 3) + BN + ReLU 64 × 23 × 23
(13) (12) Conv (3 × 3) + BN + ReLU 64 × 21 × 21
(14) (13) Conv (3 × 3) + BN + ReLU 64 × 19 × 19
(15) (14) Conv (3 × 3) + BN + ReLU 64 × 17 × 17
(16) (15) Conv (3 × 3) (stride 2) + BN + ReLU 128 × 8 × 8
(17) (16) Conv (3 × 3) + BN + ReLU 128 × 6 × 6
(18) (17) Conv (3 × 3) + BN + ReLU 128 × 4 × 4
(19) (10) (15) (18) perceptual feature pooling |V| × 224
(20) (19) Vertex Input Concatenate |V| × 228
(21) (20) GCN Layer |V| × 250
(22) (21) GCN Layer |V| × 250
...

(41) (40) GCN Layer |V| × 3

Table 8: Architecture for deforming charts with occluded vision signals without touch information.
The input to this model is an RGB image (4x256x256), and vertex features (|V|x3). BN refers to
batch normalization.

Index Input Operation Output Shape

(1) Image Input Conv (3 ×3) + BN + ReLU 16 ×127 ×127
(2) (1) Conv (3 ×3) + BN + ReLU 16 ×125 ×125
(3) (2) Conv (3 ×3) + BN + ReLU 16 ×123 ×123
(4) (3) Conv (3 ×3) + BN + ReLU 16 ×121 ×121
(5) (4) Conv (3 ×3) + BN + ReLU 16 ×119 ×119
(6) (5) Conv (3 ×3) (stride 2) + BN + ReLU 32 ×59 ×59
(7) (6) Conv (3 ×3) + BN + ReLU 32 ×57 ×57
(8) (7) Conv (3 ×3) + BN + ReLU 32 ×55 ×55
(9) (8) Conv (3 ×3) + BN + ReLU 32 ×53 ×53

(10) (9) Conv (3 ×3) + BN + ReLU 32 ×51 ×51
(11) (10) Conv (3 ×3) (stride 2) + BN + ReLU 64 ×25 ×25
(12) (11) Conv (3 ×3) + BN + ReLU 64 ×23 ×23
(13) (12) Conv (3 ×3) + BN + ReLU 64 ×21 ×21
(14) (13) Conv (3 ×3) + BN + ReLU 64 ×19 ×19
(15) (14) Conv (3 ×3) + BN + ReLU 64 ×17 ×17
(16) (15) Conv (3 ×3) (stride 2) + BN + ReLU 128 ×8 ×8
(17) (16) Conv (3 ×3) + BN + ReLU 128 ×6 ×6
(18) (17) Conv (3 ×3) + BN + ReLU 128 ×4 ×4
(19) (10) (15) (18) perceptual feature pooling |V| ×224
(20) (19) Vertex Input Concatenate |V| × 227
(21) (20) GCN Layer |V| × 200
(22) (21) GCN Layer |V| × 200
...

(41) (40) GCN Layer |V| × 3

9

Table 9: Architecture for deforming charts with unoccluded vision signals and touch information.
The input to this model is an RGB image (4x256x256), and vertex features (|V|x4). BN refers to
batch normalization.

Index Input Operation Output Shape

(1) Image Input Conv (3 × 3) + BN + ReLU 16 × 127 × 127
(2) (1) Conv (3 × 3) + BN + ReLU 16 × 125 × 125
(3) (2) Conv (3 × 3) + BN + ReLU 16 × 123 × 123
(4) (3) Conv (3 × 3) + BN + ReLU 16 × 121 × 121
(5) (4) Conv (3 × 3) + BN + ReLU 16 × 119 × 119
(6) (5) Conv (3 × 3) (stride 2) + BN + ReLU 32 × 59 × 59
(7) (6) Conv (3 × 3) + BN + ReLU 32 × 57 × 57
(8) (7) Conv (3 × 3) + BN + ReLU 32 × 55 × 55
(9) (8) Conv (3 × 3) + BN + ReLU 32 × 53 × 53

(10) (9) Conv (3 × 3) + BN + ReLU 32 × 51 × 51
(11) (10) Conv (3 × 3) (stride 2) + BN + ReLU 64 × 25 × 25
(12) (11) Conv (3 × 3) + BN + ReLU 64 × 23 × 23
(13) (12) Conv (3 × 3) + BN + ReLU 64 × 21 × 21
(14) (13) Conv (3 × 3) + BN + ReLU 64 × 19 × 19
(15) (14) Conv (3 × 3) + BN + ReLU 64 × 17 × 17
(16) (15) Conv (3 × 3) (stride 2) + BN + ReLU 128 × 8 × 8
(17) (16) Conv (3 × 3) + BN + ReLU 128 × 6 × 6
(18) (17) Conv (3 × 3) + BN + ReLU 128 × 4 × 4
(19) (10) (15) (18) perceptual feature pooling |V| × 224
(20) (19) Vertex Input Concatenate |V| × 228
(21) (20) GCN Layer |V| × 200
(22) (21) GCN Layer |V| × 200
...

(46) (45) GCN Layer |V| × 3

Table 10: Architecture for deforming charts with unoccluded vision signals without touch information.
The input to this model is an RGB image (4x256x256), and vertex features (|V|x3). BN refers to
batch normalization.

Index Input Operation Output Shape

(1) Image Input Conv (3 × 3) + BN + ReLU 16 × 127 × 127
(2) (1) Conv (3 × 3) + BN + ReLU 16 × 125 × 125
(3) (2) Conv (3 × 3) + BN + ReLU 16 × 123 × 123
(4) (3) Conv (3 × 3) (stride 2) + BN + ReLU 32 × 61 × 61
(5) (4) Conv (3 × 3) + BN + ReLU 32 × 59 × 59
(6) (5) Conv (3 × 3) + BN + ReLU 32 × 57 × 57
(7) (6) Conv (3 × 3) (stride 2) + BN + ReLU 64 × 28 × 28
(8) (7) Conv (3 × 3) + BN + ReLU 64 × 26 × 26
(9) (8) Conv (3 × 3) + BN + ReLU 64 × 24 × 24

(10) (9) Conv (3 × 3) (stride 2) + BN + ReLU 128 × 11 × 11
(11) (10) Conv (3 × 3) + BN + ReLU 128 × 9 × 9
(12) (11) Conv (3 × 3) + BN + ReLU 128 × 7 × 7
(13) (3) (6) (9) (11) perceptual feature pooling |V| × 240
(14) (13) Vertex Input Concatenate |V| × 243
(15) (14) GCN Layer |V| × 250
(16) (15) GCN Layer |V| × 250
...

(35) (34) GCN Layer |V| × 3

10

Table 11: Architecture for chart deformation in the single image 3D object reconstruction experiment
on the 3D Warehouse. The input to this model is an RGB image (3x256x256), and vertex features
(|V|x3). IN refers to instance normalization [14].

Index Input Operation Output Shape

(1) Image Input Conv (3 × 3) + IN + ReLU 16 × 69 × 69
(2) (1) Conv (3 × 3) + IN + ReLU 16 × 69 × 69
(3) (2) Conv (3 × 3) + IN + ReLU 16 × 69 × 69
(4) (3) Conv (3 × 3) + IN + ReLU 16 × 69 × 69
(5) (4) Conv (3 × 3) + IN + ReLU 16 × 69 × 69
(6) (5) Conv (3 × 3) (stride 2) + IN + ReLU 32 × 35 × 35
(7) (6) Conv (3 × 3) + IN + ReLU 32 × 35 × 35
(8) (7) Conv (3 × 3) + IN + ReLU 32 × 35 × 35
(9) (8) Conv (3 × 3) + IN + ReLU 32 × 35 × 35

(10) (9) Conv (3 × 3) + IN + ReLU 32 × 35 × 35
(11) (10) Conv (3 × 3) (stride 2) + IN + ReLU 64 × 18 × 18
(12) (11) Conv (3 × 3) + IN + ReLU 64 × 18 × 18
(13) (12) Conv (3 × 3) + IN + ReLU 64 × 18 × 18
(14) (13) Conv (3 × 3) + IN + ReLU 64 × 18 × 18
(15) (14) Conv (3 × 3) + IN + ReLU 64 × 18 × 18
(16) (15) Conv (3 × 3) (stride 2) + IN + ReLU 128 × 9 × 9
(17) (16) Conv (3 × 3) + IN + ReLU 128 × 9 × 9
(18) (17) Conv (3 × 3) + IN + ReLU 128 × 9 × 9
(19) (18) Conv (3 × 3) + IN + ReLU 128 × 9 × 9
(20) (19) Conv (3 × 3) + IN + ReLU 128 × 9 × 9
(21) (20) Conv (3 × 3) (stride 2) + IN + ReLU 256 × 5 × 5
(22) (21) Conv (3 × 3) + IN + ReLU 256 × 5 × 5
(23) (22) Conv (3 × 3) + IN + ReLU 256 × 5 × 5
(24) (23) Conv (3 × 3) + IN + ReLU 256 × 5 × 5
(25) (24) Conv (3 × 3) + IN + ReLU 256 × 5 × 5
(26) (25) (22) (19) perceptual feature pooling |V| × 896
(27) (26) Linear + ReLU |V| × 250
(28) (27) Vertex Input Concatenate |V| × 253
(29) (28) GCN Layer |V| × 250
(30) (29) GCN Layer |V| × 250
...

(53) (52) GCN Layer |V| × 3

11

References

[1] 3d warehouse. https://3dwarehouse.sketchup.com/. Accessed: 2020-02-01.

[2] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2:
A unified approach for single and multi-view 3d object reconstruction. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 628–644. Springer, 2016.

[3] Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[4] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. GitHub repository, 2016.

[5] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set generation network for 3d object
reconstruction from a single image. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 38, 2017.

[6] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. IEEE International
Conference on Computer Vision (ICCV), 2019.

[7] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. arXiv preprint
arXiv:1711.07566, 2017.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[10] Bui Tuong Phong. Illumination for computer generated pictures. Communications of the ACM,
18(6):311–317, 1975.

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[12] SimLab. Allegro hand overview, 2016. [Online; accessed 25-May-2020].

[13] Edward J. Smith, Scott Fujimoto, Adriana Romero, and David Meger. Geometrics: Exploiting
geometric structure for graph-encoded objects. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML
2019, volume 97 of Proceedings of Machine Learning Research, pages 5866–5876. PMLR,
2019.

[14] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[15] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. arXiv preprint arXiv:1804.01654, 2018.

12

https://3dwarehouse.sketchup.com/

	Visuotactile Dataset
	Dataset content
	3D Objects and Hand
	Simulating Grasps
	Simulating Vision
	Simulating Touch
	Dataset Statistics

	Local Touch Chart Predictions
	Model Architecture Details
	Optimization Details
	Converting Point Clouds to Charts
	Additional Results

	Global Vision Chart Predictions
	Chart Feature Initialization
	Model Architecture Details
	Optimization Details
	Hyperparameter Details
	Additional Results
	Single Image 3D Object Reconstruction

