
A Detailed Proofs

A.1 Theorem 1

Theorem 1 Given a data set B of N items, loss functions L1 and L2, and priority scheme pr, the
expected gradient of L1(δ(i)), where i ∈ B is sampled uniformly, is equal to the expected gradient
of L2(δ(i)), where i is sampled with priority pr, if ∇QL1(δ(i)) = 1

λpr(i)∇QL2(δ(i)) for all i,

where λ =
∑
j pr(j)

N .

Proof.

Ei∼B [∇QL1(δ(i))] =
1

N

∑
i

∇QL1(δ(i))

=
1

N

∑
i

N∑
j pr(j)

pr(i)∇QL2(δ(i))

=
∑
i

pr(i)∑
j pr(j)

∇QL2(δ(i))

= Ei∼pr [∇QL2(δ(i))] .

(1)

�

Corollary 1 Theorem 1 is satisfied by any two loss functions L1, where i ∈ B is sampled uniformly,
and L2, where i is sampled with respect to priority pr, if L1(δ(i)) =

1
λ |pr(i)|×L2(δ(i)) for all i,

where λ =
∑
j pr(j)

N and | · |× is the stop-gradient operation.

Proof.

∇QL1(δ(i)) = ∇Q
1

λ
|pr(i)|×L2(δ(i))

=
1

λ
pr(i)∇QL2(δ(i)).

(2)

Then L1 and L2 have the same expected gradient by Theorem 1.

�

Corollary 2 Theorem 1 is satisfied by any two loss functions L1, where i ∈ B is sampled uniformly,
and λL2, where i is sampled with respect to priority pr and λ =

∑
j pr(j)

N , if sign(∇QL1(δ(i))) =

sign(∇QL2(δ(i))) and pr(i) = ∇QL1(δ(i))
∇QL2(δ(i))

for all i.

Proof. Given sign(∇QL1(δ(i))) = sign(∇QL2(δ(i))), we have sign(pr(i)) = 1, as we cannot
sample with negative priority. Theorem 1 is satisfied as:

1

λ
pr(i)∇QλL2(δ(i)) =

λ

λ
· ∇QL1(δ(i))

∇QL2(δ(i))
∇QL2(δ(i))

= ∇QL1(δ(i)).

(3)

�

A.2 Theorem 2

Theorem 2 Given a data set B ofN items and loss function L1, consider the loss function λL2(δ(i)),

where i ∈ B is sampled with priority pr and λ =
∑
j pr(j)

N , such that Theorem 1 is satisfied. The
variance of∇QλL2(δ(i)) is minimized when L2 = LL1 and pr(i) = |∇QL1(δ(i))|.

1



Proof.

Consider the variance of the gradient with prioritized sampling. Note Var(x) = E[x2]− E[x]2.

Var (∇QλL2(δ(i))) = Ei∼pr
[
(∇QλL2(δ(i)))

2
]
− Ei∼pr [∇QλL2(δ(i))]

2

=
∑
i

pr(i)∑
j pr(j)

(∑
j pr(j)

)2
N2

(∇QL2(δ(i)))
2 −X

=

∑
j pr(j)

N2

∑
i

∇QL1(δ(i))∇QL2(δ(i))−X,

(4)

where we define X = Ei∼B [∇QL1(δ(i))]
2
= Ei∼pr [λ∇QL2(δ(i))]

2, the square of the unbiased
expected gradient.

For L1 loss, noting sign(∇QL1(δ(i))) = sign(∇QL2(δ(i))), then setting L2 = LL1, we have
pr(i) = |∇QL1(δ(i))| and ∇QL1(δ(i))∇QL2(δ(i)) = |∇QL1(δ(i))|, and we can simplify the
expression:

=

∑
j |∇QL1(δ(j))|

N2

∑
i

∇QL1(δ(i))−X

=

(∑
j |∇QL1(δ(j))|

N

)2

−X.

(5)

Now consider a generic prioritization scheme where ∇QL2(δ(i)) = f(δ(i)). To give the same
expected gradient, by Theorem 1 we must have pr(i) = ∇QL1(δ(i))/f(δ(i)). To compute the
variance, we can insert these terms into Equation (4):

=

∑
j pr(j)

N2

∑
i

∇QL1(δ(i))∇QL2(δ(i))−X

=

∑
j ∇QL1(δ(j))/f(δ(j))

N2

∑
i

∇QL1(δ(i))f(δ(i))−X.
(6)

Then choosing uj =

√
∇QL1(δ(j))/f(δ(j))√

N
and vj =

√
∇QL1(δ(j))f(δ(j))√

N
, by Cauchy-Schwarz we

have: (∑
j |∇QL1(δ(j))|

N

)2

≤
∑
j ∇QL1(δ(j))/f(δ(j))

N2

∑
i

∇QL1(δ(i))f(δ(i)), (7)

with equality if f(δ(j)) = ±c, where c is a constant.

It follows that the variance is minimized when L2 is the L1 loss.

�

Observation 1 Given a data set B of N items and loss function L1, the gradient of the loss function
λLL1(δ(i)), where i ∈ B is sampled with priority pr(i) = |∇QL1(δ(i))| and λ =

∑
j pr(j)

N , will
have lower (or equal) variance than the gradient of L1(δ(i)), where i is sampled uniformly.

Proof.

This is a direct result of Theorem 2, by noting setting L2 = L1, pr(i) = 1
N and λ =

∑
j pr(j)

N = 1.
However, to be comprehensive, consider the variance of L1 with uniform sampling.

Var (∇QL1(δ(i))) = Ei∼B
[
(∇QL1(δ(i)))

2
]
− Ei∼B [∇QL1(δ(i))]

2

=
1

N

∑
i

(∇QL1(δ(i)))
2 −X.

(8)

2



where X is defined as before.

Now by the Cauchy-Schwarz inequality
(∑

j ujvj

)2
≤
∑N
j=1 u

2
j

∑N
j=1 v

2
j where uj = 1√

N
and

vj =
|∇QL1(δ(j))|√

N
we have:(∑

j |∇QL1(δ(j))|
N

)2

≤ 1

N

∑
i

(∇QL1(δ(i)))
2
, (9)

where the LHS is the variance of L1 loss without the X term, Equation (5), and so
Var
(
∇Q 1

λL2(δ(i))
)

is less than Var (∇QL1(δ(i))) for all loss functions L1, when L2 = LL1.

�

A.3 Theorem 3

Theorem 3 The expected gradient of a loss 1
τ |δ(i)|

τ , where τ > 0, when used with PER is equal to
the expected gradient of the following loss when using a uniformly sampled replay buffer:

LτPER(δ(i)) =
ηN

τ + α− αβ
|δ(i)|τ+α−αβ , η =

minj |δ(j)|αβ∑
j |δ(j)|α

. (10)

Proof.

For PER, by definition we have p(i) = |δ(i)|α∑
j∈B |δ(j)|α

and w(i) =
( 1
N ·

1
p(i) )

β

maxj∈B( 1
N ·

1
p(j) )

β .

Now consider the expected gradient of 1
τ |δ(i)|

τ , when used with PER:

Ei∼PER

[
∇Qw(i)

1

τ
|δ(i)|τ

]
=
∑
i∈B

w(i)p(i)∇Q
1

τ
|δ(i)|τ

=
∑
i∈B

(
1
N ·

1
p(i)

)β
maxj∈B

(
1
N ·

1
p(j)

)β |δ(i)|α∑
j∈B |δ(j)|α

sign(δ(i))|δ(i)|τ−1

=
1

maxj∈B
1

|δ(j)|αβ
∑
j∈B |δ(j)|α

∑
i∈B

|δ(i)|τ+α−1sign(δ(i))
|δ(i)|αβ

= η
∑
i∈B

sign(δ(i))|δ(i)|τ+α−αβ−1.

(11)

Now consider the expected gradient of LτPER(δ(i)):

Ei∼B [∇QLτPER(δ(i))] =
1

N

∑
i∈B

ηN

τ + α− αβ
∇Q|δ(i)|τ+α−αβ

= η
∑
i∈B

sign(δ(i))|δ(i)|τ+α−αβ−1.
(12)

�

Corollary 3 The expected gradient of the Huber loss when used with PER is equal to the expected
gradient of the following loss when using a uniformly sampled replay buffer:

LHuber
PER (δ(i)) =

ηN

τ + α− αβ
|δ(i)|τ+α−αβ , τ =

{
2 if |δ(i)| ≤ 1,

1 otherwise,
η =

minj |δ(j)|αβ∑
j |δ(j)|α

.

(13)
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Proof. Direct application of Theorem 3 with τ = 1 and τ = 2.

�

Observation 2 (MSE) Let B(s, a) ⊂ B be the subset of transitions containing (s, a) and δ(i) =
Q(i)− y(i). If ∇QEi∼B(s,a)[0.5|δ(i)|2] = 0 then Q(s, a) = meani∈B(s,a)y(i).

Proof.
Ei∼B(s,a)[∇Q0.5|δ(i)|2] = 0

⇒ Ei∼B(s,a)[δ(i)] = 0

⇒ 1

N

∑
i∈B(s,a)

Q(s, a)− y(i) = 0

⇒ Q(s, a)− 2c

N

∑
i∈B(s,a)

y(i) = 0

⇒ Q(s, a) =
1

N

∑
i∈B(s,a)

y(i).

(14)

�

Observation 3 (L1 Loss) Let B(s, a) ⊂ B be the subset of transitions containing (s, a) and δ(i) =
Q(i)− y(i). If ∇QEi∼B[|δ(i)|] = 0 then Q(s, a) = mediani∈B(s,a)y(i).

Proof.
Ei∼B(s,a)[∇Q|δ(i)|] = 0

⇒ Ei∼B(s,a)[sign(δ(i))] = 0

⇒
∑

i∈B(s,a)

1{Q(s, a) ≤ y(i)} =
∑

i∈B(s,a)

1{Q(s, a) ≥ y(i)}

⇒ Q(s, a) = mediani∈B(s,a)y(i).

(15)

�

A.4 PAL Derivation

Observation 4 LAP and PAL have the same expected gradient.

Proof. From Corollary 1 we have:

LPAL(δ(i)) =
1

λ
|pr(i)|×LHuber(δ(i))

=
1

λ
|max(|δ(i)|α, 1)|×LHuber(δ(i))

=
1

λ
|max(|δ(i)|α, 1)|×

{
0.5δ(i)2 if |δ(i)| ≤ 1,

|δ(i)| otherwise,

=
1

λ

{
0.5δ(i)2 if |δ(i)| ≤ 1,
|δ(i)|1+α

1+α otherwise,

(16)

where

λ =

∑
j pr(j)

N
=

∑
j max(|δ(j)|α, 1)

N
. (17)

Then by Corollary 1, LAP and PAL have the same expected gradient.

�
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B Computational Complexity Results

A bottleneck in the usage of prioritized experience replay (PER) [1] is the computational cost induced
by non-uniform sampling. Most implementations of PER use a sum-tree to keep the sampling cost
to O(log (N)), where N is the number of elements in the buffer. However, we found common
implementations to have inefficient aspects, mainly unnecessary for-loops. Since a mini-batch is
sampled every time step, any inefficiency can add significant costs to the run time of the algorithm.
While our implementation has no algorithmic differences and still relies on a sum-tree, we found it
significantly outperformed previous implementations.
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Figure 1: The average run time increase of different implementations of PER in minutes, over 1 million time
steps and averaged over 3 trials. Time increase of SAC is provided to give a better understanding of the
significance. Our implementation only adds a cost of 11 minutes, per million time steps, while the OpenAI
baselines implementation adds over 3 hours.

We compare the run time of our implementation of PER with two standard implementations, OpenAI
baselines [2] and Dopamine [3]. To keep things fair, all components of the experience replay
buffer and algorithm are fixed across all comparisons, and only the sampling of the indices of stored
transitions and the computation of the importance sampling weights is replaced. Both implementations
are taken from the master branch in early February 20201. Each implementation of PER is combined
with TD3. The OpenAI baselines implementation uses an additional sum-tree to compute the
minimum over the entire replay buffer to compute the importance sampling weights. However, to
keep the computational costs comparable, we remove this additional sum-tree and use a per-batch
minimum, similar to Dopamine and our own implementation. Additionally, we compare against
TD3 with a uniform experience replay as well as SAC [4]. All time-based experiments are run
on a single GeForce GTX 1080 GPU and a Intel Core i7-6700K CPU. Our results are presented
in Figure 1 and Table 1.

Table 1: Average run time of different implementations of PER, and their percentage increase over TD3 with
a uniform buffer. Values are computed over 1 million time steps and averaged over 3 trials. Run time of TD3
and SAC with uniform buffers are also provided to give a better understanding of the scale. ± captures a 95%
confidence interval over the run time. Fastest run time implementation of PER is bolded.

TD3 + Uniform TD3 + Ours TD3 + Dopamine TD3 + Baselines SAC

Run Time (mins) 81.62 ± 1.14 92.78 ± 0.93 143.02 ± 1.75 268.80 ± 7.39 139.70 ± 2.22
Time Increase (%) +0.00% +13.68% +75.24% +229.35% +71.17%

We find our implementation of PER greatly outperforms the other standard implementations in terms
of run time. This means PER can be added to most methods without significant computational costs if
implemented efficiently. Additionally, we find that TD3 with PER can be run faster than a comparable
and commonly used method, SAC. Our implementation of PER adds less than 50 lines of code to the
standard experience replay buffer code. We hope the additional efficiency will enable further research
in non-uniform sampling methods.

1OpenAI baselines https://github.com/openai/baselines, commit:
ea25b9e8b234e6ee1bca43083f8f3cf974143998, Dopamine https://github.com/google/dopamine,
commit: e7d780d7c80954b7c396d984325002d60557f7d1.
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C Additional Experiments

In this section we perform additional experiments and visualizations, covering ablation studies,
additional baselines and display the learning curves for the Atari results.

C.1 Ablation Study

To better understand the contributions of each component in PAL, we perform an ablation study.
We aim to understand the importance of the scaling factor 1

λ = N∑
j max(|δ(j)|α,1) as well as the

differences between the proposed loss and the comparable Huber loss [5], by considering all possible
combinations. Notably, when α = 0, PAL equals the Huber loss with the scaling factor. As discussed
in the Experimental Details, Appendix D, PAL uses α = 0.4. The results are reported in Figure 2 and
Table 2.

We find the complete loss of PAL achieves the highest performance, and PAL without the 1
λ scale

factor to be the second highest. Interestingly, while TD3 with the Huber loss performs poorly, scaling
by 1

λ adds fairly significant gains in performance.
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Figure 2: Learning curves for the ablation study on the suite of OpenAI gym continuous control tasks in MuJoCo.
Curves are averaged over 10 trials, where the shaded area represents a 95% confidence interval over the trials.

Table 2: Average performance over the last 10 evaluations and 10 trials. ± captures a 95% confidence interval.
Scores are bold if the confidence interval intersects with the confidence interval of the highest performance,
except for HalfCheetah and Walker2d where all scores satisfy this condition.

TD3 TD3 + Huber TD3 + Huber + 1
λ

TD3 + PAL - 1
λ

TD3 + PAL

HalfCheetah 13570.9 ± 794.2 14820.5 ± 785.5 13772.2 ± 685.7 14404 ± 642.2 15012.2 ± 885.4
Hopper 3393.2 ± 381.9 2125.7 ± 596.9 3442.2 ± 319.4 3135.8 ± 479.5 3129.1 ± 473.5
Walker2d 4692.4 ± 423.6 4311.3 ± 1219.2 4707.3 ± 435.3 5313.7 ± 368.2 5218.7 ± 422.6
Ant 6469.9 ± 200.3 4952.6 ± 1204.2 6499.2 ± 162.7 6322.7 ± 564.3 6476.2 ± 640.2
Humanoid 6437.5 ± 349.3 5039.1 ± 1631.5 6163.2 ± 331.7 7493.4 ± 645.3 8265.9 ± 519.0

C.2 Additional Baselines

To better compare our algorithm against other recent adjustments to replay buffers and non-uniform
sampling, we compare LAP and PAL against the Emphasizing Recent Experience (ERE) replay
buffer [6] combined with TD3. To implement ERE we modify our training procedure slightly, such
that X training iterations are the applied at the end of each episode, where X is the length of the
episode. ERE works by limiting the transitions sampled to only the N most recent transitions, where
N changes over the X training iterations. Additionally, we add a baseline of the simplest version
of LAP which uses the L1 loss, rather than the Huber loss and samples transitions with priority
pr(i) = |δ(i)|α, denoted TD3+L1+α. Results are reported in Figure 3 and Table 3.

We find that LAP and PAL with TD3 outperform ERE. The addition of ERE outperforms vanilla
TD3 and improves early learning performance in several tasks. We remark that the addition of ERE
does not directly conflict with LAP and PAL. PAL can be directly combined with ERE with no
other modifications. LAP can be combined by only performing the non-uniform sampling on the
corresponding subset of transitions determined by ERE. We leave these combinations to future work.
We also find that LAP and PAL outperform the simplest version of LAP with the L1 loss. This
demonstrates the importance of the Huber loss in LAP.
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Figure 3: Learning curves for additional baselines on the suite of OpenAI gym continuous control tasks in
MuJoCo. Curves are averaged over 10 trials, where the shaded area represents a 95% confidence interval over
the trials.

Table 3: Average performance over the last 10 evaluations and 10 trials. ± captures a 95% confidence interval.
Scores are bold if the confidence interval intersects with the confidence interval of the highest performance,
except for HalfCheetah, Hopper and Walker2d where all scores satisfy this condition.

TD3 TD3 + ERE TD3 + L1 + α TD3 + LAP TD3 + PAL

HalfCheetah 13570.9 ± 794.2 14863.6 ± 602.0 14885.4 ± 402.6 14836.5 ± 532.2 15012.2 ± 885.4
Hopper 3393.2 ± 381.9 3541.7 ± 253.3 3208.9 ± 475.1 3246.9 ± 463.4 3129.1 ± 473.5
Walker2d 4692.4 ± 423.6 5205.5 ± 407.0 5153.7 ± 601.4 5230.5 ± 368.2 5218.7 ± 422.6
Ant 6469.9 ± 200.3 6285.9 ± 271.7 6021.1 ± 656.9 6912.6 ± 234.4 6476.2 ± 640.2
Humanoid 6437.5 ± 349.3 6889.9 ± 627.4 6185.3 ± 207.0 7855.6 ± 705.9 8265.9 ± 519.0

C.3 Full Atari Results

We display the full learning curves from the Atari experiments in Figure 4.
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Figure 4: Complete learning curves for a set of Atari games. Curves are smoothed uniformly with a sliding
window of 10 for visual clarity.
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D Experimental Details

All networks are trained with PyTorch (version 1.2.0) [7], using PyTorch defaults for all unmentioned
hyper-parameters.

D.1 MuJoCo Experimental Details

Environment. Our agents are evaluated in MuJoCo (mujoco-py version 2.0.2.9) [8] via OpenAI gym
(version 0.15.4) [9] interface, using the v3 environments. The environment, state space, action space,
and reward function are not modified or pre-processed in any way, for easy reproducibility and fair
comparison with previous results. Each environment runs for a maximum of 1000 time steps or until
some termination condition, and has a multi-dimensional action space with values in the range of
(−1, 1), except for Humanoid which uses a range of (−0.4, 0.4).
Architecture. Both TD3 [10] and SAC [4] are actor-critic methods which use two Q-networks
and a single actor network. All networks have two hidden layers of size 256, with ReLU activation
functions after each hidden layer. The critic networks take state-action pairs (s, a) as input, and output
a scalar value Q following a final linear layer. The actor network takes state s as input and outputs a
multi-dimensional action a following a linear layer with a tanh activation function, multiplied by the
scale of the action space. For clarity, a network definition is provided in Figure 5.

(input dimension, 256)
ReLU
(256, 256)
RelU
(256, output dimension)

Figure 5: Network architecture. Actor networks are followed by a tanh · max action size

Network Hyper-parameters. Networks are trained with the Adam optimizer [11], with a learning
rate of 3e − 4 and mini-batch size of 256. The target networks in both TD3 and SAC are updated
with polyak averaging with ν = 0.005 after each learning update, such that θ′ ← (1− ν)θ′ + νθ, as
described by Lillicrap et al. [12].

Terminal Transitions. The learning target uses a discount factor of γ = 0.99 for non-terminal
transitions and γ = 0 for terminal transitions, where a transition is considered terminal only if the
environment ends due to a termination condition and not due to reaching a time-limit.

LAP, PAL, and PER. For LAP and PAL we use α = 0.4. For PER we use α = 0.6, β = 0.4 as
described by Schaul et al. [1] and ε = 1e− 10 from Castro et al. [3]. Since there are two TD errors
defined by δ1 = Q1

θ − y and δ2 = Q2
θ − y, where y = r + γmin(Q1

θ′(s
′, a′), Q2

θ′(s
′, a′)) [10], the

priority uses the maximum over |δ1| and |δ2|, which we found to give the strongest performance. As
done by PER, new samples are given a priority equal to the maximum priority recorded at any point
during learning.

TD3 and SAC. For TD3 we use the default policy noise of N (0, σ2
N ), clipped to (−0.5, 0.5), where

σN = 0.2. Both values are scaled by the range of the action space. For SAC we use the learned
entropy variant [13], where entropy is trained to a target of −action dimensions as described the
author, with an Adam optimizer with learning 3e− 4, matching the other networks. Following the
author’s implementation, we clip the log standard deviation to (−20, 2), and add ε = 1e− 6 to avoid
numerical instability in the logarithm operation. We consider this a hyper-parameter as log (ε) defines
the minimum value subtracted from log-likelihood calculation of the tanh normal distribution:

log π(a|s) =
∑
i

−0.5(ui − µi)
2

σ2
i

− log σi − 0.5 log (2π)− log (1− a2i + ε), (18)

where i is each action dimension, u is pre-activation value of the action a and µ and σ define the
Normal distribution output by the actor network. The log-likelihood calculation assumes the action is
scaled within (−1, 1). As standard practice, the agents are trained for one update after every time
step.

Exploration. To fill the buffer, for the first 25k time steps the agent is not trained, and actions
are selected randomly with uniform probability. Afterwards, exploration occurs in TD3 by adding
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Gaussian noise N (0, σ2
E · max action size), where σE = 0.1 scaled by the range of the action

space. No exploration noise is added to SAC, as it uses a stochastic policy.

For clarity, all hyper-parameters are presented in Table 4.

Table 4: Continuous control hyper-parameters.

Hyper-parameter Value

Optimizer Adam
Learning rate 3e− 4
Mini-batch size 256
Discount factor γ 0.99
Target update rate 0.005
Initial random policy steps 25k

TD3 Exploration Policy σE 0.1
TD3 Policy Noise σN 0.2
TD3 Policy Noise Clipping (−0.5, 0.5)
SAC Entropy Target −action dimensions
SAC Log Standard Deviation Clipping (−20, 2)
SAC ε 1e− 6

PER priority exponent α 0.6
PER importance sampling exponent β 0.4
PER added priority ε 1 e− 10
LAP & PAL exponent α 0.4

Hyper-parameter Optimization. No hyper-parameter optimization was performed on TD3 or SAC.
For LAP and PAL we tested α = {0.2, 0.4, 1} on the HalfCheetah task using seeds than the final
results reported. Note 0.4 comes from α− αβ = 0.36 when using the hyper-parameters defined by
Schaul et al. [1]. Additionally we tested using defining the priority over |δ1|, 0.5(|δ1| + |δ2|) and
max(|δ1|, |δ2|) and found the maximum to work the best for both LAP and PER.

Evaluation. Evaluations occur every 5000 time steps, where an evaluation is the average reward over
10 episodes, following the deterministic policy from TD3, without exploration noise, or by taking
the deterministic mean action from SAC. To reduce variance induced by varying seeds [14], we use
a new environment with a fixed seed (the training seed + a constant) for each evaluation, so each
evaluation uses the same set of initial start states.

Visualization. Performance is displayed in learning curves, presented as the average over 10 trials,
where a shaded region is added, representing a 95% confidence interval over the trials. The curves
are smoothed uniformly over a sliding window of 5 evaluations for visual clarity.

D.2 Atari Experimental Details

Environment. For the Atari games we interface through OpenAI gym (version 0.15.4) [9] using
NoFrameSkip-v0 environments with sticky actions with p = 0.25 [15]. Our pre-processing steps
follow standard procedures as defined by Castro et al. [3] and Machado et al. [15]. Exact pre-
processing steps can be found in [16] which our code is closely based on.

Architecture. We use the standard architecture used by DQN-style algorithms. This is a 3-layer
CNN followed by a fully connected network with a single hidden layer. The input to this network is a
(4, 84, 84) tensor, corresponding to the previous 4 states of 84× 84 pixels. The first convolutional
layer has 32 8× 8 filers with stride 4, the second convolutional layer has 32 4× 4 filers with stride
2, the final convolutional layer has 64 2× 2 filers with stride 1. The output is flattened into a 3136
vector and passed to the fully connected network with a single hidden layer of 512. The final output
dimension is the number of actions. All layers, except for the final layer are followed by a ReLU
activation function.

Network Hyper-parameters. Networks are trained with the RMSProp optimizer, with a learning
rate of 6.25e− 5, no momentum, centered, α = 0.95, and ε = 1e−5. We use a mini-batch size of

9



32. The target network is updated every 8k training iterations. A training update occurs every 4 time
steps (i.e. 4 interactions with the environment).

Terminal Transitions. The learning target uses a discount factor of γ = 0.99 for non-terminal
transitions and γ = 0 for terminal transitions, where a transition is considered terminal only if the
environment ends due to a termination condition and not due to reaching a time-limit.

LAP, PAL, and PER. For LAP and PAL we use α = 0.6. For PER we use α = 0.6, β = 0.4 as
described by Schaul et al. [1] and ε = 1e− 10 from Castro et al. [3]. As done by PER, new samples
are given a priority equal to the maximum priority recorded at any point during learning. For LAP,
due to the magnitude of training errors being lower, rather than use a Huber loss with κ = 1, we use
κ = 0.01. This gives a loss function of:

LκHuber(δ(i)) =

{
0.5δ(i)2 if |δ(i)| ≤ κ,
κ(|δ(i)| − 0.5κ) otherwise.

(19)

To maintain the unbiased nature of LAP, the priority clipping needs to be shifted according to the
choice of κ, generalizing the priority function to be:

p(i) =
max(|δ(i)|α, κα)∑
j max(|δ(j)|α, κα)

. (20)

Note the case where κ = 1, the algorithm is unchanged. PAL also needs to be generalized accordingly:

LPAL(δ(i)) =
1

λ

{
0.5καδ(i)2 if |δ(i)| ≤ κ,
κ|δ(i)|1+α

1+α otherwise,
λ =

∑
j max(|δ(j)|α, κα)

N
. (21)

Exploration. To fill the buffer, for the first 20k time steps the agent is not trained, and actions are
selected randomly with uniform probability. Afterwards, exploration occurs according to the ε-greedy
policy where ε begins at 1 and is decayed to 0.01 over the next 250k training iterations, corresponding
to 1 million time steps.

For clarity, all hyper-parameters are presented in Table 5.

Table 5: Atari Hyper-parameters.

Hyper-parameter Value

Optimizer RMSProp
RMSProp momentum 0
RMSProp centered True
RMSProp α 0.95
RMSProp ε 1e− 5
Learning rate 6.25e− 5
Mini-batch size 32
Discount factor γ 0.99
Target update rate 8k training iterations
Initial random policy steps 20k
Initial ε 1
End ε 0.01
ε decay period 250k training iterations
Evaluation ε 0.001
Training frequency 4 time steps

PER priority exponent α 0.6
PER importance sampling exponent β 0.4
PER added priority ε 1 e− 10
LAP & PAL exponent α 0.6

Hyper-parameter Optimization. No hyper-parameter optimization was performed on Double DQN.
For LAP and PAL we tested α = {0.4, 0.6} on the Asterix game, which was excluded from the final
results.
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Evaluation. Evaluations occur every 50k time steps, where an evaluation is the average reward over
10 episodes, following the ε-greedy policy where ε = 1e−3. To reduce variance induced by varying
seeds [14], we use a new environment with a fixed seed (the training seed + a constant) for each
evaluation, so each evaluation uses the same set of initial start states. Final scores reported in Figure
2 and Table 2 average over the final 10 evaluations. For Table 2 percentage improvement of x over y
is calculated by x−y

|y| .
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