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A Deferred proofs of Section 3.1

We first show that a rational function can approximate the absolute value function |x| on [−1, 1] with
square-root exponential convergence.
Lemma 1 For any integer k ≥ 0, we have

min
r∈Rk,k

max
x∈[−1,1]

||x| − xr(x)| ≤ 4e−π
√
k/2,

where Rk,k is the space of rational functions of type at most (k, k). Thus, xr(x) is a rational
approximant to |x| of type at most (k + 1, k).

Moreover, if k =
∏p
i=1 ki for some p ≥ 1 and integers k1, . . . , kp ≥ 2, then r can be written as

r = Rp ◦ · · · ◦R1, where Ri ∈ Rki,ki .

Proof. Let 0 < ` < 1 be a real number and consider the sign function on the domain [−1,−`]∪ [`, 1],
i.e.,

sign(x) =

{
−1, x ∈ [−1,−`],
+1, x ∈ [`, 1].

By [2, Equation (33)], we find that for any k ≥ 0,

min
r∈Rk,k

max
x∈[−1,−`]∪[`,1]

|sign(x)− r(x)| ≤ 4

[
exp

(
π2

2 log(4/`)

)]−k
.

Let r(x) be the rational function of type (k, k) that attains the minimum [2, Equation (12)]. We refer
to such r(x) as the Zolotarev sign function. It is given by

r(x) = Mx

∏b(k−1)/2c
j=1 x2 + c2j∏bk/2c
j=1 x2 + c2j−1

, cj = `2
sn2(jK(κ)/k;κ)

1− sn2(jK(κ)/k;κ)
.

Here, M is a real constant selected so that sign(x) − r(x) equioscillates on [−1,−`] ∪ [`, 1], κ =√
1− `2, sn(·) is the first Jacobian elliptic function, and K is the complete elliptic integral of the

first kind. Since |x| = x · sign(x) we have the following inequality,

max
x∈[−1,−`]∪[`,1]

||x| − xr(x)| = max
x∈[−1,−`]∪[`,1]

|x · sign(x)− xr(x)|

≤ max
x∈[−1,−`]∪[`,1]

|sign(x)− r(x)| .

The last inequality follows because |x| ≤ 1 on [−1,−`] ∪ [`, 1]. Moreover, since xr(x) ≥ 0 for
x ∈ [−1, 1] (see [2, Equation (12)]) we have

max
x∈[−`,`]

||x| − xr(x)| ≤ max
x∈[−`,`]

|x| ≤ `.
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Therefore,

max
x∈[−1,1]

||x| − xr(x)| ≤ max

{
`, 4

[
exp

(
π2

2 log(4/`)

)]−k}
.

Now, select 0 < ` < 1 to minimize this upper bound. One finds that ` = 4 exp(−π
√
k/2) and the

result follows immediately.

For the final claim, let r be the Zolotarev sign function Zk(· ; `) of type (k, k) on [−1,−`] ∪ [`, 1],
with k =

∏p
i=1 ki. By definition, Zk(·; `) is the best rational approximation of degree k to the

sign function on [−1,−`] ∪ [`, 1]. We know from [7, 8] that there exist p Zolotarev sign functions
R1, . . . , Rp, where each Ri is of type (ki, ki), such that

r(x) := Zk(x; `) = Rp(· · · (R2(R1(x)) · · · ). (1)

The proof of Lemma 1 is a direct consequence of the previous lemma and the properties of Zolotarev
sign functions.

Proof of Lemma 1. Let 0 < ε < 1, 0 < ` < 1, k ≥ 1, and r be the Zolotarev sign function
Z3k(· ; `) of type (3k, 3k − 1). Again from [7, 8], we see that there exist k Zolotarev sign functions
R1, . . . , Rk of type (3, 2) such that their composition equals Z3k(x; `), i.e.,

r(x) := Z3k(x; `) = Rk(· · · (R2(R1(x)) · · · ). (2)

Following the proof of Lemma 1, we have the inequality

max
x∈[−1,1]

||x| − xr(x)| ≤ 4e−π
√

3k/2, (3)

where we chose ` = 4 exp(−π
√

3k/2). Now, we take

k =

⌈
ln(2/π2) + 2 ln(ln(4/ε))

ln(3)

⌉
, (4)

so that the right-hand side of Equation (3) is bounded by ε. Finally, we use the identity

ReLU(x) =
|x|+ x

2
, x ∈ R,

to define a rational approximation to the ReLU function on the interval [−1, 1] as

r̃(x) =
1

2

(
xr(x)

1 + ε
+ x

)
.

Therefore, we have the following inequalities for x ∈ [−1, 1],

|ReLU(x)− r̃(x)| = 1

2

∣∣∣∣|x| − xr(x)

1 + ε

∣∣∣∣ ≤ 1

2(1 + ε)
(||x| − xr(x)|+ ε|x|)

≤ ε

1 + ε
≤ ε.

Then, r is a composition of k rational functions of type (3, 2) and can be represented using at most
7k coefficients (see Equation (1)). Moreover, using Equation (4), we see that k = O(log(log(1/ε))),
which means that r̃ is representable by a rational network of sizeO(log(log(1/ε))). Finally, |r̃(x)| ≤
1 for x ∈ [−1, 1].

The upper bound on the complexity of the neural network obtained in Lemma 1 is optimal, as proved
by Vyacheslavov [13].
Theorem 2 (Vyacheslavov) The following inequalities hold:

C1e
−π
√
k ≤ max

x∈[−1,1]
||x| − rk(x)| ≤ C2e

−π
√
k, k ≥ 0, (5)

where rk is the best rational approximation to |x| in [−1, 1] from Rk,k. Here, C1, C2 > 0 are
constants that are independent of k.
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We first deduce the following corollary, giving lower and upper bounds on the optimal rational
approximation to the ReLU function.
Corollary 3 The following inequalities hold:

C1

2
e−π
√
k ≤ ‖ReLU− rk‖∞ ≤

C2

2
e−π
√
k, k ≥ 0, (6)

where rk is the best rational approximation to ReLU on [−1, 1] inRk,k and C1, C2 > 0 are constants
given by Theorem 2.

Proof. Let k be an integer and let rk ∈ Rk,k be any rational function of degree ≤ k. Now, define
rabs(x) = 2rk(x)− x. Since ReLU(x) = (|x|+ x)/2, we have

‖ReLU−rk‖∞ = max
x∈[−1,1]

∣∣∣∣12(rabs(x) + x)− 1

2
(|x|+ x)

∣∣∣∣ = max
x∈[−1,1]

1

2
|rabs(x)− |x|| ≥ 1

2
C1e

−π
√
k,

where the inequality is from Theorem 2. Now, let rk ∈ Rk,k be the best rational approximation to |x|
on [−1, 1]. Now, define rReLU(x) = (rk(x) + x)/2. We find that

‖ReLU−rReLU‖∞ = max
x∈[−1,1]

∣∣∣∣12(|x|+ x)− 1

2
(rk(x) + x)

∣∣∣∣ = max
x∈[−1,1]

1

2
||x| − rk(x)| ≤ 1

2
C2e

−π
√
k,

which proves that the best approximation to ReLU satisfies the upper bound.

We now show that a rational neural network must be at least Ω(log(log(1/ε))) in size (total number
of nodes) to approximate the ReLU function to within ε.
Proposition 4 Let 0 < ε < 1. A rational neural network that approximates the ReLU function on
[−1, 1] to within ε has size of at least Ω(log(log(1/ε))).

Proof. Let R : [−1, 1]→ R be a rational neural network with k1, . . . , kM ≥ 1 nodes at each of its
M layers, and assume that its activation functions are rational functions of type at most (rP , rQ). Let
dr = max(rP , rQ) be the maximum of the degrees of the activation functions of R. Such a network
has size

∑M
i=1 ki. Note that R itself is a rational function of degree d, where from additions and

compositions of rational functions we have d ≤ dMr
∏M
i=1 ki. If R is an ε-approximation to the ReLU

function on [−1, 1], we know by Corollary 3 that

C1

2
e−π
√
d ≥ ε, d ≥

(
1

π
ln

(
C1

2ε

))2

. (7)

The statement follows by minimizing the size of R, i.e.,
∑M
i=1 ki subject to

dMr

M∏
i=1

ki ≥
(

1

π
ln

(
C1

2ε

))2

.

That is,
M∑
i=1

ln(ki) +M ln(dr) ≥ 2 ln

(
ln

(
C1

2ε

))
− 2 ln(π). (8)

We introduce a Lagrange multiplier λ ∈ R and define the Lagrangian of this optimization problem as

L(k1, . . . , kM , λ) =

M∑
i=1

ki + λ

[
2 ln

(
ln

(
C1

2ε

))
− 2 ln(π)−

M∑
i=1

ln(ki)−M ln(dr)

]
.

One finds using the Karush–Kuhn–Tucker conditions [6] that k1 = · · · = kM = λ. Then, using
Equation (8), we find that λ satisfies

ln(λ) ≥ 2

M

[
ln

(
ln

(
C1

2ε

))
− ln(π)

]
− ln(dr) =: ln(λ∗). (9)

Therefore, the rational network R with M layers that approximates the ReLU function to within ε on
[−1, 1] has a size of at least s(M) := Mλ∗, where λ∗ is given by Equation (9) and depends on M .
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We now minimize s(M) with respect to the number of layers M ≥ 1. We remark that minimizing s
is equivalent of minimizing ln(s), where

ln(s(M)) = ln(M) + ln(λ∗) = ln(M) +
2

M

[
ln

(
ln

(
C1

2ε

))
− ln(π)

]
− ln(dr).

One finds that one should take k1 = · · · = kM = λ∗ = O(1) and M = Ω(log(log(1/ε))). The
result follows.

We now show that ReLU neural networks can approximate rational functions.

Proof of Lemma 2. Let 0 < ε < 1 and R : [−1, 1] → [−1, 1] be a rational function. Take
R̃(x) = R(2x − 1), which is still a rational function. Without loss of generality, we can assume
that R̃ is an irreducible rational function (otherwise cancel factors till it is irreducible). Since R̃
is a rational, it can be written as R̃ = p/q with maxx∈[0,1] |q(x)| = 1. Moreover, we know that
R̃(x) ∈ [−1, 1] for x ∈ [0, 1] so we can assume that q(x) ≥ 0 for x ∈ [0, 1] (it is either positive
or negative by continuity). Since R is continuous on [−1, 1], there is an integer n ≥ 1 such that
q(x) ∈ [2−n, 1] for x ∈ [0, 1]. Furthermore, we find that |p(x)| ≤ 1 for x ∈ [0, 1] because |R(x)| ≤ 1
and |q(x)| ≤ 1 for x ∈ [0, 1]. By [12, Theorem 1.1], there exists a ReLU network f : [0, 1]→ R of
size O(n7 log(1/ε)3) such that

max
x∈[0,1]

∣∣∣∣f(x)− p(x)

q(x)

∣∣∣∣ ≤ ε

2
.

We now define a scaled ReLU network f̃(x) = f(x)/(1 + ε/2) such that |f̃(x)| ≤ 1 for x ∈ [0, 1].
Therefore, for all x ∈ [0, 1],∣∣∣f̃(x)− R̃(x)

∣∣∣ =

∣∣∣∣ f(x)

1 + ε/2
− p(x)

q(x)

∣∣∣∣ ≤ 1

1 + ε/2

(∣∣∣∣f(x)− p(x)

q(x)

∣∣∣∣+
ε

2

∣∣∣∣p(x)

q(x)

∣∣∣∣) ≤ ε.
Therefore, x 7→ f̃((x + 1)/2) is a ReLU neural network of size O(log(1/ε)3) that is an ε-
approximation to R on [−1, 1].

We can now prove Theorem 3 that shows how rational neural networks can approximate ReLU
networks and vice versa. The structure of the proof closely follows [12, Lemma 1.3].

Proof of Theorem 3. The statement of Theorem 3 comes in two parts, and we prove them separately.
1. Consider the subnetwork H of the rational network R, consisting of the layers of R up to the
J th layer for some 1 ≤ J ≤ M − 1. Let HReLU denote the ReLU network obtained by replacing
each rational function rij in H by a ReLU network approximation frij at a given tolerance εj > 0
for 1 ≤ j ≤ J and 1 ≤ i ≤ kj , such that |HReLU(x)| ≤ 1 for x ∈ [−1, 1] (see Lemma 2). Let
x 7→ ri,J+1(a>i,J+1H(x) + bi,J+1) be the output of the rational network R at layer J + 1 and node i
for 1 ≤ i ≤ kJ . Now, approximate node i in the (J + 1)st layer by a ReLU network fri,J+1 with
tolerance εJ+1 > 0 (see Lemma 2). The approximation error Ei,J+1 between the rational and the
approximating ReLU network at layer J + 1 and node i satisfies

Ei,J+1 = |fri,J+1
(a>i,J+1HReLU(x) + bi,J+1)− ri,J+1(a>i,J+1H(x) + bi,J+1)|

≤ |fri,J+1
(a>i,J+1HReLU(x) + bi,J+1)− ri,J+1(a>i,J+1HReLU(x) + bi,J+1)|︸ ︷︷ ︸

(1)

+ |ri,J+1(a>i,J+1HReLU(x) + bi,J+1)− ri,J+1(a>i,J+1H(x) + bi,J+1)|︸ ︷︷ ︸
(2)

.

The first term is bounded by

(1) ≤ max
x∈[−1,1]

∣∣ri,J+1(x)− fri,J+1

∣∣ ≤ εJ+1,

since
∣∣a>i,J+1HReLU(x) + bi,J+1

∣∣ ≤ ‖ai,J+1‖1 + |bi,J+1| ≤ 1 by assumption. The second term is
bounded as the Lipschitz constant of ri,J+1 is at most L. That is,

(2) ≤ L‖ai,J+1‖1 max
x∈[−1,1]d

‖HReLU(x)−H(x)‖∞ ≤ L max
x∈[−1,1]d

‖HReLU(x)−H(x)‖∞ ,
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where we used the fact that ‖ai,J+1‖1 ≤ 1 and ‖HReLU(x)‖∞ ≤ 1 for x ∈ [−1, 1]d. We find that we
have the following set of inequalities:

max
1≤i≤kj+1

Ei,j+1 ≤ L max
1≤i≤kj

Ei,j + εj+1, 1 ≤ i ≤ kj , 1 ≤ j ≤ J + 1,

with Ei,0 = 0. If we select εj = εLj−J−1/(J + 1), then we find that max1≤i≤kJ+1
Ei,J+1 ≤ ε.

When J = M − 1, the ReLU network approximates the original rational network, R, and the ReLU
network has size

O

k M∑
j=1

log

(
M

Lj−M ε

)3
 .

where we used the fact that kj ≤ k for 1 ≤ j ≤M . This can be simplified a little since

M∑
j=1

log

(
M

Lj−M ε

)3

=

M∑
j=1

(
log(MLM/ε) + j log(1/L)

)3
= O

(
M log(MLM/ε)3

)
.

2. Telgarsky proved in [12, Lemma 1.3] that if HR is a neural network obtained by replacing
all the ReLU activation functions in f by rational functions R for 1 ≤ j ≤ M , which satisfies
R(x) ∈ [−1, 1] and |R(x)− ReLU(x)| ≤ ε/M for x ∈ [−1, 1], then

max
x∈[−1,1]d

|f(x)−HR(x)| ≤ ε.

Let R be a rational neural network approximating ReLU with a tolerance of ε/M , constructed
by Lemma 1. Then, R is rational network of size O(log(log(M/ε))) and thus, HR is a rational
neural network of size O(Mk log(log(M/ε))).

B Deferred proofs of Section 3.2

Here, we show that the construction in Lemma 1 can approximate any piecewise linear function on
[−1, 1].
Proposition 5 Let 0 < ε < 1 and let g : [0, 1] → R be any continuous piecewise linear function
with m ≥ 1 breakpoints and Lipschitz constant L > 0. Then, there exists a rational neural network
R : [0, 1]→ R of size at most

O(m log(log(L/ε)))

such that maxx∈[0,1] |g(x)−R(x)| ≤ ε.

Proof. Let 0 ≤ b1 < · · · < bM ≤ 1 be the breakpoints of g. In a similar way to the proof of [14,
Proposition 1], we first express ρ as the following sum:

g(x) = c0ReLU(b1 − x) +

m∑
j=1

cjReLU(x− bj) + cm+1, (10)

for some constants c0, . . . , cm+1 ∈ R. Therefore, g can be exactly represented using a ReLU network
with m+ 1 nodes and one layer, i.e.,

g(x) = (c0 c1 · · · cm)


ReLU(−x+ b1)
ReLU(x− b1)

...
ReLU(x− bm)

+ cm+1.

Since g has a Lipschitz constant of L, we find that |c0| ≤ L and
∑m
j=1 |cj | ≤ L. Using Lemma 1

we can approximate a ReLU function on [−1, 1] with tolerance ε/(2L) by a rational network RReLU
of size O(log(log(2L/ε))). Now, we construct R : [0, 1] → R as a rational network obtained by
replacing the ReLU functions in g by RReLU. We have the following error estimate:

max
x∈[0,1]

|g(x)−R(x)| ≤ |c0|‖ReLU−RReLU‖∞ +

m∑
j=1

|cj |‖ReLU−RReLU‖∞ ≤
ε

2
+
ε

2
≤ ε.
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The result follows as R is of size O(m log(log(L/ε))).

We remark that the size of the rational network required to approximate a piecewise linear function
depends on ε. In contrast, ReLU neural networks can represent piecewise linear functions exactly. In
the next proposition, we show that a rational neural network can represent xn, for some integer n,
exactly.
Proposition 6 Let n ≥ 1, rP ≥ 2, and rQ ≥ 0. There exists a rational network R, with rational
activation functions of type (rP , rQ), of size at most 5blogrP (n)c2 + 1 such that R(x) = xn for all
x ∈ R.

Proof. We start by expressing n in base rP , i.e.,

n =

blogrP
(n)c∑

`=0

c`r
`
P , c` ∈ {0, 1, . . . , rP − 1}.

This means we can represent xn as

xn =

blogrP
(n)c∏

`=0

xc`r
`
P . (11)

Note that xc`r
`
P is just xrP composed ` times as well as composed with xc` so can be represented by

a rational neural network with `+ 1 layers, each with one node. Therefore, all the xc`r
`
P terms can be

represented in rational networks that in total have size
blogrP

(n)c∑
`=0

(`+ 1) =
1

2
(blogrP(n)c)2 +

3

2
blogrP(n)c+ 1.

The function xn can be formed by multiplying all the xc`r
`
P terms together. Since xy = (x2 + y2 −

(x−y)2)/2, there is a rational network with one layer and three nodes that represents the multiplication
operation. Therefore, multiplying all the terms together requires a rational network of size at most
3blogrP(n)c (see Equation (11)). The result follows by noting that x2/2 + 9x/2 + 1 ≤ 5x2 + 1 for
x ≥ 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x
Figure 1: Partition of unity: ψ0 (red), ψ1 (blue), and ψ2 (green), for N = 2.

We can now prove Theorem 4 using the two previous propositions.

Proof of Theorem 4. The proof is based on the proof of [14, Theorem 1] and consists of replacing
the piecewise linear functions and monomials arising in the local Taylor approximation of the function
f by rational networks using the previous approximation results.

Let N ≥ 1 be an integer and consider a partition of unity of (N + 1)d functions φm on the domain
[0, 1]d, i.e., ∑

m∈{0,...,N}d
φm(x) = 1, φm(x) =

d∏
k=1

ψmk
(xk), x = (x1, . . . , xd),
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where m = (m1, . . . ,md), and ψmk
is given by

ψmk
(x) =


1, if

∣∣xk − mk

N

∣∣ < 1
3N ,

0, if
∣∣xk − mk

N

∣∣ > 2
3N ,

2− 3N
∣∣xk − mk

N

∣∣ , otherwise.

Examples of the functions ψmk
are shown in Figure 1 when N = 2. We now define a local Taylor

approximation of f by

fN (x) =
∑

m∈{0,...,N}d
φm(x)Pm(x),

where Pm denotes the degree n− 1 Taylor polynomial of f at x = m/N . That is,

Pm(x) =
∑
|n|<n

Dnf(m
N )

n!

(
x− m

N

)n
, (12)

where |n| =
∑d
k=1 nk, n! =

∏d
k=1 nk!, and (x−m/N)n =

∏d
k=1(xk−mk/N)nk . Let x ∈ [0, 1]d

and note that

support(φm) ⊂
{
x = (x1, . . . , xd) :

∣∣∣xk − mk

N

∣∣∣ < 1

N

}
, m ∈ {0, . . . , N}d.

Hence, the approximation error between f and its local Taylor approximation satisfies

|f(x)− fN (x)| =

∣∣∣∣∣∣
∑

m∈{0,...,N}d
φm(f(x)− Pm(x))

∣∣∣∣∣∣
≤

∑
m:|xk−

mk
N |< 1

N

|f(x)− Pm(x)|

≤ 2ddn

n!

(
1

N

)n
max
|n|=n

ess sup
x∈[0,1]d

|Dnf(x)|

≤ 2ddn

n!

(
1

N

)n
.

We now select (see [14, Theorem 1] for a similar idea)

N =

⌈(
n!

2ddn
ε

2

)−1/n⌉
,

so that
max

x∈[0,1]d
|f(x)− fN (x)| ≤ ε/2. (13)

We now approximate the function fn by a rational network using Propositions 5 and 6. First, we
write fN as

fN (x) =
∑

m∈{0,...,N}d

∑
|n|<n

am,nφm(x)
(
x− m

N

)n
, (14)

where |am,n| ≤ 1 and the monomials are uniformly bounded by 1 (see Equation (12)). Equation (14)
consists of at most dn(N + 1)d terms of the form φm(x)(x −m/N)n. The monomial part (x −
m/N)n is representable by a rational network of size O(d log(n)2) using Proposition 6, including
the fact that the multiplication is a rational network with one layer and three nodes. Let 0 < δ < 1
be a small number, for each mk ∈ {0, . . . , N} the piecewise linear function ψmk

has a Lipschitz
constant of L = 3N . Therefore, it can be approximated with a tolerance δ by a rational network
ψ̃mk

of size O(log(log(N/δ))) (see Proposition 5). We can assume ‖ψ̃mk
‖∞ = 1 by increasing the

size of the network by a constant. This yields the following approximation error between a term

7



in Equation (14) and the rational network constructed using ψ̃mk
:∣∣∣∣∣φm(x)

(
x− m

N

)n
−

d∏
k=1

ψ̃mk
(xk)

(
x− m

N

)n∣∣∣∣∣ ≤
∣∣∣∣∣
d∏
k=1

ψmk
(xk)−

d∏
k=1

ψ̃mk
(xk)

∣∣∣∣∣
≤
∣∣∣ψm1(x1)− ψ̃m1

(x1)
∣∣∣ ∣∣∣∣∣

d∏
k=2

ψmk
(xk)

∣∣∣∣∣+
∣∣∣ψ̃m1(x1)

∣∣∣ ∣∣∣∣∣
d∏
k=2

ψmk
(xk)−

d∏
k=2

ψ̃mk
(xk)

∣∣∣∣∣
≤
∣∣∣ψm1(x1)− ψ̃m1(x1)

∣∣∣+

∣∣∣∣∣
d∏
k=2

ψmk
(xk)−

d∏
k=2

ψ̃mk
(xk)

∣∣∣∣∣
≤ δ +

∣∣∣∣∣
d∏
k=2

ψmk
(xk)−

d∏
k=2

ψ̃mk
(xk)

∣∣∣∣∣ ≤ dδ.
Here, the final inequality is derived by repeating the previous inequalities for x2, . . . , xd. If we denote
by f̃N the rational network approximation to fN constructed above, then, for all x ∈ [0, 1]d, we have

|fN (x)− f̃N (x)| ≤
∑

m∈{0,...,N}d

∑
|n|<n

|am,n|

∣∣∣∣∣φm(x)
(
x− m

N

)n
−

d∏
k=1

ψ̃mk
(xk)

(
x− m

N

)n∣∣∣∣∣
≤ 2ddn+1δ.

Therefore, we select δ = ε/(2d+1dn+1) so that maxx∈[0,1]d |fN (x) − f̃N (x)| ≤ ε/2. Then, by
Equation (13), we have

max
x∈[0,1]d

∣∣∣f(x)− f̃N (x)
∣∣∣ ≤ ε

2
+
ε

2
≤ ε.

The statement of the theorem follows as the rational network f̃N has size at most

O(dn(N + 1)d log(log(N/δ))) = O(ε−d/n log(log(1/ε1+1/n))) = O(ε−d/n log(log(1/ε))).

C Details of the approximation experiment

We use the TensorFlow implementation1 of the deep hidden physics model framework to build and
train the identifier network N that approximates a solution u to the KdV equation. The true solution
is computed on the domain (x, t) ∈ [−20, 20]× [0, 40] by Raissi [10] using the Chebfun package [4]
with a spectral Fourier discretization of 512 and a time-step of ∆t = 10−4. Moreover, the solution is
stored after every 2000 time steps, giving a testing data set of approximatively 105 spatio-temporal
points in [−20, 20]× [0, 40]. We then constituted the training and validation sets (of 104 points each)
by randomly subsampling the solution at 2× 104 points in [−20, 20]× [0, 40].

Table 1: Initialization coefficients of the rational activation functions.

a0 a1 a2 a3 b0 b1 b2

1.1915 1.5957 0.5000 0.0218 2.3830 0.0000 1.0000

In a similar manner to [10], we use a fully connected identification network to approximate u with
4 hidden layers with 50 nodes per layer. The network is trained using the L-BFGS optimization
algorithm with 10,000 iterations. We compare three types of activation functions: ReLU, sinusoid,
trainable rational functions of type (3, 2), and trainable polynomials of degree 3. Furthermore,
the rational activation functions are initialized to be the best approximation to the ReLU function
(see Section 4), giving the initial coefficients reported in Table 1.

We represent the approximation errors between the different identification networks and the solution
to the KdV equation in Figure 2.

1We adapt the code that is publicly available [11].
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Figure 2: Approximation errors of the neural networks with ReLU, sinusoid, and rational activation
layers.

Finally, in Figure 3, we compare rational neural networks with different degree activa-
tion functions (each initialized to approximate the ReLU function using the MATLAB code
initial_rational_coeffs.m available at [3]) and find that they all performed better than ReLU
networks. While a type (3, 2) rational offers a good trade-off between the number of parameters
and quality of approximation according to the theoretical results presented in Section 3, the type of
rational function might well depend on the application considered.
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Figure 3: Validation loss of rational networks of types (2, 2), (3, 2), (4, 3), and (5, 4) with respect to
the number of epochs.

D Details of the GAN experiment

We adapt the Keras example in [1] to train an Auxiliary Classifier GAN with rational activation
functions on the MNIST. The hyper-parameters used for the GAN experiment are given in Table 2.
Moreover, the GAN is trained on 20 epochs with a batch size of 100 by Adam’s optimization
algorithm [5] and the following parameters: α = 0.0002 and β1 = 0.5, as suggested by [9].

We report in Figure 4 samples of the 10 classes present in the MNIST dataset (right) and images
generated at the 20th epoch by the GAN with ReLU/Leaky ReLU units (left) and rational activation
functions (middle).
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ReLU Rational MNIST images

Figure 4: Forty images generated by a ReLU network and a rational network after 20 epochs, together
with real images from the MNIST dataset.
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Table 2: Hyper-parameters of the GAN experiment, BN denotes the presence of a Batch normalization
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functions, initialized with the coefficients reported in Table 1.

Operation Kernel Strides Features BN Dropout Activation

Generator
Linear N/A N/A 3456 7 0.0 ReLU / Rational
Transposed Convolution 5× 5 1× 1 192 3 0.0 ReLU / Rational
Transposed Convolution 5× 5 2× 2 96 3 0.0 ReLU / Rational
Transposed Convolution 5× 5 2× 2 1 7 0.0 Tanh

Discriminator
Convolution 3× 3 2× 2 32 7 0.3 Leaky ReLU / Rational
Convolution 3× 3 1× 1 64 7 0.3 Leaky ReLU / Rational
Convolution 3× 3 2× 2 128 7 0.3 Leaky ReLU / Rational
Convolution 3× 3 1× 1 256 7 0.3 Leaky ReLU / Rational
Linear N/A N/A 11 7 0.0 Soft-Sigmoid

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[6] Harold W. Kuhn and Albert W. Tucker. Nonlinear Programming. In Proc. Second Berkeley Symp. on Math.
Statist. and Prob., pages 481–492. Univ. of Calif. Press, 1951.

[7] V. I. Lebedev. On a Zolotarev problem in the method of alternating directions. USSR Comp. Math. Math+,
17(2):58–76, 1977.

[8] Yuji Nakatsukasa and Roland W. Freund. Computing fundamental matrix decompositions accurately via
the matrix sign function in two iterations: The power of Zolotarev’s functions. SIAM Rev., 58(3):461–493,
2016.

[9] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks. arXiv preprint arXiv:1511.06434, 2015.

[10] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J.
Mach. Learn. Res., 19(1):932–955, 2018.

[11] Maziar Raissi. GitHub repository. https://github.com/maziarraissi/DeepHPMs/, 2020.

[12] Matus Telgarsky. Neural networks and rational functions. In Proceedings of the 34th International
Conference on Machine Learning (ICML), volume 70, pages 3387–3393, 2017.

[13] N. S. Vyacheslavov. On the uniform approximation of |x| by rational functions. Sov. Math. Dokl.,
16:100–104, 1975.

[14] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Netw., 94:103–114,
2017.

11

https://github.com/maziarraissi/DeepHPMs/

	Deferred proofs of secapproxrelurat
	Deferred proofs of secfuncrat
	Details of the approximation experiment
	Details of the GAN experiment

