
Appendix
GOCor: Bringing Globally Optimized

Correspondence Volumes into Your Neural Network

Prune Truong∗ , Martin Danelljan∗, Luc Van Gool, Radu Timofte
{prune.truong, martin.danelljan, vangool, radu.timofte}@vision.ee.ethz.ch

Computer Vision Lab, ETH Zurich, Switzerland

In this appendix, we first provide the details of the derivation of the filter map w∗ within the filter
map predictor module P in Section A. We then give the expression for the initial estimate w0 in
Section B. In Section C, we provide further insights on the architecture of our GOCor module as
well as the implementation details. In Section D, we give more details about the evaluation datasets,
metrics and networks utilized. We then provide additional quantitative and qualitative results of our
approach GOCor compared to the feature correlation layer in Section E. Finally, we further analyse
our approach in an extended ablation study in Section F.

A Derivation of filter map prediction module P

Here, we derive the iterative updates employed in our module Pθ, which aims to solve w∗ =
Pθ(f

r, fq) = arg minw L(w; fr, fq, θ) (Eq. 3 of the main paper). Our final objective (Eqs. 5-7 of
the main paper) is given by,

L(w; fr, fq, θ) = Lr(w; fr, θ) + Lq(w; fq, θ) + ‖λθw‖2 (1a)

Lr(w; fr, θ) =
∥∥ση(C(w, fr); v+, v−

)
− y
∥∥2

(1b)

Lq(w; fq, θ) = ‖Rθ ∗C(w, fq)‖2 . (1c)
As discussed in Sec. 3.6 of the main paper, we do not need to attain a global optimum. The goal
is to significantly minimize the loss L, using only a few iterations for efficiency. To this end we
employ the Steepest Descent methodology [14, 20]. In the steepest descent algorithm, we update the
parameters by taking steps wn+1 = wn − αn∇L (wn) in the gradient direction ∇L (wn) with step
length αn. The aim is to find the step length αn that leads to a maximal decrease in the objective.
This is performed by first approximating the loss with a quadratic function at the current estimate wn,

L(w) ≈ LnGN(w) =
1

2
(w − wn)

T
Qn (w − wn) + (w − wn)

T∇L (wn) + L (wn) (2)

Here, we see wn as a vector. We set the Hermitian positive definite matrix Qn according to the
Gauss-Newton method [14] Qn = (Jn)TJn, where Jn is the Jacobian of the residual at wn. To
avoid clutter, the dependence on fr, fq, θ is made implicit. In the rest of the section, unless otherwise
stated, matrices multiplications are element-wise.

The steepest descent method [14, 20] finds the step-length αn that minimizes the loss (2) in the gradi-
ent direction. Due to the convexity of (2), this is obtained by solving d

dαLGN (wn − α∇L (wn)) = 0,
which leads to the expression,

αn =
∇L (wn)

T∇L (wn)

∇L (wn)
T
Qn∇L (wn)

=
‖∇L (wn)‖2

‖Jn∇L (wn)‖2
(3)

In the next subsections, we derive the expression for∇L and subsequently for step-length α.
∗Both authors contributed equally

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A.1 Closed form expression of∇L

Here, we derive a closed-form expression for the gradient of the loss (1a). The gradient ∇L(w) of
the loss (1a) with respect to the filters w is then computed as,

∇L(w) = ∇Lr(w) +∇Lq(w) + 2λ2
θw . (4)

Expression of ∇Lr(w): Lr is defined according to (1b) and equation (5) of the main paper, such as
Lr = ‖rr(w, fr)‖2. Here, rr designates the residual function, which is formulated as (also Eq. 4 of
the main paper),

rr(w, f
r) =ση

(
C(w, fr); v+, v−

)
− y (5)

ση
(
C(w, fr); v+, v−

)
=
v+ − v−

2

(√
C(w, fr)2 + η2 − η

)
+
v+ + v−

2
C(w, fr) . (6)

The gradient of ∇Lr(w) of the loss (1b) w.r.t w is given by:

∇Lr(w) = 2

[
∂rr(w, f

r)

∂w

]T

rr(w, f
r) (7)

where Jr = ∂rr(w,fr)
∂w corresponds to the Jacobian of the residual function (5) with respect to filters

w. Using the chain rule we obtain,

Jr =
∂rr(w, f

r)

∂w
=

∂ση
∂C(w, fr)

∂C(w, fr)

∂w
, (8)

Using (6), the derivative of the error function is obtained as

∂ση
∂C(w, fr)

=

[
v+ − v−

2

(
C(w, fr)√

C(w, fr)2 + η2

)
+
v+ + v−

2

]
. (9)

Integrating (8) into (7) leads to the final formulation of∇Lr(w) as

∇Lr(w) = 2

[
∂C(w, fr)

∂w

]T
[(

v+ − v−

2

(
C(w, fr)− y√

(C(w, fr)− y)2 + η2

)
+
v+ + v−

2

)
rr(w, f

r)

]
.

(10)

The multiplication with the transposed Jacobian
[
∂C(w,fr)

∂w

]T
corresponds to back-propagation

through the correlation layer C. This can be efficiently implemented with standard operations.

Expression of ∇Lq: The loss on the query frame Lq is formulated in (1c) and in eq. 6 of the main
paper, as Lq(w) = ‖rq(w, fq)‖2, where the residual rq is defined below:

rq(w, f
q) = Rθ ∗C(w, fq) (11)

Following similar steps than for Lr, the gradient ∇Lq of the loss (1c) w.r.t. the filters w is then
computed as,

∇Lq = 2

[
∂rq(w, f

q)

∂w

]T

rq(w, f
q) (12)

where Jq =
∂rq(w,fq)

∂w corresponds to the Jacobian of the residual function (11) with respect to the
filter map w.

Jq = Rθ ∗
∂C(w, fq)

∂w
. (13)

This leads to the final formulation of the gradient as,

∇Lq = 2

[
∂C(w, fq)

∂w

]T

[Rθ∗]T rq(w, fq) . (14)

Here, [Rθ∗]T denotes the transposed convolution with the kernel Rθ.

2

Algorithm 1 Filter Predictor module P .
Require: Reference and Query feature maps fr, fq , iterations Niter

1: w0 ← ModelInit(fr) # Initialize filter map (sec. 3.6 of main paper)
2: for i = 0, . . . , Niter − 1 do # Optimizer module loop
3: ∇L(wn)← FiltGrad(wn, fr, fq) # Using (10) - (14)
4: αnnum ← ‖∇L (wn)‖2

5: αnden ← ‖Jn∇L (wn)‖2 # Apply Jacobian (8) and (13)
6: αn ← αnnum/α

n
den # Compute step length (3)

7: wn+1 ← wn − αn∇L(wn) # Update filter map
8: end for

A.2 Calculation of step-length αn

In this section, we show the calculation of the denominator of αn =
αn

num
αn

den
. The denominator in

equation (3) is given by,

αnden = ‖Jn∇L (wn)‖2

= ‖Jr(w)|wn ∇L (wn)‖2 +
∥∥Jq(w)|wn ∇L (wn)

∥∥2
+ ‖λθ∇L (wn)‖2

(15)

Using equations (8) and (13), we finally obtain:

αnden =

∥∥∥∥ ∂ση
∂C(w, fr)

∂C(w, fr)

∂w

∣∣∣∣
wn

∇L (wn)

∥∥∥∥2

+

∥∥∥∥Rθ ∗ ∂C(w, fq)

∂w

∣∣∣∣
wn

∇L (wn)

∥∥∥∥2

+ ‖λθ∇L (wn)‖2

=

∥∥∥∥ ∂ση
∂C(w, fr)

C(∇L (wn) , fr)

∥∥∥∥2

+ ‖Rθ ∗C(∇L (wn) , fq)‖2 + ‖λθ∇L (wn)‖2 (16)

The relation ∂C(w,fr)
∂w

∣∣∣
wn
∇L (wn) = C(∇L (wn) , fr) stems from the linearity of C in the first

argument. All operations in (16) can thus easily be implemented using standard neural network
operations. We summarize the different steps taking place within the filter map predictor module P
in algorithm 1.

B Initial estimate of w0

As explained in Section 3.6 of the main paper, to reduce the number of optimization iterations needed
in the filter predictor network P , we generate an initial filter map w0, which is then processed by the
optimizer module to provide the final discriminative filter w∗ = P (fr, fq).

We wish that w0 integrates information about the entire reference feature map fr. We thus formulate
w0 at location (i, j) as a linear combination of frij and f̄r, where f̄r ∈ RD is the spatial average
reference vector, encoding contextual information. We obtain w0 by solving for the scalar factors
aij , bij that adhere to the following constraints,

w0
ij = aijf

r
ij + bij f̄r (17a)

(w0
ij)

Tfrij = β (17b)

(w0
ij)

Tf̄r = γ (17c)

In the simplest setting, β can be set to one and γ to zero. However, we let these values be learnt from
data. The scalar coefficients aij and bij are then easily found by solving these equations, resulting in
the following formulation for w0,

w0
ij =

[
β
∥∥f̄r∥∥2 − γ(frij)

Tf̄r
]
frij −

[
β(frij)

Tf̄r − γ
∥∥frij∥∥2

]
f̄r∥∥f̄r∥∥2 ∥∥frij∥∥2 −

(
(frij)

Tf̄r
)2 (18)

As already mentioned, β and γ are learnable weights. In the simplest case, both are just scalars. We
call this version ContextAwareInitializer. To add further flexibility, they can alternatively be vectors

3

Distance to match
Coordinate dijkl

Distance to match
Coordinate dijkl

Distance to match
Coordinate dijkl

C
on

fid
en

ce
 L

ab
el

 𝑦
′ !

W
ei
gh
t	𝑣

!"

W
ei
gh
t	𝑚

!

Figure 1: Plot of the learnt target confidence y′θ and weights v+

θ ,mθ. The learnt values are shown in
red while the initialization of each function is presented in green.

of the same dimension D than the reference feature map fr ∈ RH×W×D, such that β, γ ∈ RD. We
refer to this variant of the initializer as Flexible-ContextAwareInitializer. Both versions explicitly
integrate context information about the entire reference feature map.

We additionally define a simpler alternative for w0, that we call SimpleInitializer for which it is
assumed that (frij)

Tf̄r = 0. As a result, wij only depends on the reference feature frij at this location,
w0 can thus be formulated as:

w0
ij = β

frij∥∥frij∥∥ (19)

Here, β can also be either a scalar (SimpleInitializer) or a vector of dimension D (Flexible-
SimpleInitializer).

In our Global-GOCor module, we use the variant Flexible-ContextAwareInitializer for our initializer
module. We defend this choice in our supplementary ablation study Section F. For our Local-GOCor
module, we instead use the SimpleInitializer variant of the initializer.

C Architecture details

Expression for y, v−, v+: Here we discuss the parametrization of y, v−, v+, introduced in the
reference loss formulation in Sec. 3.4 of the main paper.

For the implementation, we define y = v+y′ and v− = v+m, with element-wise multiplication. We
parametrize y′, v+,m as functions of the distance dijkl =

√
(i− k)2 + (j − l)2 between wij and

the example frkl, such that y′ijkl = y′θ(dijkl), v
+

ijkl = v+

θ (dijkl), mijkl = mθ(dijkl).

All three are expressed with triangular basis function, as in [2]. For example, the function y′ at
position (i, j, k, l) is given by:

y′ijkl =

N−1∑
k=0

(y′θ)
kρk(dijkl) (20)

with triangular basis functions ρk, expressed as

ρk(d) =

{
max

(
0, 1− |d−k∆|

∆

)
, k < N − 1

max
(
0,min

(
1, 1 + d−k∆

∆

))
, k = N − 1

(21)

We use N = 10 basis functions and set the knot displacement to ∆ = 0.5 in the resolution of the
deep feature space. The final case k = N − 1 represents all locations (k, l) that are far away from
(i, j) and thus can be treated identically.

The coefficients y′θ, v
+

θ ,mθ are learnt from data, as part of the filter predictor module P . For m, we
constrain the values in the interval [0, 1] by passing the output of (20) through a Sigmoid function.
We initialize the target confidence y′θ to a Gaussian, with mean equal to 0 and standard deviation
equal to 1. The positive weight function v+

θ is initialized to a constant so that v+

ijkl = 1 while we
initialize the function mθ with a scaled tanh function.

The initial and learnt values for y′θ, v
+

θ ,mθ of our Global-GOCor module are visualized in Figure 1.
They result from the training of GLU-Net-GOCor on the synthetic Dynamic training dataset. We

4

(a) Initial Label yij.. (b) Initial Weight v+

ij.. (c) Initial Weight v−
ij..

(d) Learnt Label yij.. (e) Learnt Weight v+

ij.. (f) Learnt Weight v−
ij..

Figure 2: Visualization of the heat maps corresponding to the learnt target confidence y and weights
v−, v+ for a particular location (i, j) = (7, 7). (a), (b) and (c) show the initialization of each function
while (d), (e) and (f) depict the learnt values.

additionally provide the visualization of yij.., v−
ij.., v

+

ij.. ∈ RH×W as heat-maps for a particular
location (i, j) in Figure 2.

Smoothness operator Rθ: We now focus on the operator Rθ, introduced in the loss formulation
on the query image in Sec. 3.5 of the main paper. Rθ ∈ RK4×Q is a learnable 4D-kernel of
spatial size K and Q number of output channels. We set K = 3 and Q = 16 output channels. For
implementation purposes, the 4-D convolution is factorized as two consecutive 2-D convolutional
layers, operating over the two first and two latter dimensions respectively. The output dimension
of the first 2D-convolution is also set to 16. Note that the kernel Rθ is learnt, along with all other
network parameters, by the SGD-based minimization of the same final network training loss used in
the GLU-Net and PWC-Net baselines. This is contrary to the filter map w that is optimized using
Eq. 5 and 6 (of the main paper) at each forward pass of the network.

D Experimental setup and datasets

In this section, we first provide details about the evaluation datasets and metrics. We then explain the
procedure used to create the Dynamic dataset, utilized for training state-of-the-art GLU-Net. Finally,
we detail the architecture of our baseline network, used for our ablation study, namely BaseNet.

D.1 Evaluation datasets

HP: The HPatches dataset [1] is a benchmark for geometric matching correspondence estimation.
It depicts planar scenes, with transformations restricted to homographies. We only employ the 59
sequences labelled with v_X, which have viewpoint changes, thus excluding the ones labelled i_X,
which only have illumination changes. Each image sequence contains a query image and 5 reference
images taken under increasingly larger viewpoints changes, with sizes ranging from 450× 600 to
1613× 1210.

ETH3D: To validate our approach for real 3D scenes, where image transformations are not con-
strained to simple homographies, we also employ the Multi-view dataset ETH3D [18]. It contains
10 image sequences at 480 × 752 or 514 × 955 resolution, depicting indoor and outdoor scenes
and resulting from the movement of a camera completely unconstrained, used for benchmarking
3D reconstruction. The authors additionally provide a set of sparse geometrically consistent image
correspondences (generated by [17]) that have been optimized over the entire image sequence using

5

the reprojection error. We sample image pairs from each sequence at different intervals to analyze
varying magnitude of geometric transformations, and use the provided points as sparse ground truth
correspondences. This results in about 500 image pairs in total for each selected interval.

MegaDepth: To validate our approach on real scenes depicting extreme viewpoint changes, we use
images of the MegaDepth dataset. No real ground-truth correspondences are available, so we use the
result of SfM reconstructions to obtain sparse ground-truth correspondences. We follow the same
procedure and test images than [19]. More precisely, we use 3D points and project them onto pairs
of matching images to obtain correspondences and we randomly sample 1600 pairs of images that
shared more than 30 points. It results in approximately 367K correspondences.

KITTI: The KITTI dataset [7] is composed of real road sequences captured by a car-mounted stereo
camera rig. The KITTI benchmark is targeted for autonomous driving applications and its semi-dense
ground truth is collected using LIDAR. The 2012 set only consists of static scenes while the 2015
set is extended to dynamic scenes via human annotations. The later contains large motion, severe
illumination changes, and occlusions.

Sintel: The Sintel benchmark [3] is created using the open source graphics movie “Sintel” with two
passes, clean and final. The final pass contains strong atmospheric effects, motion blur, and camera
noise.

D.2 Evaluation metrics

AEPE: AEPE is defined as the Euclidean distance between estimated and ground truth flow fields,
averaged over all valid pixels of the reference image.

PCK: The Percentage of Correct Keypoints (PCK) is computed as the percentage of correspondences
x̃j with an Euclidean distance error ‖x̃j − xj‖ ≤ T , w.r.t. to the ground truth xj , that is smaller than
a threshold T .

F1: F1 designates the percentage of outliers averaged over all valid pixels of the dataset [7]. They
are defined as follows, where Fgt indicates the ground-truth flow field and F the estimated flow by
the network.

F1 =
‖F − Fgt‖ > 3 and ‖F−Fgt‖

‖Fgt‖ > 0.05

#valid pixels
(22)

D.3 Training dataset

In [22], GLUNet is trained on DPED-ADE-CityScapes, created by applying synthetic affine, TPS and
homography transformations to real images of the DPED [10], CityScapes [5] and ADE-20K [23]
datasets. Here, we refer to this dataset as the Static training dataset, since it simulates a static scene.
While GLU-Net trained on the Static dataset obtains state-of-the-art results on geometric matching
and optical flow datasets (see Table 1), the Static dataset does not capture independently moving
objects, present in optical flow data. For this reason, we introduce a Dynamic training dataset, created
from the original Static dataset with additional random independently moving objects. To do so,
these objects are sampled from the COCO dataset [12], and inserted on top of the images of the Static
data using their segmentation masks. To generate motion, we randomly sample affine transformation
parameters for the foreground objects, which are independent of the background transformations.
This can be interpreted as both the camera and the objects moving independently of each other. The
Dynamic dataset allows the network to learn the presence of independently moving objects and
motion boundaries.

In Table 1, we compare evaluation results of original GLU-Net trained on either the Static or the
Dynamic datasets. While training on the Dynamic data leads to worse results on HPatches, it leads to

Table 1: Evaluation results of GLU-Net when trained on the Static or the Dynamic datasets.

HP KITTI-2012 KITTI-2015 Sintel-Cleam Sintel-Final
AEPE ↓ PCK-5 [%] ↑ AEPE ↓ F1 [%] ↓ AEPE ↓ F1 [%] ↓ AEPE ↓ PCK-5 [%] ↑ AEPE ↓ PCK-5 [%] ↑

GLU-Net (Static) 25.05 78.54 3.34 18.93 9.79 37.52 6.03 84.21 7.01 81.92
GLU-Net (Dynamic) 27.01 78.37 3.14 19.76 7.49 33.83 4.25 88.40 5.50 85.10

6

Mapping decoder MtopFlow estimation decoder M Bilinear down-sampling Bilinear up-sampling

VGG

Lo
ca

l
co

rr

Lo
ca

l
co

rr

G
lo

ba
l

co
rrw

HL/4 HL/8 HL/16
HLxWL

HxW

G
lo

ba
l

D
ec

od
er

Lo
ca

l
D

ec
od

er

Lo
ca

l
D

ec
od

er

Iq

Ir

(a) BaseNet

VGG

Lo
ca

l
G

O
C

or

Lo
ca

l
G

O
C

or

G
lo

ba
l

G
O

C
orw

HL/4 HL/8 HL/16
HLxWL

HxW

G
lo

ba
l

D
ec

od
er

Lo
ca

l
D

ec
od

er

Lo
ca

l
D

ec
od

er

Iq

Ir

(b) BaseNet-GOCor
Figure 3: Schematic representation of BaseNet and BaseNet-GOCor, estimating dense flow field w
from a pair of reference and query images.

improved performances on all optical flow data, particularly significant on Sintel and KITTI-2015.
Only the F1 metric on KITTI-2012 is slightly worse when training on the Dynamic dataset. This
is consistent with the fact that the Static training dataset is in line with HPatches, both restricted to
homography transformations, while the Dynamic one is better suited for optical flow data, that depict
independently moving objects. The Dynamic dataset is especially suitable for KITTI-2015 and Sintel,
since both represent dynamic scenes, while KITTI-2012 only experiences static 3D scenes. Here, we
emphasize that both GLU-Net and GLU-Net-GOCor are trained with exactly the same procedure,
introduced in [22].

D.4 Architecture of BaseNet

We introduce BaseNet, a simpler version of GLU-Net [22], estimating the dense flow fields relating a
pair of images. The network is composed of three pyramid levels and it uses VGG-16 [4] as feature
extractor backbone. The coarsest level is based on a global correlation layer, followed by a mapping
decoder estimating the correspondence map at this resolution. The two next pyramid levels instead
rely on local correlation layers. The dense flow field is then estimated with flow decoders, taking
as input the correspondence volumes resulting from the local feature correlation layers. Besides,
BaseNet is restricted to a pre-determined input resolution HL ×WL = 256× 256 due to its global
correlation at the coarsest pyramid level. It estimates a final flow-field at a quarter of the input
resolution HL × WL, which needs to be upsampled to original image resolution H × W . The
mapping and flow decoders have the same architecture as those used for GLU-Net [22].

To create BaseNet-GOCor, we simply replace the global and local correlation layers by respectively
our global and local GOCor modules. In the standard BaseNet, the correspondence volume generated
by the global correlation layer is passed through a ReLU non linearity [13] and further L2-normalized
in the channel dimension, to enhance high correlation values and to down-weight noise values. While
beneficial for the standard feature correlation layer, we found the L2-normalization to be slightly
harmful for the performance when using our GOCor module. Indeed, our GOCor module inherently
already suppresses correlation values at ambiguous matches while enhancing the correct match. We
therefore only pass the correspondence volume through a Leaky-ReLU. The rest of the architecture
remains unchanged. Schematic representations of BaseNet and BaseNet-GOCor are presented in
Figure 3.

Both networks are trained end-to-end, following the same procedure introduced in [22]. We set the
batch size to 40 and the initial learning rate of 10−3, which is further reduced during training.

E Additional results

Here, we first look at the impact of the number of Steepest Descent iterations used within the filter
predictor module during inference in section E.1. In section E.2, we then give more detailed results
for the task of geometric matching. We subsequently provide an extended table of results on optical
flow datasets in section E.3 as well as additional results on the ETH3D dataset. We then illustrate
the superiority of our approach through multiple qualitative examples in section E.4. Finally, we
compare results for different loss parametrization in section E.5.

7

(a) HPatches

(b) KITTI-2012

(b) Sintel-clean

Figure 4: Evaluation results of GLU-Net-GOCor and PWC-Net-GOCor when increasing the number
of steepest descent iterations in either the global or the local GOCor modules. While increasing
the number of global iterations, the number of local iterations is fixed to three, and similarly. Note
that GLU-Net-GOCor was trained on the Dynamic dataset and PWC-Net-GOCor was trained on
3D-Things. Both networks were trained with three steepest descent iterations for both the local and
global GOCor modules, if applicable.

E.1 Impact of number of inference Steepest Descent iterations

Impact on performance: Here, we analyse the impact of the number of Steepest Descent iter-
ations in the global and local GOCor modules used during inference, on the performance of the
corresponding network. We first focus on the global GOCor module. In Figure 4, we plot the AEPE
and PCK-5px obtained by GLU-Net-GOCor when increasing the number of global steepest descent
iterations during inference. Note that the network was trained with three global iterations. On both
HPatches and KITTI-2012, GLU-Net-GOCor with three global iterations, i.e. with the same number
of iterations than used during training, leads to the best performance. Increasing or decreasing the
number of global iterations leads to a significant drop in performance. This is primarily due to our
query frame objective (Sec. 3.5 of the main paper), which learns the optimal regularizer weights for
the number of steepest descent iterations used during training.

We next look at the impact of the number of steepest descent iterations used in the local GOCor
module. In Figure 4, we thus plot the AEPE and PCK-5px of GLU-Net-GOCor and PWC-Net-GOCor
for different inference number of local optimization iterations. Both networks were trained with three
such iterations. Increasing the number of local steepest descent iterations during inference improves
the network performances on all datasets. On KITTI-2012 only, the trend is slightly different, however
the difference in performance for different number of iterations is insignificant, in the order of 0.01.
It is important to note that in the local GOCor module, we only use our robust loss in the reference
frame (Sec. 3.4), ignoring the loss on the query frame (Sec. 3.5). Therefore, increasing the number of
iterations during inference will in that case make the predicted filter map wij at location (i, j) more

Table 2: Run time of our method compared to original versions of PWC-Net and GLU-Net, averaged
over the 194 image pairs of KITTI-2012. The number of optimization iterations is indicated for
the local-GOCor modules. For GLU-Net-GOCor, we use three steepest descent iterations in the
global-GOCor.

PWC-Net PWC-Net-GOCor PWC-Net-GOCor GLU-Net GLU-Net-GOCor GLU-Net-GOCor
optim-iter = 3 optim-iter = 7 optim-iter = 3 optim-iter = 7

Run-time [ms] 118.05 166.00 203.02 154.97 211.02 261.90

8

Figure 5: Visualization of the flow field estimated by GLU-Net and GLU-Net-GOCor for different
steepest descent iterations during inference. The image pair is extracted from the clean pass of
Sintel. The first number indicates the number of optimization iterations in the global GOCor module
while the second refer to the number of steepest descent iterations in the local GOCor module. Both
GLU-Net and GLU-Net-GOCor were trained on the Dynamic dataset. GLU-Net-GOCor was trained
with three steepest descent iterations for both the local and global GOCor modules.

and more discriminative to reference feature frij . The final correspondence volume obtained from
applying optimized w∗ to the query feature map will thus be more accurate.

Taking into consideration solely the performance gain, in the global-GOCor, the best alternative
during inference is to use the same number of steepest descent iterations than during training (i.e.
three iterations here). For the local-GOCor on the other hand, increasing the number of inference
steepest descent iterations leads to better resulting network metrics. However, one must take into
account that while increasing the number of inference iterations in the local GOCor module leads to
improved performances, it also results in increased inference run-time.

Impact on run-time: We thus compare the run-time of our GOCor-networks for different number
of optimization iterations in the local GOCor module. For reference, we additionally compare them
to their corresponding original networks GLU-Net and PWC-Net. The run-times computed on all
images of the KITTI-2012 images are presented in Table 2. The timings have been obtained on the
same desktop with an NVIDIA Titan X GPU. All networks output a flow at a quarter resolution of
the input images. We up-scale to the image resolution with bilinear interpolation. This up-scaling
operation is included in the estimated time.

Therefore, we found that setting seven steepest descent iterations during inference in the local GOCor
was a good compromise between excellent performance and reasonable run-time. All results in the
main paper are indicated with this setting. Nevertheless, for time-demanding applications, only using
three local optimization iterations (i.e. the same number than during training) results in faster GOCor-
networks with still a significant performance gain compared to their original feature correlation
layer-based networks.

In Figure 5, we visualize the estimated flow field for a pair of Sintel images, by GLU-Net and
GLU-Net-GOCor for different optimization iterations. It is very clear that increasing the number of
optimization iterations leads to a more accurate estimated flow field. In particular, the estimated flow
field becomes more detailed, with well-defined motion boundaries.

E.2 Additional geometric matching results

Detailed results obtained by GLU-Net and GLU-Net-GOCor on the various view-points of the HP
dataset are presented in Table 3. It extends Table 1 of the main paper, that only provides the average
over all viewpoint IDs. In addition to the Average End-Point Error (AEPE), we also provide the

Table 3: Details of AEPE and PCK evaluated over each view-point ID of the HPatches dataset. All
methods are trained on the Static dataset.

I II III IV V all

AEPE ↓ 1.55 ± 1.80 12.66 ± 10.43 27.54 ± 16.05 32.04 ± 20.01 51.47 ± 94.77 25.05 ± 16.67
GLU-Net PCK-1px [%] ↑ 61.72 42.43 40.57 29.47 23.55 39.55

PCK-5px [%] ↑ 96.15 84.35 79.46 73.80 58.92 78.54

AEPE ↓ 1.29 ± 1.31 10.07 ± 7.44 23.86 ± 14.01 27.17 ± 16.84 38.41 ± 28.52 20.16 ± 13.63
GLU-Net-GOCor PCK-1px [%] ↑ 64.93 43.86 42.52 30.68 25.78 41.55

PCK-5px [%] ↑ 96.95 86.41 82.47 76.17 65.15 81.43

9

Table 4: Results for the optical flow task on the training splits of KITTI [7] and Sintel [3]. A result in
parenthesis indicates that the dataset was used for training. PWC-Net* indicates the results stated in
the original PWC-Net paper [21]. For all methods, the training dataset is indicated in parenthesis
next to the method. When not indicated, the method was trained on Flying-Chairs [6] followed by
3D-Things [11].

KITTI-2012 KITTI-2015 Sintel Clean Sintel Final
AEPE ↓ F1 (%) ↓ AEPE ↓ F1 (%) ↓ AEPE ↓ PCK-1 (%) ↑ PCK-5 (%) ↑ AEPE ↓ PCK-1 (%) ↑ PCK-5 (%) ↑

GLU-Net (Dynamic) 3.14 19.76 7.49 33.83 4.25 62.08 88.40 5.50 57.85 85.10
GLU-Net-GOCor (Dynamic) (Ours) 2.68 15.43 6.68 27.57 3.80 67.12 90.41 4.90 63.38 87.69

FlowNet2.0 [11] 4.09 - 10.06 30.37 2.02 - - 3.14 - -
SpyNet [15] 9.12 - - - 4.12 - - 6.69 - -
LiteFlowNet [8] 4.00 - 10.39 28.50 2.48 - - 4.04 - -
LiteFlowNet2 [9] 3.42 - 8.97 25.88 2.24 - - 3.78 - -

PWC-Net* 4.14 21.38 10.35 33.67 2.55 - - 3.93 - -
PWC-Net (ft 3D-Things) 4.34 20.90 10.81 32.75 2.43 81.28 93.74 3.77 76.53 90.87
PWC-Net-GOCor (ft 3D-Things) (Ours) 4.12 19.31 10.33 30.53 2.38 82.17 94.13 3.70 77.34 91.20
FlowNet2 (ft Sintel) 3.54 - 9.94 28.02 (1.45) - - (2.19) - -
PWC-Net* (ft Sintel) 2.94 12.70 8.15 24.35 (1.70) - - (2.21) - -
PWC-Net (ft Sintel) 2.87 11.97 8.68 23.82 (1.76) (87.24) (95.37) (2.23) (83.61) (93.61)
PWC-Net-GOCor (ft Sintel) (Ours) 2.60 9.67 7.64 20.93 (1.74) (87.93) (95.54) (2.28) (84.15) (93.71)

standard deviation over the End-Point Error per image. It represents the distribution of EPE per
image, averaged over all images of each view-point. Note that increasing view-point IDs lead to
increasing geometric transformations due to larger changes in viewpoint.

Our approach GLU-Net-GOCor outperforms original GLU-Net for each viewpoint ID. Particularly,
GLU-Net-GOCor is significantly more robust for large view-point changes, such as those experienced
in Viewpoint V, with an AEPE of 38.41 against 51.47 for original GLU-Net. Besides, GLU-Net-
GOCor always obtains a narrower distribution of errors. This implies that our approach enables the
network to have a more steady performance over the whole dataset.

E.3 Additional optical flow results

Extended optical flow results: Table 4 here extends Table 3 of the main paper with more results on
optical flow datasets. Specifically, we compare our approaches with other state-of-the-art networks
applied to the train splits of the KITTI and Sintel datasets. Similarly to PWC-Net, these other
methods, such as LiteFlowNet [8], rely on local correlation layers at multiple levels to infer the final
flow field relating a pair of images. Our local GOCor module could therefore easily be integrated
into any of these networks in place of the local correlation layers.

In Table 4, PWC-Net* refers to the results presented in the original PWC-Net publication [21]. In
the middle section, we show the evaluation results of PWC-Net*, as well as PWC-Net-GOCor and
PWC-Net both further finetuned on 3D-Things according to the same schedule. In the last section
of the table, we focus on the PWC-Net variants finetuned on the Sintel training dataset. For a fair
comparison, we here also provide the official PWC-Net* ft Sintel results, as well as the PWC-Net-
GOCor and PWC-Net versions that we finetuned on Sintel. Our PWC-Net-GOCor outperforms both
PWC-Net* and PWC-Net on the KITTI data by a large margin, while obtaining similar results on
the training set of Sintel. As already mentioned in Sec. 4.2 of the main paper, this highlights the
generalization capabilities of our GOCor module.

Table 5: Detailed results on the test set of Sintel benchmark for different regions, velocities (s), and
distances from motion boundaries (d). All methods are trained on Flying-Chairs [6] followed by
3D-Things [11], and further finetuned on the training split of Sintel.

Sintel-Clean
EPE-all EPE matched EPE unmatched d0-10 d10-60 d60-140 s0-10 s10-40 s40+

PWC-Net* (ft-Sintel) 4.386 1.719 26.166 4.282 1.657 0.657 0.606 0.2070 28.783

PWC-Net (ft-Sintel) 4.637 1.951 26.571 4.018 1.626 1.040 0.649 2.070 30.671
PWC-Net-GOCor (ft-Sintel) 4.195 1.660 24.909 3.843 1.448 0.778 0.609 1.914 27.552

Sintel-Final
EPE-all EPE matched EPE unmatched d0-10 d10-60 d60-140 s0-10 s10-40 s40+

PWC-Net* (ft-Sintel) 5.042 2.445 26.221 4.636 2.087 1.475 0.799 2.986 31.070
PWC-Net (ft-Sintel) 5.300 2.576 27.528 4.717 2.204 1.580 0.929 2.994 32.584
PWC-Net-GOCor (ft-Sintel) 5.133 2.458 26.945 4.504 2.063 1.603 0.834 2.906 31.858

10

Here, we also present the evaluation results on the test set of the Sintel dataset in Table 5. We compare
PWC-Net and PWC-Net-GOCor, both finetuned on the training split of Sintel. For reference and
as previously, we also present the official results from the PWC-Net publication [21], denoted as
PWC-Net*. PWC-Net-GOCor outperforms both PWC-Net and PWC-Net* on the clean pass. On the
final pass, PWC-Net-GOCor obtains better performance than PWC-Net, but slightly worse results
than PWC-Net*. The authors of PWC-Net employ special data augmentation strategies and training
procedures for fine-tuning, which are not shared as PyTorch code by the authors. The finetuning
procedure that we employed for our PWC-Net-GOCor and standard PWC-Net is therefore different
from the one used for in the official PWC-Net results (PWC-Net*). However, we finetuned both
PWC-Net and PWC-Net-GOCor with the same setting and procedure, enabling fair comparison
between the two. PWC-Net-GOCor performs particularly better in regions with large motions and
close to the motion boundaries. This is in line with the behavior of the GOCor module observed
previously, according to which the GOCor module particularly improves performance on large
displacements.

Table 6: AEPE/F1 [%] on KITTI-2015.
Not occluded Occluded All

GLU-Net 4.67 / 27.83 21.95 / 67.44 7.49 / 33.83
GLU-Net-GOCor 4.22 / 22.03 19.07 / 58.61 6.68 / 27.57
PWC-Net 5.40 / 25.16 34.39 / 78.58 10.81 / 32.75
PWC-Net-GOCor 5.02 / 23.53 34.06 / 77.84 10.33 / 30.53

Performance on occlusion data: Here, we focus
specifically on the performance of GOCor in occluded
regions. As shown in Tab. 5, in occluded regions (“EPE
unmatched”) of the Sintel test set, GOCor provides rel-
ative improvements of 6.25% and 2.16% on the clean
and final pass respectively. In Tab. 6, we present the
details of the metrics on occluded and non-occluded regions of KITTI-2015. GOCor improves the
performance of PWC-Net and GLU-Net in occluded regions of a substantial amount as compared to
the feature correlation layer.

Additional results on ETH3D: For completeness, in Figure 6, we also present the evaluation results
of PWC-Net and PWC-Net-GOCor applied to the ETH3D images, sampled at increasingly high
intervals. Indeed, for small intervals, finding correspondences strongly resembles optical flow task
while increasing the interval leads to larger displacements. Optical flow network PWC-Net can thus
be very suitable, particularly when estimating the flow at small intervals. In Figure 6, both PWC-Net
and PWC-Net-GOCor are finetuned on 3D-Things according to the same schedule. For reference,
we additionally provide the results of PWC-Net*, which refers to the official pre-trained weights
provided by the authors, after training on Flying-chairs and 3D-Things. We also provide the results
of PWC-Net*, PWC-Net and PWC-Net-GOCor further finetuned on Sintel.

For all intervals, and independently of the dataset it was trained on, our approach PWC-Net-GOCor
obtains better metrics than both PWC-Net and PWC-Net*. Particularly, the gap in performance
broadens with the intervals between the frames, implying that our module is especially better at
handling large view-point changes. This particular robustness to large displacements was similarly
observed when our GOCor modules were integrated into GLU-Net (Sec. 4.1). It highlights that the
improved performances brought by our GOCor approach compared to the feature correlation layer
generalize to different networks.

Figure 6: Quantitative results on ETH3D [18] images. AEPE, PCK-1 and PCK-5 are computed on
pairs of images sampled from consecutive images of ETH3D at different intervals. PWC-Net* refers
to the official pre-trained weights provided by the authors.

11

E.4 Qualitative examples

Here, we first present qualitative comparisons of PWC-Net and PWC-Net-GOCor. In Figure 8,
we show examples of PWC-Net and PWC-Net-GOCor applied to images of optical flow datasets
KITTI-2012 and KITTI-2015. Both networks are trained on 3D-Things. PWC-Net-GOCor shows
more defined motion boundaries and generally more accurate estimated flow fields. Similarly, we
present examples on the clean pass of the Sintel training set in Figure 9. PWC-Net-GOCor captures
more detailed flow fields. This is for instance illustrated in the first example of Figure 9, where
PWC-Net-GOCor correctly identified the foot contrary to PWC-Net, which failed to capture it.
However, both PWC-Net and PWC-Net-GOCor may fail on small and rapidly moving objects, such
as the arm in the last example of Figure 9.

In Figure 10, we additionally present qualitative results on the KITTI images when the networks are
finetuned on Sintel. Indeed, in Table 4, we showed that while both PWC-Net and PWC-Net-GOCor
obtain very similar results on training data Sintel, PWC-Net-GOCor performs largely better on the
KITTI datasets compared to original PWC-Net, especially in terms of F1 metric. PWC-Net-GOCor
also obtains visually more accurate flow fields on the KITTI images.

Besides, we show the advantage of our approach as compared to the feature correlation layer when
integrated in GLU-Net. In Figure 11, we visually compare GLU-Net and GLU-Net-GOCor when
applied to images of the clean pass of the Sintel benchmark and to images of the ETH3D dataset. In
the case of the ETH3D images, the pairs of images are taken by two different cameras simultaneously.
The camera of the first images has a field-of-view of 54 degrees while the other camera has a field of
view of 83 degrees. They capture images at a resolution of 480× 752 or 514× 955 depending on the
scenes and on the camera. The exposure settings of the cameras are set to automatic, allowing the
device to adapt to illumination changes. On the Sintel images, GLU-Net-GOCor achieves sharper
object boundaries and generally more correct estimated flow fields compared to original GLU-Net.
On the ETH3D images, our approach is more robust to illumination changes and light artifacts,
leading to better visual outputs.

Finally, we qualitatively compare the output of GLU-Net-GOCor and GLU-Net on example pairs of
the MegaDepth dataset in Figure 7. It is obvious that GOCor provides an increased robustness to very
large geometric view-point changes, such as large scaling or perspective variations.

E.5 Results for smooth version of the reference loss

In Section 3.4 of the main paper, we defined our robust and learnable objective function for integrating
reference frame information as Lr(w; fr, θ) =

∥∥ση(C(w, fr); v+, v−
)
− y
∥∥2

(eq. 5 of main paper),

with ση(C(w, fr); v+, v−) = v+−v−
2

(√
C(w, fr)2 + η2 − η

)
+ v++v−

2 C(w, fr) (eq. 4 of main
paper).

Here, setting η > 0 enables to avoid the discontinuity in the derivative of σ at ε = 0. We analyze two
different settings for η when integrated in GLU-Net-GOCor. Specifically, in Table 7, we compare
the results obtained by GLU-Net-GOCor on optical flow data, when setting η = 0 or η = 0.1. Both
values obtain very similar results. Therefore, for simplicity and efficiency, we use η = 0 in all other
experiments.

Table 7: Comparison of different parametrisation for our robust loss formulation Lr. Both GLU-Net-
GOCor are trained on the Dynamic dataset with three optimization iterations and evaluated with three
and seven iterations for respectively the global-GOCor and the local-GOCor modules.

KITTI-2012 KITTI-2015 Sintel Clean Sintel Final
AEPE ↓ F1 [%] ↓ AEPE ↓ F1 [%] ↓ AEPE ↓ PCK-1 [%] ↑ PCK-5 [%] ↑ AEPE ↓ PCK-1 [%] ↑ PCK-5 [%] ↑

GLU-Net 3.14 19.76 7.49 33.83 4.25 62.08 88.40 5.50 57.85 85.10
GLU-Net-GOCor, η = 0 2.68 15.43 6.68 27.57 3.80 67.12 90.41 4.90 63.38 87.69
GLU-Net-GOCor, η = 0.1 2.70 15.51 6.92 28.06 3.74 66.72 90.42 4.81 63.04 87.69

12

(A)

(B)

Figure 12: Qualitative analysis of the different components of our approach, when the corresponding
networks are applied to images of the ETH3D dataset. All models are trained on the Dynamic dataset.
We visualize the query images warped according to the flow fields estimated by the networks. The
warped query images should resemble the reference images.

13

(A) KITTI-2015

(B) Sintel-clean

Figure 13: Qualitative analysis of the different components of our approach, when the corresponding
networks are applied to images of the Sintel dataset, clean pass. All models are trained on the
Dynamic dataset. We plot directly the estimated flow field for each image pair.

F Additional ablation study

For completeness, in Table 8, we provide a similar ablation study as that of the main paper Sec. 4.5,
when BaseNet is trained on the Static data, instead of the Dynamic one. The same conclusions apply.
We thus perform the additional ablative experiments when training all BaseNet variants on the Static
data.

Qualitative ablation study: We visualize the quality of the estimated flow fields outputted by
BaseNet (I), BaseNet + Global-GOCor Lr (III), BaseNet + Global-GOCor Lr + Lq (IV) and
BaseNet + Global-GOCor Lr + Lq + Local-GOCor Lr (V) when applied to images of the ETH3D
dataset and of optical flow datasets Sintel and KITTI in respectively Figures 12 and 13. Example
(A) of Figure 12 shows the benefit of our global GOCor module as compared to the global feature
correlation layer. Indeed, BaseNet does not manage to correctly capture the geometric transformation
between the query and the reference images. On the other hand, thanks to our global GOCor module,
BaseNet + Global-GOCor estimates a much more accurate transformation relating the frames. In
example (B), we illustrate the gradual improvement from version (III) to (V). While introducing
Global-GOCor with only the reference loss Lr (version III) makes the estimated flow more stable
than BaseNet, especially in the background, the representation of the slide object on the warped
image is still shaky. Adding the query loss Lq (version IV) smooths the estimated flow, and therefore
the warped query image according to this flow. The later looks visually much better because of
additional smoothness. Finally, further substituting the local feature correlation layers with our local
GOCor module (version V) finishes to polish the result. The slide object in that case looks almost
perfect and artifacts in the background are partially removed.

The impact of the query frame objective Lq in our global GOCor module is further illustrated in
example (A) of Figure 13. Introducing Lq enables to smooth the estimated flow field and to remove
part of the artifacts. Finally, the advantage of our local GOCor module as opposed to the local feature
correlation layer is visualized in both examples of Figure 13. From version (IV) to (V), the local

14

Table 8: Ablation study. All networks are trained on the Static dataset. The GOCor modules are
trained and evaluated with 3 steepest descent iterations.

HP KITTI-2012 KITTI-2015
AEPE ↓ PCK-5 [%] ↑ AEPE ↓ F1 [%] ↓ AEPE ↓ F1 [%] ↓

I BaseNet 26.73 65.30 4.95 42.49 11.52 61.90
II BaseNet + NC-Net 24.59 66.62 5.00 39.80 12.44 62.96
III BaseNet + Global-GOCor Lr 22.80 70.00 4.43 34.81 10.93 55.73
IV BaseNet + Global-GOCor Lr + Lq 22.16 70.54 4.36 34.15 10.97 55.62
V BaseNet + Global-GOCor Lr + Lq + Local-GOCor Lr 22.00 74.80 4.02 31.24 9.92 50.54
VI BaseNet + Global-GOCor Lr + Lq + Local-GOCor Lr + Lq 21.96 75.26 4.24 33.43 10.20 53.53

GOCor module can recover sharper motion boundaries and the estimated flow is generally more
accurate. Moreover, remaining artifacts in the background are removed.

Comparison with post-processing method NC-Net: Here, we investigate the impact of post-
processing method NC-Net [16] and show comparisons to BaseNet and our approach in Table 8.
When trained on the Static dataset, including post-processing module NC-Net following the global
correlation layer (version II) leads to better results than original version BaseNet (I) on the HPatches
and the KITTI-2012 datasets. However, on the KITTI-2015 images, adding NC-Net results in worse
performance. This is due to the fact that NC-Net uses correspondences with high confidences to
support other uncertain neighboring matches. However, in the case of independently moving objects,
neighboring matches can correspond to completely different motions, which breaks the assumption
of the neighborhood consensus constraint used in NC-Net. Since it cannot cope with independently
moving objects, NC-Net obtains worse results on KITTI-2015, which depicts dynamic scenes. This
is contrary to HPatches which present planar scenes with homographies and to KITTI-2012, which
is restricted to static scenes. This observation is also emphasized by the ablation study in Table 3
of the main paper, where BaseNet + NC-Net is trained on the Dynamic dataset. In that case, the
performance of the resulting network is much worse than original BaseNet on all datasets. This is
again due to the inability of NC-Net to handle moving objects, in that case, present in the training
dataset. This shows the advantage of our method, which instead of applying 4D convolutions to
post-process the correspondence volume, integrates them before the correlation operation itself.

Impact of objective function in the Local GOCor: In Table 8, we analyse the impact of both
terms Lr, Lq of our objective function L when used in our Local GOCor module. Comparing versions
(V) and (VI), we found that adding the loss on the query frame Lq (Sec. 3.5) for Local-GOCor is
harmful for its performance, particularly on the KITTI-datasets. Besides, adding the regularizer loss
in the local GOCor level leads to longer training and inference run times. We therefore do not include
it, our best version of BaseNet-GOCor resulting in (V).

Impact of number of training optimization iterations: Here, we investigate the influence of the
number of training steepest descent iterations. We train multiple BaseNet-GOCor networks, gradually
increasing the number of training optimization iterations within the global and the local GOCor
modules. All networks are trained on the Static dataset. We evaluate all variants on the HPatches,
KITTI and Sintel datasets and present the results in Table 9. We use the same number of optimization
iteration during evaluation as during training. We additionally measure the inference run-time of each
network, computed as the average over the 194 KITTI-2012 images on an NVIDIA Titan X GPU.

Training and evaluating with more steepest descent iterations consistently leads to better performances
on all metrics and all datasets. It is also interesting to note that BaseNet + Global-GOCor without
going through the optimizer (0 iteration) already outperforms the original BaseNet. In that case, the
improvement is solely due to our powerful initialization w0.

Nevertheless, the improvement in performance when increasing the number of optimization iterations
comes at the expense of inference and training time. As a result, we trained all our GOCor modules
with three iterations which presented a satisfactory trade-off between inference time and accuracy.
Besides, it must also be noted that for time-critical applications, using a single optimization iteration
for both local and global GOCor modules already leads to significant improvements over the standard
feature correlation layer.

Impact of performing global correlation with interchanging query and reference features: We
also experimented with interchanging the query and reference frames at the global level, and then
fusing the two resulting GOCor correspondence volumes before passing them to the flow estimation
decoder. However, we only observed marginal improvements. e.g., on KITTI-2015 it obtains an
EPE of 11.07 and an F1 of 54.68% compared to 10.97 EPE and 55.62% F1 for the baseline BaseNet

15

Table 9: Analysis of the number of training optimization iterations. Both Local-GOCor and Global-
GOCor layers are trained and evaluated with the same number of iterations. All networks are trained
on the Static dataset.

KITTI-2012 HP Sintel-clean
Run-time [ms] AEPE ↓ F1 [%] ↓ AEPE ↓ PCK-1 [%]↑ PCK-5 [%] ↑ AEPE ↓ PCK-1 [%] ↑ PCK-5 [%] ↑

BaseNet 63.20 4.95 42.49 26.73 12.02 65.30 7.78 12.46 74.52
BaseNet-GOCor, optim-iter = 0 66.80 4.87 37.42 26.47 16.40 66.42 6.94 27.63 77.20
BaseNet-GOCor, optim-iter = 1 70.52 4.18 32.95 21.91 20.73 72.82 6.49 31.03 79.87
BaseNet-GOCor, optim-iter = 3 82.42 4.02 31.24 22.00 23.68 74.80 6.32 33.81 80.72
BaseNet-GOCor, optim-iter = 5 94.85 3.83 29.14 20.68 25.99 76.88 6.34 38.10 80.91

Table 10: Analysis of the impact of the initializer for the Global-GOCor. All networks are trained on
the Static with three optimization iterations. They are evaluated with the same number of iterations.

HP KITTI-2012 Sintel-clean
AEPE ↓ PCK-1 [%] ↑ PCK-5 [%] ↑ AEPE ↓ F1 [%] ↓ AEPE ↓ PCK-1 [%] ↑ PCK-5 [%] ↑

BaseNet + Global-GOCor, ZeroInitializer 23.22 14.05 67.53 4.77 38.67 7.56 14.94 74.96
BaseNet + Global-GOCor, SimpleInitializer 24.69 13.17 66.82 4.81 37.86 7.32 20.31 76.12
BaseNet + Global-GOCor, Flexible-SimpleInitializer 25.53 12.82 66.97 4.83 38.71 7.30 20.48 76.24
BaseNet + Global-GOCor, ContextAwareInitializer 25.13 15.01 67.14 4.87 39.14 7.43 19.19 75.60
BaseNet + Global-GOCor, Flexible-ContextAwareInitializer 22.16 17.03 70.54 4.36 34.15 7.21 20.68 77.09

+ Global-GOCor Lr + Lq (IV). Considering that computing the GOCor correspondence volume
twice increases the inference time of the model and the limited improvement of performance brought
by fusing the two resulting correspondence volumes, we did not include this alternative in the final
model.

Impact of filter initializer w0: As detailed in Sec. B, we introduced several versions of our
filter initializer module. Here, we train BaseNet with standard local feature correlation layers
and our Global-GOCor module (using both our loss on the reference and on the query images)
integrated in place of the global correlation layer. We experiment with different variants of the
initializer and present the corresponding evaluation results in Table 10. The version ZeroInitializer
initializes w0 to a zero tensor. Compared to all others, this initialization lacks accuracy for the
final network, particularly on the optical flow datasets. In the SimpleInitializer versions which
do not include global context information, adding more flexibility in the form of a learnt vector
does not seem to help. However, in the case where context information is included, compared to
ContextAwareInitializer, the Flexible variant significantly gains from increased flexibility. Initializer
module Flexible-ContextAwareInitializer appears to be the best alternative for our Global-GOCor
module.

16

Figure 7: Qualitative examples of GLU-Net and GLU-Net-GOCor applied to images of the
MegaDepth dataset. Both models are trained on the Dynamic training data.

17

Figure 8: Qualitative examples of PWC-Net and PWC-Net-GOCor applied to images of KITTI-2012
and KITTI-2015. Both models are trained on Flying-Chairs followed by 3D-Things.

18

Figure 9: Qualitative examples of PWC-Net and PWC-Net-GOCor applied to images of Sintel-clean.
Both models are trained on Flying-Chairs followed by 3D-Things.

19

Figure 10: Qualitative examples of PWC-Net and PWC-Net-GOCor applied to images of KITTI2012
and 2015. Both models are finetuned on Sintel.

20

(a) ETH3D images

(b) Sintel-clean images

Figure 11: Qualitative examples of GLU-Net and GLU-Net-GOCor applied to images of (a) the
ETH3D dataset and (b) the Sintel dataset, Clean pass. Both models are trained on the Dynamic
dataset. In the case of the ETH3D images, we visualize the query images warped according to the
flow fields estimated by the network. The warped query images should resemble the reference images.
In the case of Sintel images, we plot directly the estimated flow field for each image pair.

21

References
[1] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian Mikolajczyk. Hpatches: A benchmark and

evaluation of handcrafted and learned local descriptors. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 3852–3861, 2017.

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model
prediction for tracking. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, pages 6181–6190. IEEE, 2019.

[3] Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black. A naturalistic open source movie
for optical flow evaluation. In Computer Vision - ECCV 2012 - 12th European Conference on Computer
Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI, pages 611–625, 2012.

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep
into convolutional nets. In BMVC, 2014.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[6] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner Hazirbas, Vladimir Golkov, Patrick
van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with convolutional
networks. In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 2758–2766, 2015.

[7] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
dataset. I. J. Robotic Res., 32(11):1231–1237, 2013.

[8] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Liteflownet: A lightweight convolutional neural network
for optical flow estimation. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8981–8989, 2018.

[9] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. A Lightweight Optical Flow CNN - Revisiting Data
Fidelity and Regularization. 2020.

[10] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth Vanhoey, and Luc Van Gool. Dslr-quality
photos on mobile devices with deep convolutional networks. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 3297–3305, 2017.

[11] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages
1647–1655. IEEE Computer Society, 2017.

[12] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects
in context. CoRR, abs/1405.0312, 2014.

[13] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010,
Haifa, Israel, pages 807–814, 2010.

[14] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA, second
edition, 2006.

[15] Anurag Ranjan and Michael J. Black. Optical flow estimation using a spatial pyramid network. In 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 2720–2729, 2017.

[16] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelovic, Akihiko Torii, Tomás Pajdla, and Josef Sivic. Neigh-
bourhood consensus networks. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pages 1658–1669, 2018.

[17] Johannes L. Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 4104–4113, 2016.

[18] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc
Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and multi-
camera videos. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pages 2538–2547, 2017.

[19] Xi Shen, François Darmon, Alexei A Efros, and Mathieu Aubry. Ransac-flow: generic two-stage image
alignment. In 16th European Conference on Computer Vision, 2020.

22

[20] Jonathan R Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
Technical report, USA, 1994.

[21] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using pyramid,
warping, and cost volume. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8934–8943, 2018.

[22] Prune Truong, Martin Danelljan, and Radu Timofte. GLU-Net: Global-local universal network for dense
flow and correspondences. In 2020 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2020, 2020.

[23] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis., 127(3):302–321,
2019.

23

	Derivation of filter map prediction module P
	Closed form expression of L
	Calculation of step-length n

	Initial estimate of w0
	Architecture details
	Experimental setup and datasets
	Evaluation datasets
	Evaluation metrics
	Training dataset
	Architecture of BaseNet

	Additional results
	Impact of number of inference Steepest Descent iterations
	Additional geometric matching results
	Additional optical flow results
	Qualitative examples
	Results for smooth version of the reference loss

	Additional ablation study

