
Deep Inverse Q-learning with Constraints
Appendix

Gabriel Kalweit∗
Neurorobotics Lab

University of Freiburg
kalweitg@cs.uni-freiburg.de

Maria Huegle∗
Neurorobotics Lab

University of Freiburg
hueglem@cs.uni-freiburg.de

Moritz Werling
BMWGroup

Germany
Moritz.Werling@bmw.de

Joschka Boedecker
Neurorobotics Lab and BrainLinks-BrainTools

University of Freiburg
jboedeck@cs.uni-freiburg.de

A Objectworld: Additional Results

Visualizations of the real and learned state-values of IAVI, IQL and DIQL can be found in Figure 7.

4
T

ra
je

ct
or

ie
s

Optimal Ground Truth IAVI IQL DIQL

32
T

ra
je

ct
or

ie
s

12
8

T
ra

je
ct

or
ie

s
51

2
T

ra
je

ct
or

ie
s

Figure 7: Visualization of state-values for different numbers of trajectories in Objectworld.

The approaches match the action distribution of the observed trajectories (denoted as Ground Truth)
without any visual difference. With increasing number of trajectories, the distributions are converging
to the distribution of the optimal policy of the expert.

∗Equal Contribution.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Algorithm 3: Fixed Batch Tabular Inverse Q-learning
input: replay buffer D

1 initialize r, Q and QSh and state-action visitation counter ρ
2 for (si, ai) in D do
3 increment counter ρ(si, ai) = ρ(si, ai) + 1

4 for iteration = 1..I do
5 sample (si, ai, si+1) from D
6 get probabilities π̃E(a|si) for state si and all a ∈ A from ρ

7 update QSh by QSh(si, ai)← (1− αSh)Q
Sh(si, ai) + αSh (γmaxaQ(si+1, a))

8 calculate for all actions a ∈ A: η̃asi = log(π̃E(a|si))−QSh(si, a)

9 update r by r(si, ai)← (1− αr)r(si, ai) + αr(η
ai
si +

1
n−1

∑
b∈Aai

r(si, b)− ηbsi)
10 update Q by Q(si, ai)← (1− αQ)Q(si, ai) + αQ(r(si, ai) + γmaxaQ(si+1, a))

A comparison between IQL with online and offline estimated action probabilities is given in Table 2
and a detailed description of Fixed Batch Tabular Inverse Q-learning can be found in Algorithm 3.

Table 2: Comparison between online and offline estimation of state-action visitations for the Ob-
jectworld environment, given a data set with an action distribution equivalent to the true optimal
Boltzmann distribution. Resulting expected value difference and time needed until convergence,
mean and standard deviation over 5 training runs on a 3.00GHz CPU.

IQL (online π̃E) IQL (offline π̃E)

EVD 1.47± 0.14 1.42± 0.11
Runtime 0.35±0.0h 0.38±0.0h

B Constrained Inverse Q-learning

The pseudocode of the tabular variant of Constrained Inverse Q-learning can be found in Algorithm 4.
See [4] for further details of Constrained Q-learning.

Algorithm 4: Tabular Model-free Constrained Inverse Q-learning

1 initialize r, Q and QSh

2 initialize state-action visitation counter ρ
3 initialize QC for episode = 1..E do
4 get initial state s1
5 for t = 1..T do
6 observe action at and next state st+1, increment counter ρ(st, at) = ρ(st, at) + 1

7 get log-probabilities π̃E(a|st) for state st and all a ∈ A from ρ

8 update QSh by QSh(st, at)← (1− αSh)Q
Sh(st, at) + αSh (γmaxaQ(st+1, a))

9 calculate for all actions a ∈ A: η̃ast = log(π̃E(a|st))−QSh(st, a)

10 update r by r(st, at)← (1− αr)r(st, at) + αr(η
at
st + 1

n−1
∑
b∈Aat

r(st, b)− ηbst)
11 update Q by Q(st, at)← (1− αQ)Q(st, at) + αQ(r(st, at) + γmaxaQ(st+1, a))

12 update QC by
QC(st, at)← (1− αC)QC(st, at) + αC(r(st, at) + γmaxa∈S(st+1)Q

C(st+1, a))

The pseudocode of Deep Constrained Inverse Q-learning can be found in Algorithm 5. In contrast to
classical Deep Inverse Q-learning, the maximization is performed over the safe action set, analogously
to [4].

2

Algorithm 5: Fixed Batch Deep Constrained Inverse Q-learning
input: replay buffer D

1 initialize networks r(·, ·|θr), Q(·, ·|θQ) and QSh(·, ·|θSh) and classifier ρ(·, ·|θρ)
2 initialize target networks r′(·, ·|θr′), Q′(·, ·|θQ′) and QSh′(·, ·|θSh′)

3 initialize QC(·, ·|θC) and QC ′(·, ·|θC ′)
4 for iteration = 1..I do
5 sample minibatch B = (si, ai, si+1)1≤i≤m from D
6 minimize MSE between predictions of QSh and ySh

i = γmaxaQ
′(si+1, a|θQ′)

7 minimize CE between predictions of ρ and actions ai
8 get log-probabilities π̃E(a|si) for state si and all a ∈ A from ρ(si, a|θρ)
9 calculate for all actions a ∈ A: η̃asi = log(π̃E(a|si))−QSh′(si, a|θSh′)

10 minimize MSE between predictions of r and yri = η̃aisi +
1

n−1
∑
b∈Aai

r′(si, b|θr′)− η̃bsi
11 minimize MSE between predictions of Q and yQi = r′(si, ai|θr′) + γmaxaQ

′(si+1, a|θQ′)
12 minimize MSE between QC and yCi = r′(si, ai|θr′) + γmaxa∈S(si+1)Q

C ′(si+1, a|θC ′)
13 update target networks r′, Q′, QSh′ and QC ′

C Objectworld: Reward Function, Architectures and Hyperparameter
Optimization

Following the definition of the reward function in [6], states within distance 3 to outer color 1 and
distance 2 to outer color 2 yield a positive reward, states within distance 3 to outer color 1 a negative
reward and all other states 0 reward, including all other colors which act as distractors.

We optimized the learning rates of the different approaches using grid search over five training runs
for random Objectworld environments. For the MaxEnt IRL approaches, we tested learning rates in
the interval (0.1, 0.001). We achieved best results with a learning rate of 0.01. For Deep MaxEnt, we
used a 3-layer neural network with 3 hidden dimensions for the approximation of the reward and a
learning rate of 0.001. The learning rates of the table-updates for the reward function, Q-function
and the Shifted Q-function for IQL were optimized in a range of (0.1, 10−4). The best performing
learning rates were 10−3 for all functions. An extensive evaluation of the influence of the learning
rates on the convergence behavior for Online IQL is shown in Figure 8.

0.00

0.05

0.10

0.15

K
L

-D
iv

er
ge

n
ce

IQL (0.1, 0.1, 0.1)

IQL (0.1, 0.1, 0.01)

IQL (0.1, 0.01, 1.0)

IQL (0.1, 0.001, 1.0)

IQL (0.001, 0.1, 1.0)

IQL (0.1, 0.1, 1.0)

IQL (0.01, 0.1, 1.0)

IQL (0.01, 0.1, 0.1)

IQL (0.001, 0.1, 0.1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×106

0

10

20

30

E
x
p

ec
te

d
V

al
u

e
D

iff
er

en
ce

Figure 8: Online IQL with different learning rates for an Objectworld environment. In parentheses are
the learning rates for r, Q and QSh, respectively. The upper row shows the KL-divergence between
the true and the sample action distribution. The lower row shows the EVD.

3

For DIQL, the parameters were optimized in the range of (0.01, 10−5) with the optimizer Adam [5]
and used Rectified Linear Units activations. As final learning rates, we chose 10−4 for all networks.
Target networks are updated with a step-size of τ = 10−4.

D SUMO: Architectures and Hyperparameter Optimization

For the function approximators of the reward function, Q-function and Shifted-Q function, we use the
hyperparameter-optimized architecture proposed in [3] with two fully-connected layers with [20, 80]
hidden dimensions to compute latent-representations of the vehicles with the encoder module φ and
two fully-connected layers for the module ρ with 80 and 20 hidden neurons and two layers with 100
neurons in the Q-network module. We train networks with learning rates of 10−4 . Target networks
are updated with a step-size of τ = 10−4. Additionally, we use a variant of Double-Q-learning
proposed in [7], which is based on two Q-networks and uses the minimum of the predictions for the
target calculation, similar as in [2].

E Proof of Theorem 1

Theorem 1. There always exists a solution for the linear system provided by XA(s) and YA(s).

Proof. By finding the row echelon form, it can be shown that the rank of the coefficient matrix XA is
n−1. In order to proof that there is at least one solution for the system of linear equations, it has to be
shown that the rank of the augmented matrix remains the same. The rank of a matrix cannot decrease
by adding a column. Hence, it can only increase. It can easily be shown, that a linear combination of
all entries of the augmentation vector YA adds to 0, thus the rank does not increase. Following the
Rouché–Capelli theorem [1], there always exists at least one solution, which can then be found with
a solver such as least-squares.

References
[1] A. Capelli. Sopra la compatibilitá o incompatibilitá di più equazioni di primo grado fra picì

incognite. Revista di Mathematica, 2:54–58, 1892.

[2] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 1582–1591, 2018.

[3] Maria Huegle, Gabriel Kalweit, Branka Mirchevska, Moritz Werling, and Joschka Boedecker.
Dynamic input for deep reinforcement learning in autonomous driving. 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), Nov 2019. URL http:
//dx.doi.org/10.1109/IROS40897.2019.8968560.

[4] Gabriel Kalweit, Maria Huegle, Moritz Werling, and Joschka Boedecker. Deep constrained
q-learning. CoRR, abs/2003.09398, 2020. URL https://arxiv.org/abs/2003.09398.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[6] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning
with gaussian processes. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 19–27. Curran
Associates, Inc., 2011.

[7] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. CoRR, abs/1509.06461, 2015.

4

http://dx.doi.org/10.1109/IROS40897.2019.8968560
http://dx.doi.org/10.1109/IROS40897.2019.8968560
https://arxiv.org/abs/2003.09398

	Objectworld: Additional Results
	Constrained Inverse Q-learning
	Objectworld: Reward Function, Architectures and Hyperparameter Optimization
	SUMO: Architectures and Hyperparameter Optimization
	Proof of Theorem 1

