
Thanks to all reviewers for their careful reading and thoughtful comments.1

Reviewer #1. The rationale in the choice of the comparisons for the experiments was to be as extensive as possible:2

covering the methods which solve Nyström KRR first, then related methods such as those which solve kernel regression3

with different smooth losses or other sketching techniques, and finally we wished to cover partially related kernel based4

methods i.e. approaches computing similar quantities as the predictive mean of variational GPs (VGPs). Indeed, we5

agree with Rev1 on the difference between Nyström KRR and VGPs, in terms of methods and objectives, as we already6

clarified in Section 4 (there we also pointed out the greater generality of SVGP). To be more explicit we will further7

clarify the scope of our experiments and the difference between Nyström KRR and VGPs in Section 4. From this8

viewpoint we agree that FITC / SGPR with KeOps would better fit the third category than SVGP and we will include the9

suggested methods in our experiments. Note that we had considered the option of comparing with FITC / SGPR while10

designing the experiments. However, in the end we opted for SVGP since it can be trained in minibatches, allowing a11

higher number of inducing points, contrary to the implementations of SGPR in GPyTorch and GPflow that require all12

data and gradients to be stored on the GPU, thus strongly limiting the number of inducing points. For example on our13

hardware, GPflow SGPR runs out of GPU memory with only 20 inducing points on the HIGGS dataset. This shows14

that current implementations of SGPR cannot scale on big dataset. However, for the sake of comparison, we decided to15

reduce the training set to n = 300000 points for each dataset. This allows SGPR to fit 1000 inducing points in memory.16

We then ran one experiment with fixed SGPR points and the same number (1000) of Falkon centers, and another where17

we trained the SGPR points, and ran Falkon by tuning the number of centers such that the computational time matched18

that of training SGPR to convergence. In this second case we can compare the accuracy of the two methods. In Table 119

we provide some preliminary results on a subset of our datasets. Notice that in the first experiment Falkon is much20

faster than SGPR, and the two methods have comparable accuracy; in the second experiment, the accuracy of Falkon is21

higher or equal to that of SGPR. The final version of the paper will compare the two methods on all considered datasets.22

Reviewer #2. As suggested by the reviewer we will clarify in Table 2 and in Figure 1 that the results for GPyTorch23

and GPflow correspond to the SVGP algorithm. In particular, as suggested by Rev2 we will report the training times24

of SVGP clarifying how the procedure differs from the one of Falkon. Indeed by "time" we mean total training time25

since in general, this is the limiting factor. The crucial difference in the optimization of the two algorithms is due to26

the convexity of the FALKON objective which allows us to use the more efficient preconditioned conjugate gradients27

optimization, based on out-of-core matrix vector operations, instead of ADAM. We will recall this difference in the28

experimental section, before Table 2. As suggested by Rev2 we will include a table on how performance scales with29

more GPUs on the considered datasets. According with our current hardware availability, we will consider how the30

performance scales with 1 to 4 GPUs (see Fig. 1 for the TAXI dataset). To conclude, with "blocks" we mean that31

matrices are divided into blocks which fit in GPU memory. Each GPU will then be assigned to work on different subsets32

of blocks which it will process one at a time. In Figure 4 we neglected to mention that TT> is a symmetric matrix, so33

we store only its lower triangular part.34

Reviewer #3. We thank the reviewer for the thoughtful comments and interesting questions. We agree with Rev3, right35

now Nyström methods based on preconditioning can scale up to 106 centers since they are limited by the available36

memory. This can be addressed in different ways: 1) achieving the same accuracy with fewer centers is possible by37

picking better centers e.g. using leverage scores or DPP sampling instead of random sampling. 2) recomputing the38

preconditioner on the fly, in blocks, at each iteration; this would remove the memory bottleneck, but would make the39

algorithm O(log n) times slower 3) further sketching the preconditioner itself with randomized linear algebra. We will40

add a remark with these considerations at the end of Section 5. Reducing the precision is also an interesting direction41

to increase the number of Nyström points and to leverage the GPU and TPU architectures. The crucial aspect in this42

direction is to guarantee numerical stability of the computation of the kernel and of Cholesky decomposition. Interesting43

starting points in this direction are stochastic rounding techniques (see e.g. "Stochastic Rounding and its Probabilistic44

Backward Error Analysis" of Connolly et al. 2020). To conclude, CPU power is not crucial to run our implementation45

of FALKON since all the computations are done by GPU, while CPU essentially controls only the logic of the program.46

Figure 1: multi-GPU scaling of the
TAXI dataset (experiment run on the
workstation Nvidia DGX-Station).

MSD-300k SUSY-300k HIGGS-300k
time MSE time AUC time AUC

GPflow SGPR (fixed 1k points) 7s 83.06 8s 87.43 6s 74.48
Falkon (the same 1k points) 1.5s 83.01 1s 87.39 0.4s 75.58

GPflow SGPR (trained points) 40s 77.24 24s 87.49 11s 77.35
Falkon (match time) 42s 76.15 19s 87.51 9s 77.66

Table 1: Falkon is faster and more accurate than SGPR in the first and third
setting; in the second, with very few inducing points, Falkon is much faster
but has slightly worse accuracy.


