
Kernel methods through the roof:
handling billions of points efficiently

Giacomo Meanti
MaLGa, DIBRIS

Università degli Studi di Genova
giacomo.meanti@edu.unige.it

Luigi Carratino
MaLGa, DIBRIS

Università degli Studi di Genova
luigi.carratino@dibris.unige.it

Lorenzo Rosasco
MaLGa, DIBRIS, IIT & MIT

Università degli Studi di Genova
lrosasco@mit.edu

Alessandro Rudi
INRIA - École Normale Supérieure

PSL Research University
alessandro.rudi@inria.fr

Abstract

Kernel methods provide an elegant and principled approach to nonparametric
learning, but so far could hardly be used in large scale problems, since naïve imple-
mentations scale poorly with data size. Recent advances have shown the benefits
of a number of algorithmic ideas, for example combining optimization, numerical
linear algebra and random projections. Here, we push these efforts further to
develop and test a solver that takes full advantage of GPU hardware. Towards this
end, we designed a preconditioned gradient solver for kernel methods exploiting
both GPU acceleration and parallelization with multiple GPUs, implementing
out-of-core variants of common linear algebra operations to guarantee optimal
hardware utilization. Further, we optimize the numerical precision of different
operations and maximize efficiency of matrix-vector multiplications. As a result
we can experimentally show dramatic speedups on datasets with billions of points,
while still guaranteeing state of the art performance. Additionally, we make our
software available as an easy to use library1.

1 Introduction

Kernel methods provide non-linear/non-parametric extensions of many classical linear models in
machine learning and statistics [45, 49]. The data are embedded via a non-linear map into a high
dimensional feature space, so that linear models in such a space effectively define non-linear models
in the original space. This approach is appealing, since it naturally extends to models with infinitely
many features, as long as the inner product in the feature space can be computed. In this case, the
inner product is replaced by a positive definite kernel, and infinite dimensional models are reduced to
finite dimensional problems. The mathematics of kernel methods has its foundation in the rich theory
of reproducing kernel Hilbert spaces [47], and the connection to linear models provides a gateway to
deriving sharp statistical results [53, 10, 54, 6, 4, 56]. Further, kernel methods are tightly connected to
Gaussian processes [40], and have recently being used to understand the properties of deep learning
models [23, 29]. It is not a surprise that kernel methods are among the most theoretically studied
models. From a numerical point of view, they reduce to convex optimization problems that can
be solved with strong guarantees. The corresponding algorithms provide excellent results on a
variety of data-sets, but most implementations are limited to problems of small/medium size, see

1https://github.com/FalkonML/falkon

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/FalkonML/falkon

0 1e4 2e4 3e4 4e4

TAXI (n = 109)

0 1000 2000

HIGGS (n = 107)

0 500 1000 1500 2000

AIRLINE (n = 106) Falkon
LogFalkon
EigenPro
GPyTorch
GPflow

0 250 500 750 1000

MSD (n = 105)

0 250 500 750 1000

SUSY (n = 106)

0 500 1000 1500

AIRLINE-CLS (n = 106)

Time (s)

Er
ro

r

Figure 1: Benchmarks of kernel solvers on large scale datasets with millions and billions points (see
Section 4). Our approach (red and yellow lines) consistently achieves state of the art accuracy in
minutes.

discussion in [52], Chapter 11. Most methods require handling a kernel matrix quadratic in the
sample size. Hence, dealing with datasets of size 104 to 105 is challenging, while larger datasets are
typically out of reach. A number of approaches have been considered to alleviate these computational
bottlenecks. Among others, random features [38, 39, 66, 26, 12, 11] and the Nyström method are
often used [61, 50], see also [14, 25, 18, 3, 67, 9]. While different, both these approaches consider
random projections to reduce the problem size and hence computational costs. Renewed interest in
approximate kernel methods was also spurred by recent theoretical results proving that computational
gains can possibly be achieved with no loss of accuracy, see e.g. [27, 55, 41, 4, 42, 5].

In this paper, we investigate the practical consequences of this line of work, developing and testing
large scale kernel methods that can run efficiently on billions of points. Following [43] we use a
Nyström approach to reduce the problem size and also to derive a preconditioned gradient solver
for kernel methods. Indeed, we focus on smooth loss functions where such approaches are natural.
Making these algorithmic ideas practical and capable of exploiting the GPU, requires developing
a number of computational solutions, borrowing ideas not only from optimization and numerical
analysis but also from scientific and high performance computing [28, 2, 7]. Indeed, we design
preconditioned conjugate gradient solvers that take full advantage of both GPU acceleration and
parallelization with multiple GPUs, implementing out-of-core variants of common linear algebra
operations to guarantee optimal hardware utilization. We further optimize the numerical precision of
different operations and investigate ways to perform matrix-vector multiplications most efficiently.
The corresponding implementation is then tested extensively on a number of datasets ranging
from millions to billions of points. For comparison, we focused on other available large scale
kernel implementations that do not require data splitting, or multiple machines. In particular, we
consider Eigenpro [30] which is an approach similar to the one we propose, and GPyTorch [16] and
GPflow [58] which come from the Gaussian process literature. While these latter solutions allow
also for uncertainty quantification, we limit the comparison to prediction. We perform a systematic
empirical evaluation running an extensive series of tests. Empirical results show that indeed our
approach can process huge datasets in minutes and obtain state of the art performances, comparing
favorably to other solutions, both in terms of efficiency and accuracy. More broadly, these results
confirm and extend the observations made in [29, 30], that kernel methods can now be seamlessly
and effectively deployed on large scale problems. To make these new solutions readily available, the
corresponding code is distributed as an easy to use library developed on top of PyTorch [36].
The rest of the paper is organized as follows. In Section 2, we provide some background on the
considered approaches. In Section 3, we detail the main algorithmic solutions in our implementation,
whereas the last section is devoted to assessing the practical advantages.

2

2 Background

Supervised learning is the problem of inferring an input-output function, given finitely many input-
output pairs. In statistical learning theory the data (xi, yi)

n
i=1 are assumed to be sampled indepen-

dently from a probability distribution ρ, and a loss function `(y, f(x)) is fixed measuring the cost of
predicting f(x) in place of y. The examples we consider are the squared (y− f(x))2 and the logistic
loss log(1 + e−yf(x)). Then, a good function f should minimize the expected loss

L(f) =

∫
`
(
f(x), y

)
dρ(x, y). (1)

A basic approach to solve the problem is empirical risk minimization, based on the idea of replacing
the above expectation with an empirical average. Further, the search of a solution needs to be restricted
to a suitable space of hypothesis, a simple example being linear functions f(x) = w>x. Kernel
methods extend this idea by considering a non linear feature map x 7→ Φ(x) ∈ F and functions of
the form f(x) = w>Φ(x). Here Φ(x) ∈ F can be seen as a feature representation in some space of
features. The function spaceH thus defined is called reproducing kernel Hilbert space [46]. If we
denote by ‖f‖H its norm then regularized empirical risk minimization is given by

f̂λ = arg min
f∈H

1

n

n∑
i=1

`
(
f(xi), yi

)
+ λ‖f‖2H, (2)

where the penalty term ‖f‖H is meant to prevent possible instabilities and λ ≥ 0 is a hyperparameter.
From a statistical point of view the properties of the estimator f̂λ are well studied, see e.g. [53, 6, 48].
Under basic assumptions, for λ = O(1/

√
n), it holds with high probability that

L(f̂λ)− inf
f∈H

L(f) = O
(
n−1/2

)
. (3)

This bound is sharp, but can be improved under further assumptions [6, 53]. Here, we use it for
reference. From a computational point of view, the key fact is that it is possible to compute a
solution also if Φ(x) is an infinite feature vector, as long as the kernel k(x, x′) = Φ(x)>Φ(x′) can
be computed [45]. The Gaussian kernel exp(−‖x− x′‖2/2σ2) is a basic example. Indeed, by the
representer theorem [24, 46], f̂λ(x) =

∑n
i=1 αik(x, xi), so Problem (2) can be replaced with a finite

dimensional problem on the coefficients. Its solution depends on the considered loss, but typically
involves handling the kernel matrix Knn ∈ Rn×n with entries k(xi, xj), which becomes prohibitive
as soon as n ∼ 105 (although multi-GPU approaches [59] have been recently shown to scale to 106

points). In the following, we focus on Nyström approximation, considering functions of the form

f(x) =

m∑
i=1

αik(x, x̃i), (4)

where {x̃1, . . . , x̃m} ⊂ {x1, . . . , xn} are inducing points sampled uniformly at random. As we
discuss next, this approach immediately yields computational gains. Moreover, recent theoretical
results show that the basic bound in (3) still holds taking as few as m = O(

√
n) inducing points [42,

31]. With these observations in mind, we next illustrate how these algorithmic ideas can be developed
considering first the square loss and than the logistic loss.
Squared loss. This choice corresponds to kernel ridge regression (KRR). Since both the loss
and penalty are quadratic, solving KRR reduces to solving a linear system. In particular, letting
y = (y1, . . . , yn), we obtain (Knn + λnI)α = y, for the coefficients α = (α1, . . . , αn) ∈ Rn in
the solution of the problem in Eq. (2), while using the Nyström approximation (4) we get

(K>nmKnm + λnKmm)α = K>nmy, (5)

for α = (α1, . . . , αm) ∈ Rm. The first linear system can be solved directly in O
(
n3
)

time and
O
(
n2
)

space. In turn, Eq. (5) can be solved directly in O
(
nm2 +m3

)
time and O

(
m2
)

space (if
the Knm matrix is computed in blocks). It is well known, that for large linear systems iterative
solvers are preferable [44]. Further, the convergence of the latter can be greatly improved by
considering preconditioning. The naïve preconditioner P for problem (5) is such that PP> =
(K>nmKnm + λnKmm)−1, and as costly to compute as the original problem. Following [43] it can
be approximated using once again the Nyström method to obtain

P̃ P̃> = (nmK
2
mm + λnKmm)−1 (6)

3

Algorithm 1 Pseudocode for the Falkon algorithm.
1: function FALKON(X ∈ Rn×d,y ∈ Rn, λ,m, t)
2: Xm ← RANDOMSUBSAMPLE(X,m)
3: T,A← PRECONDITIONER(Xm, λ)
4: function LINOP(β)
5: v ← A−1β
6: c← k(Xm, X)k(X,Xm)T−1v
7: return A−>T−>c+ λnv
8: end function
9: R← A−>T−>k(X,Xm)y

10: β ← CONJUGATEGRADIENT(LINOP, R, t)
11: return T−1A−1β
12: end function

13: function PRECONDITIONER(Xm ∈ Rm×d, λ)
14: Kmm ← k(Xm, Xm)
15: T ← chol(Kmm)
16: Kmm ← 1/mTT> + λI
17: A← chol(Kmm)
18: return T,A
19: end function

Note: LinOp performs the multiplication P̃>HP̃β
as in Eq. (8), via matrix-vector products.

since K2
mm ≈ K>nmKnm. Next, we follow again [43] and combine the above preconditioning with

conjugate gradient (CG). The pseudocode of the full procedure is given in Algorithm 1. Indeed, as
shown in [43] O(log n) CG steps are sufficient to achieve the bound in (3). Then with this approach,
the total computational cost to achieve optimal statistical bounds is O(n

√
n log n) in time, and in

O(n) in memory, making it ideal for large scale scenarios. The bulk of our paper is devoted to
developing solutions to efficiently implement and deploy Algorithm 1.
Logistic loss. The above ideas extend to the logistic loss and more generally to self-concordant loss
functions, including the softmax loss [32]. For reasons of space, we detail this case in Appendix B and
sketch here the main ideas. In this case, iterative solvers are the default option since there is no closed
form solution. Nyström method can be used a first time to reduce the size of the problem, and then a
second time to derive an approximate Newton step [31]. More precisely, at every step preconditioned
conjugate gradient descent is run for a limited number of iterations with a decreasing value of λ,
down to the desired regularization level. In practice, this requires running Algorithm 1 multiple
times with small number of iterations t and with decreasing λ. Making these ideas practical requires
efficiently implementing and deploying Algoritm 1, making full use of the available computational
architectures. This the core of our contribution that we detail in the next section.

3 Reformulating kernel solvers for multi-core/multi-GPU architectures

GPU machines have a peculiar architecture with rather different properties than the standard von
Neumann computer, in particular they are characterized by highly parallel computational power,
relatively small local accelerator memory and slow memory transfer to/from the accelerator compared
to their computational speed [64]. In their standard definition, kernel methods require large amounts
of memory with a low density of operations per byte of memory used. This opens the question of
how to adapt methods with low operation density to platforms designed to be extremely efficient with
very high density of operations per byte. With this in mind, we started considering the state of the
art kernel solver with minimal computational requirements for optimal guarantees (described at a
high level in Algorithm 1), with the goal to reformulate its computational structure to dramatically
increase the density of operations per byte, and reduce as much as possible the required memory use /
transfers. To achieve this goal, we use a number of carefully designed computational solutions which
systematically reduce the impact of the inherent bottlenecks of multi-core/multi-GPU architectures,
while leveraging their intrinsic potential. In particular in the rest of this section we will focus on
(a) minimizing the memory footprint of the solver, which has long been the main bottleneck for kernel
methods, and is the main limitation encountered by current kernel solvers, (b) dealing with limited

Figure 2: Structure of RAM allocation.

CPU→GPU
Compute
GPU→CPU

Time

Figure 3: Overlapping memory transfers and computation.

4



Kmm




T

tril(Kmm)




T

1
mTT

T + λI




T

AT

Cholesky Matrix multiply Cholesky

Figure 4: Evolution of the preconditioner matrix in memory.

memory on the GPU, (c) reaching the highest possible accelerator utilization, parallelizing memory
transfers and computation, (d) using the enhanced capabilities of GPUs with reduced-precision
floating point data.

3.1 Overcoming RAM memory bottleneck

Kernel solvers that use the Nyström method need the matrices Kmm and Knm. Since Knm is
used only in matrix-vector products, we can avoid constructing it explicitly (as we shall see in the
following paragraphs) which leaves us to deal with the Kmm matrix. When m is large, it is crucial to
carefully manage the memory needed for this task: in our implementation we only ever allocate one
m×m matrix, and overwrite it in different steps to calculate the preconditioner. Indeed, choosing an
appropriate form of the preconditioner, the matrix Kmm itself is not needed in the conjugate gradient
iteration. Figure 2 shows the total memory usage, which consists of the preconditioner occupying
approximately 90% of the memory (see last paragraph of Sect. 3.1), the weight vector β and two
buffers holding (part of) the m inducing points and a data batch needed to compute Knm.
In-place computation and storage of the preconditioner. The preconditioner P̃ of Eq. (6) is used
to solve a linear system of the form P̃>HP̃β = P̃>Kmny with H = KmnKnm + λnKmm and
β = P̃−1α. P̃ can be decomposed into two triangular matrices obtained via Cholesky decomposition
of Kmm,

P̃ = 1√
n
T−1A−1, T = chol(Kmm), A = chol(1

mTT
> + λIm). (7)

All operations are performed in-place allocating a single m×m matrix as shown in Figure 4 and
as described next: (a) a matrix of dimension m ×m is allocated in memory; (b) the Kmm kernel
is computed in blocks on the GPU and copied to the matrix; (c) in-place Cholesky decomposition
of the upper triangle of Kmm is performed on the GPU (if the kernel does not fit GPU memory an
out-of-core algorithm is used, see later sections); (d) the product TT> is computed in blocks via
GPU and stored in the lower part; (e) out-of-core in-place Cholesky decomposition is performed on
the lower triangle to get A>. Additional care is needed to take into account the matrix diagonal, not
described here for brevity.
Elimination of the storage of Kmm. Considering more carefully the matrix P̃ (K>nmKnm +

λnKmm)P̃ with P̃ as in Eq. (7), we observe that the occurrences of Kmm cancel out. Indeed
(T−1)>KmmT

−1 = I since Kmm = T>T by Eq. 7. Then, the following characterization allows to
overwrite Kmm when calculating the preconditioner.

P̃>HP̃β = (A−1)>(T−1)>(K>nmKnm + λnKmm)T−1A−1β (8)

= (A−1)>[(T−1)>K>nmKnmT
−1 + λnI]A−1β. (9)

Blockwise Knm-vector product on GPU. The conjugate gradient algorithm will repeatedly execute
Eq. (9) for different β. The most expensive operations are the matrix-vector products K>nm(Knmv)
for an arbitrary vector v ∈ Rm×1 which – if computed explicitly – would require n×m memory.
However, it is possible to split the input data X ∈ Rn×d in B batches of q rows each {Xb,: ∈
Rq×d}Bb=1, so that matrix-vector products can be accumulated between batches using the formula∑B
b=1 k(Xb,:, Xm)>(k(Xb,:, Xm)v). The matrix blocks to be held in memory are summarized in

Figure 2 for a total size of m× (m+ d+ 1) + q × d where q can be small under memory pressure,
or large for greater performance. It is important to note that k(Xb,:, Xm) is never stored in main
memory, as all operations on it are done on the GPU.

5

G-1

G-2

G-1

G-2

Figure 5: Three phases of the block Cholesky decomposition for updating the first column. Arrows
indicate inter-GPU memory transfers between accelerators G-1 and G-2.

3.2 Fitting in GPU memory and dealing with multiple GPUs

While the main RAM might be a bottleneck, GPUs have an even smaller amount of memory, and
another level of splitting is needed to exploit their speed. For example, a typical architecture has
256GB of RAM and 4 GPUs with 16GB ram each; a preconditioner with m = 2 × 105 occupies
150 GB and Knm with n = 107 would need 2000 GB of memory if stored. So we need to deal with
both efficient computation of Knm-vector product in chunks that fit a GPU, and with the computation
of the preconditioner that usually does not fit in GPU memory. Operations based on a large storage
layer (main RAM) and a small but fast layer (GPU) are called out-of-core (OOC) operations. How-
ever, common machine learning libraries such as Tensorflow [1] or PyTorch [36] do not implement
OOC versions of the required matrix operations, leaving potentially complex implementations to
the users. Hence, in our library, we provide these implementations in easily reusable form. It is
important to note that splitting our workload to fit in GPU also provides an easy path to parallelization
in a multi-GPU system: new chunks of computation are assigned to the first free GPU, effectively
redistributing the workload between multiple accelerators when available.
Optimized block decomposition for out-of-core Knm-vector multiplication. As seen in the pre-
vious section, matrix-vector products can be split along the dimension n, resulting in independent
chunks of work that need to be summed up at the end. The OOC product between a kernel matrix
and a vector proceeds by: (a) transferring a block of data onto the device, (b) computing the kernel
on device and multiplying it by the vector, (c) copying the result back to the host. This sequence of
operations minimizes expensive data-transfers between host and device since the kernel matrix is
never moved. In particular, the computation is also split along dimensions m and d, to maximize
the ratio between computational complexity and transfer time: i.e., maximizing qrs

qs+ds subject to
qs+ ds ≤ G, where q, r and s are the batch dimensions along n, m and d respectively, and G is the
available GPU memory.
Out-of-core multi-GPU Cholesky decomposition. Other operations, such as Cholesky decomposi-
tion and triangular matrix multiplication (lines 15, 16, 17 of Algorithm 1), can also benefit from GPU
execution. Here we describe, at a high level, our algorithm for multi-GPU OOC Cholesky decompo-
sition inspired by [28, 65]. We leave further details to Appendix C. Consider a symmetric matrix A,
split into B × B tiles Aij ∈ Rt×t, i ∈ [B], j ∈ [B], assumed of equal size for brevity. We want a
factorization A = LL>, where L is lower triangular, with the formula Ai,j =

∑j
k=1 Li,kL

>
j,k. The

algorithm runs in-place, updating one column of A at a time. Each column update proceeds in three
steps, illustrated in Figure 5. Clearly A1,1 = L1,1L

>
1,1 so we compute L1,1 by a Cholesky decompo-

sition on tile A1,1 which is small and can be done entirely on the GPU (e.g. with cuSOLVER [34]).
Then we consider the other tiles of the first block column of L for which Aj,1 = Lj,1L

>
1,1 with

j > 1. Since we know L1,1 from the first step, we obtain Lj,1 = Aj,1L
−>
1,1 for all j > 1 by solving

a triangular system (on the GPU). Finally the first block column of L is used to update the trailing
submatrix of A. Note that Ai,j =

∑j
k=1 Li,kL

>
j,k = Li,1L

>
j,1 +

∑j
k=2 Li,kL

>
j,k for 2 ≤ j ≤ i, so we

can update the trailing submatrix as Ai,j = Ai,j−Li,1L>j,1. We implemented a parallel version of the
above algorithm which distributes block-rows between the available processors in a 1D block-cyclic
way (e.g. Figure 5 (left): rows 1 and 3 are assigned to GPU-1, rows 2 and 4 are assigned to GPU-2).
For each column update, one processor executes the first step and transfers the result to the others
(the arrows in Figure 5), which can then execute step 2 in parallel. To update the trailing matrix,
further data transfer between devices may be necessary. The tile-size is chosen as a function of GPU
memory: each device needs to hold one block column plus a single block at any given time. An
analysis of the scalability of our implementation is in Appendix C.

6

3.3 Optimizing data transfers and other improvements.

The speed of computations on GPUs is such that data transfers to and from the devices become
significant bottlenecks. We have described earlier how, for matrix-vector products, the computed
blocks of Knm never leave the device. Further, optimization is possible by parallelizing computations
and data transfers. Indeed, modern GPUs have an independent and parallel control on the following
activities: loading from RAM, saving to RAM, performing computations. By running three parallel
threads for the same GPU and assuming equal duration of each piece of work, we can run t GPU
computations in t+ 2 time units instead of 3t time units for a serial implementation (see Figure 3,
where t = 3). This guarantees near optimal usage of the GPU and in practice corresponds to a
considerable speed up of matrix-vector products.
Leveraging the trade-off numerical precision / computational power. GPUs are designed to
achieve peak performance with low precision floating point numbers, so much that going from 64 to
32-bit floats can correspond (depending on the exact architecture) to ≈ 10× throughput improvement.
However, changing precision can lead to unexpected problems. For example, computing the Gaussian
kernel is commonly done by expanding the norm ‖x − x′‖2 = x>x − 2x>x′ + x′>x′, but in
high dimensions ‖x‖, ‖x′‖ can be very large and the cross-term very negative, so their sum has
fewer significant digits. Loss of precision can lead to non positive-definite kernels causing Cholesky
decomposition to fail. To avoid this, we compute Kmm in blocks, converting each block to 64-bit
precision for the sum, and then back to 32-bits.
Dealing with thin submatrices. As a result of our block division strategies, it may happen that blocks
become thin (i.e. one dimension is small). In this case, matrix operations, e.g. using cuBLAS [33],
cannot leverage the full computational power. In turn this can reduce performance, breaking the
inherent computational symmetry among GPUs which is crucial for the effectiveness of a parallel
system like the one proposed in this paper. To guarantee good performance for this case, instead of
using standard GPU operations, we perform matrix-vector products using KeOps [8]: a specialized
library to compute kernel matrices very efficiently when one dimension is small, see Table 1.
Dealing with sparse datasets. On the other side of the spectrum, sparse datasets with high di-
mensionality are common in some areas of machine learning. While the kernel computed on such
datasets will be dense, and thus can be handled normally, it is inefficient and in some cases impossible
(e.g. with d ∼ 106 as is the case for the YELP dataset we used) to convert the inputs to a dense
representation. We therefore wrapped specialized sparse linear algebra routines to perform sparse
matrix multiplication [35], and adapted other operations such as the row-wise norm to sparse matrices.
Thus our library handles sparse matrices with no special configuration, both on the GPU and – if a
GPU is not available – on the CPU.

4 Large-scale experiments

We ran a series of tests to evaluate the relative importance of the computational solutions we in-
troduced, and then performed extensive comparisons on real-world datasets. The outcome of the
first tests is given in Table 1 and is discussed in Appendix A.1 for brevity. In summary, it shows
a 20× improvement over the base implementation of [43] which runs only partially on the GPU.
Such improvement is visible in equal parts for the preconditioner computations, and for the iterative
CG algorithm. For the second series of experiments we compared our implementation against three
other software packages for GPU-accelerated kernel methods on several large scale datasets. All
experiments were run on the same hardware, with comparable amounts of hyperparameter tuning.
Finally we compared the results of our library against a comprehensive list of competing kernel
methods found in the literature. We will denote our implementation by Falkon for squared loss and
by LogFalkon for logistic loss. Next we present the algorithms we will compare with, then shortly
describe the datasets used and the experimental setting, and finally show the benchmark results. More
details are in Appendix A.
Algorithms under test. We compare against the following software packages: EigenPro [30],
GPflow [58] and GPyTorch [16]. The first library implements a KRR solver based on preconditioned
block-coordinate gradient descent where the preconditioner is based on a truncated eigendecompo-
sition of a data subsample. EigenPro provides a fully in-core implementation and therefore does
not scale to the largest datasets we tried. On some datasets EigenPro required the training data
to be subsampled to avoid GPU memory issues. The other two packages implement several GP
approximations and exact solvers, and we had to choose the model which would give a more ap-
propriate comparison: we decided to avoid deep GPs [13, 63, 11] since they share more similarities

7

Table 1: Relative performance improvement of the implemented optimizations w.r.t. [43]. The
experiment was run with the HIGGS dataset, 1×105 centers and 10 conjugate gradient iterations.

Experiment Preconditioner Iterations

Time Improvement Time Improvement

Falkon from [43] 2337 s − 4565 s −
Float32 precision 1306 s 1.8× 1496 s 3×
GPU preconditioner 179 s 7.3× 1344 s 1.1×
2 GPUs 118 s 1.5× 693 s 1.9×
KeOps 119 s 1× 232 s 3×

Overall improvement 19.7× 18.8×

to deep nets than to kernel methods; on the other hand the exact GP – even when implemented on
GPU [16, 59] – as well as structured kernel interpolation [62, 17] approximations do not scale to the
size of datasets we are interested in. The only GP models which would scale up to tens of millions of
points are stochastic variational GPs (SVGP). The SVGP is trained in minibatches by maximizing the
ELBO objective with respect to the variational parameters and the model hyperparameters. Stochastic
training effectively constrains GPU memory usage with the minibatch size. Hyperparameters include
kernel parameters (such as the length-scale of the RBF kernel) as well as the inducing points which –
unlike in Falkon – are modified throughout training using gradient descent. For this reason SVGP
works well even with very few inducing points, and all operations can run in-core. While GP solvers
are capable of estimating the full predictive covariance, we ensured that the software did not compute
it, and further we did not consider prediction times in our benchmarks. Furthermore we always
considered the Gaussian kernel with a single length-scale, due to the high effort of tuning multiple
length-scales for Falkon, although for GPs tuning would have been automatic. Both GPyTorch and
GPflow implement the same SVGP model, but we found the best settings on the two libraries to be
different; the discrepancies in running time and accuracy between the two GP libraries come from
implementation and tuning differences. We ran all algorithms under as similar conditions as possible:
same hardware, consistent software versions, equal floating-point precision and equal kernels (we
always considered the Gaussian kernel with a single length-scale). Hyperparameters were optimized
manually by training on a small data subset, to provide a sensible trade off between performance
and accuracy: we increased the complexity of the different algorithms until they reached high GPU
utilization since this is often the knee in the time-accuracy curve. Details on the GP likelihoods,
optimization details and other settings used to run and tune the algorithms are in Appendix A.4.
Datasets. We used eight datasets which we believe represent a broad set of possible scenarios for
kernel learning in terms of data size, data type and task ranging from MSD with 5× 105 points up
to TAXI with 109 points and YELP with 107 sparse features. The characteristics of the datasets are
shown in table 2 while a full description, along with details about preprocessing and relevant data
splits, is available in appendix A.3.
Experimental setting. All experiments were run on a Dell PowerEdge server with 2 Intel Xeon 4116
CPUs, 2 Titan Xp GPUs and 256GB of RAM. Since out of the analyzed implementations only Falkon
could use both GPUs effectively, we ran it both in a 2-GPU configuration (see Table 2) and in a
single-GPU configuration (see in appendix Table 4) where Falkon was on average 1.6× slower. Each
experiment was run 5 times, varying the random train/test data split and the inducing points. Out
of all possible experiments, we failed to run GPyTorch on TIMIT due to difficulties in setting up a
multi-class benchmark (this is not a limitation of the software). Other experiments, such as EigenPro
on several larger datasets, failed due to memory errors and others yet due to software limitations in
handling sparse inputs (none of the examined implementations could run the sparse YELP dataset).
Finally, LogFalkon only makes sense on binary classification datasets.
Results. We show the results in Table 2. In all cases, our library converges in less time than the other
implementations: with an average speedup ranging from 6× when compared to EigenPro to > 10×
when compared to GPyTorch. Only on very few datasets such as AIRLINE-CLS, GPflow gets closer
to Falkon’s running time. Both models had worse accuracy than Falkon. EigenPro has generally high
accuracy but can not handle large datasets at all. Finally, LogFalkon provides a small but consistent
accuracy boost on binary classification problems, at the expense of higher running time. Compared
with the original Falkon library [43] we report slightly higher error on HIGGS; this is attributable to

8

Table 2: Accuracy and running-time comparisons on large scale datasets.
TAXI n ≈ 109 HIGGS n ≈ 107 YELP n ≈ 106, d ≈ 107

RMSE time 1− AUC time rel. RMSE time

Falkon 311.7±0.1 3628±2 s 0.1804±0.0003 443±2 s 0.810±0.001 1008±2 s
LogFalkon — 0.1787±0.0002 2267±5 s —
EigenPro FAIL FAIL FAIL
GPyTorch 315.0±0.2 37 009±42 s 0.1997±0.0004 2451±13 s FAIL
GPflow 313.2±0.1 30 536±63 s 0.1884±0.0003 1174±2 s FAIL

TIMIT n ≈ 106 AIRLINE n ≈ 106 MSD n ≈ 105

c-error time rel. MSE time rel. error time

Falkon 32.27±0.08 % 288±3 s 0.758±0.005 245±5 s (4.4834±0.0008)×10−3 62±1 s
EigenPro 31.91±0.01% 1737±8 s 0.785±0.005 1471±11 s1 (4.4778±0.0004)×10−3 378±8 s
GPyTorch — 0.793±0.005 2069±50 s (4.5004±0.0010)×10−3 502±2 s
GPflow 33.78±0.14 % 2672±10 s 0.782±0.005 1297±2 s (4.4986±0.0005)×10−3 525±5 s

AIRLINE-CLS n ≈ 106 SUSY n ≈ 106

c-error time c-error time

Falkon 31.5±0.2 % 186±1 s 19.67±0.02 % 22±0 s
LogFalkon 31.3±0.2% 1291±3 s 19.58±0.03% 83±1 s
EigenPro 32.5±0.2 % 1629±1 s1 20.08±0.55 % 90±0 s2

GPyTorch 32.5±0.2 % 1436±2 s 19.69±0.03 % 882±9 s
GPflow 32.3±0.2 % 1039±1 s 19.65±0.03 % 560±11 s

1Using a random subset of 1×106 points for training. 2Using a random subset of 6×105 points for training.

the use of low-precision floating point numbers. We did not find significant performance differences
for other datasets. We defer comparisons with results from the literature to Appendix A.6; suffice it
to note that a distributed GP applied to the TAXI dataset resulted in a running-time of 6000 s using a
system with 28 000 CPUs [37] while we achieved similar accuracy in less time, with a much smaller
computational budget.

5 Conclusions

Making flexible and easy to use machine learning libraries available is one of the keys of the recent
success of machine learning. Here, we contribute to this effort by developing a library for large scale
kernel methods. We translate algorithmic ideas into practical solutions, using a number of carefully
design computational approaches specifically adapted to the GPU. The resulting library achieves
excellent performance both in terms of accuracy and computational costs. A number of further
developments are possible building on our work. For example, considering other loss functions or opt-
imization approaches, and especially more structured kernels [9] that could further improve efficiency.

Broader Impact

This work has the potential to greatly speed up a certain class of machine learning workloads, namely
kernel methods on large datasets when GPU(s) are available. If deployed widely, the positive impact
of the presented method could be twofold: on the one hand it may reduce electricity consumption
necessary to run such large-scale predictions [15], thus positively impacting the environment; on
the other hand it could enable analysis of large datasets which were previously only accessible to
simpler methods. At the same time the speedup we obtain relies on GPU accelerators; since this type
of hardware is generally expensive, it could increase disparity in access to fast algorithms.

Acknowledgments

This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM),
funded by NSF STC award CCF-1231216, and the Italian Institute of Technology. We gratefully
acknowledge the support of NVIDIA Corporation for the donation of the Titan Xp GPUs and the
Tesla k40 GPU used for this research. Part of this work has been carried out at the Machine Learning
Genoa (MaLGa) center, Università di Genova (IT) L. R. acknowledges the financial support of the
European Research Council (grant SLING 819789), the AFOSR projects FA9550-17-1-0390 and
BAA-AFRL-AFOSR-2016-0007 (European Office of Aerospace Research and Development), and
the EU H2020-MSCA-RISE project NoMADS - DLV-777826. This work was funded in part by

9

the French government under management of Agence Nationale de la Recherche as part of the
“Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/.

[2] Hartwig Anzt, Stanimire Tomov, Piotr Luszczek, William Sawyer, and Jack Dongarra. Acceler-
ation of GPU-based Krylov solvers via data transfer reduction. International Journal of High
Performance Computing Applications, 29(3):366–383, 2015. doi: 10.1177/1094342015580139.

[3] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Faster kernel ridge regression using
sketching and preconditioning. SIAM Journal on Matrix Analysis and Applications, 38(4):
1116–1138, 2017. doi: 10.1137/16M1105396.

[4] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In Proceedings of the
Annual Conference on Computational Learning Theory, 2013.

[5] Daniele Calandriello and Lorenzo Rosasco. Statistical and computational trade-offs in kernel
k-means. In Advances in Neural Information Processing Systems 31, 2018.

[6] A. Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares al-
gorithm. Foundations of Computational Mathematics, 7:331–368, 2007. doi: 10.1007/
s10208-006-0196-8.

[7] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. Fast support vector machine training
and classification on graphics processors. In Proceedings of 25th the Conference on Machine
Learning, 2008.

[8] Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, and Ghislain Durif. KeOps, 2020. URL
https://github.com/getkeops/keops.

[9] Jie Chen, Haim Avron, and Vikas Sindhwani. Hierarchically compositional kernels for scalable
nonparametric learning. Journal of Machine Learning Research, 18(1):2214–2255, 2017.

[10] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of the
American Mathematical Society, 39, 2001. doi: 10.1090/S0273-0979-01-00923-5.

[11] Kurt Cutajar, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. Random feature
expansions for deep Gaussian processes. In Proceedings of the 34th Conference on Machine
Learning, 2017.

[12] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F. Balcan, and Le Song.
Scalable kernel methods via doubly stochastic gradients. In Advances in Neural Information
Processing Systems 27, 2014.

[13] Andreas Damianou and Neil Lawrence. Deep Gaussian processes. In Proceedings of the 16th
Conference on Artificial Intelligence and Statistics, 2013.

[14] Petros Drineas and Michael W. Mahoney. On the nyström method for approximating a Gram
matrix for improved kernel-based learning. Journal of Machine Learning Research, 6:2153–
2175, 2005.

[15] Eva García-Martín, Crefeda Faviola Rodrigues, Graham Riley, and Håkan Grahn. Estimation of
energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134,
2019. doi: 10.1016/j.jpdc.2019.07.007.

[16] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.
GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In
Advances in Neural Information Processing Systems 31, 2018.

10

https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/getkeops/keops

[17] Jacob R. Gardner, Geoff Pleiss, Ruihan Wu, Kilian Q. Weinberger, and Andrew G. Wilson. Prod-
uct kernel interpolation for scalable gaussian processes. In Proceedings of the 21st Conference
on Artificial Intelligence and Statistics, pages 1407–1416, 2018.

[18] Alex Gittens and Michael W. Mahoney. Revisiting the nyström method for improved large-scale
machine learning. Journal of Machine Learning Research, 17:3977–4041, 2016.

[19] James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. In
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, 2013.

[20] James Hensman, Alexander G. Matthews, and Zoubin Ghahramani. Scalable variational
Gaussian process classification. In Proceedings of the 18th Conference on Artificial Intelligence
and Statistics, 2015.

[21] James Hensman, Nicolas Durrande, and Arno Solin. Variational fourier features for Gaussian
processes. Journal of Machine Learning Research, 18(1):5537–5588, 2017.

[22] Pavel Izmailov, Alexander Novikov, and Dmitry Kropotov. Scalable gaussian processes with
billions of inducing inputs via tensor train decomposition. In Proceedings of the 21st Conference
on Artificial Intelligence and Statistics, 2018.

[23] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems 31,
2018.

[24] George S. Kimeldorf and Grace Wahba. A correspondence between bayesian estimation on
stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41(2):
495–502, 1970. doi: 10.1214/aoms/1177697089.

[25] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods for the nyström
method. Journal of Machine Learning Research, 13:981–1006, 2012.

[26] Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood: Approximating kernel expansions in
loglinear time. In Proceedings of the 30th Conference on Machine Learning, 2013.

[27] Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of
random Fourier features. In Proceedings of the 36th Conference on Machine Learning, 2019.

[28] Hatem Ltaief, Stanimire Tomov, Rajib Nath, Peng Du, and Jack Dongarra. A scalable high
performant Cholesky factorization for multicore with GPU accelerators. In High Performance
Computing for Computational Science, 2011. doi: 10.1007/978-3-642-19328-6_11.

[29] Siyuan Ma and Mikhail Belkin. Diving into the shallows: a computational perspective on
large-scale shallow learning. In Advances in Neural Information Processing Systems 30, 2017.

[30] Siyuan Ma and Mikhail Belkin. Kernel machines that adapt to GPUs for effective large batch
training. In Proceedings of the 2nd Conference on Machine Learning and Systems, 2019.

[31] Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Globally convergent newton meth-
ods for ill-conditioned generalized self-concordant losses. In Advances in Neural Information
Processing Systems 32, 2019.

[32] Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and Alessandro Rudi. Beyond least-
squares: Fast rates for regularized empirical risk minimization through self-concordance. In
Proceedings of the Thirty-Second Conference on Learning Theory, 2019.

[33] NVIDIA Corporation. cuBLAS, 2020. URL https://developer.nvidia.com/cublas.

[34] NVIDIA Corporation. cuSOLVER, 2020. URL https://developer.nvidia.com/
cusolver.

[35] NVIDIA Corporation. cuSPARSE, 2020. URL https://developer.nvidia.com/
cusparse.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, 2019.

11

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse

[37] Hao Peng, Shandian Zhe, Xiao Zhang, and Yuan Qi. Asynchronous distributed variational
gaussian process for regression. In Proceedings of the 34th Conference on Machine Learning,
2017.

[38] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems 20, 2008.

[39] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimiza-
tion with randomization in learning. In Advances in Neural Information Processing Systems 21,
2009.

[40] Carl Edwards Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[41] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random
features. In Advances in Neural Information Processing Systems 30, 2017.

[42] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computa-
tional regularization. In Advances in Neural Information Processing Systems 28, 2015.

[43] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. FALKON: An optimal large scale
kernel method. In Advances in Neural Information Processing Systems 29, 2017.

[44] Yousef Saad. Iterative methods for sparse linear systems, volume 82. SIAM, 2003.

[45] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2001. doi: 10.7551/mitpress/4175.001.
0001.

[46] Bernhard Schölkopf, Ralf Herbrich, and Alexander J. Smola. A generalized representer theorem.
In Proceedings of the Annual Conference on Computational Learning Theory, 2001.

[47] Laurent Schwartz. Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés
(noyaux reproduisants). Journal d’Analyse Mathématique, 13:115–256, 1964. doi: 10.1007/
BF02786620.

[48] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

[49] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[50] Alex J. Smola and Bernhard Schökopf. Sparse greedy matrix approximation for machine
learning. In Proceedings of the 17th Conference on Machine Learning, 2000.

[51] Ingo Steinward and P. Thomann. liquidSVM: A fast and versatile SVM package, 2017.

[52] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business
Media, 2008.

[53] Ingo Steinwart, Don Hush, and Clint Scovel. Optimal rates for regularized least squares
regression. In Proceedings of the Annual Conference on Computational Learning Theory, 2009.

[54] Nicholas Sterge, Bharath Sriperumbudur, Lorenzo Rosasco, and Alessandro Rudi. Gain with no
pain: Efficient kernel-PCA by nyström sampling. In Proceedings of the 23rd Conference on
Artificial Intelligence and Statistics, 2020.

[55] Yitong Sun, Anna Gilbert, and Ambuj Tewari. But how does it work in theory? linear SVM
with random features. In Advances in Neural Information Processing Systems 31, 2018.

[56] Dougal Sutherland, Heiko Strathmann, Michael Arbel, and Arthur Gretton. Efficient and
principled score estimation with nyström kernel exponential families. In Proceedings of the
21nd Conference on Artificial Intelligence and Statistics, 2018.

[57] Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, and Benjamin Recht. Large scale kernel
learning using block coordinate descent, 2016.

[58] Mark van der Wilk, Vincent Dutordoir, S. T. John, Artem Artemev, Vincent Adam, and James
Hensman. A framework for interdomain and multioutput Gaussian processes, 2020.

[59] Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gor-
don Wilson. Exact Gaussian processes on a million data points. In Advances in Neural
Information Processing Systems 32, 2019.

12

[60] Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. ThunderSVM: A fast SVM
library on GPUs and CPUs. Journal of Machine Learning Research, 19:797–801, 2018.

[61] Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13, 2001.

[62] Andrew G. Wilson and Hannes Nickisch. Kernel interpolation for scalable structured Gaussian
processes (KISS-GP). In Proceedings of the 32nd Conference on Machine Learning, 2015.

[63] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Stochastic
variational deep kernel learning. In Advances in Neural Information Processing Systems 30,
2016.

[64] Nicholas Wilt. The CUDA handbook: A comprehensive guide to GPU programming. Pearson
Education, 2013.

[65] R. Wu. A heterogeneous parallel cholesky block factorization algorithm. IEEE Access, 6, 2018.
doi: 10.1109/ACCESS.2018.2803794.

[66] Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. Nyström method
vs random fourier features: A theoretical and empirical comparison. In Advances in Neural
Information Processing Systems 24, 2012.

[67] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression:
A distributed algorithm with minimax optimal rates. Journal of Machine Learning Research, 16
(102):3299–3340, 2015.

13

	Introduction
	Background
	Reformulating kernel solvers for multi-core/multi-GPU architectures
	Overcoming RAM memory bottleneck
	Fitting in GPU memory and dealing with multiple GPUs
	Optimizing data transfers and other improvements.

	Large-scale experiments
	Conclusions
	Further experiment details and results
	Relative impact of performance optimizations
	Multi-GPU scalability
	Additional information on the datasets
	Additional information on the experimental settings
	Additional benchmarks
	Performance comparisons in a literature review

	Logistic Falkon Algorithm
	Out-Of-Core Algorithms

