
A Further experiment details and results

A.1 Relative impact of performance optimizations

We performed an experiment to analyze how much improvement was due to the different performance
optimization steps. We ran Falkon on the HIGGS dataset several times with the same hyperparameters
(m = 1×105 and 10 epochs), but with different features enabled. Each feature roughly corresponds
to one of the performance optimizations discussed in Section 3. Our baseline model is very similar to
the original Falkon implementation [43], where the preconditioner ran on the CPU, float64 precision
was being used, but matrix-vector multiplications for the CG algorithm were GPU accelerated. As a
first optimization we used float32 precision for all computations, with care taken to avoid errors in
the Cholesky decomposition as discussed in Section 3. This immediately resulted in a 2× speedup
for the CPU part, and 3× for the GPU part. Switching to a GPU preconditioner (using the algorithms
described in Appendix C) gave a huge boost to the preconditioner running time which went from
more than 20 min to just under 3 min. Adding a second GPU produced a perfect 2× speedup for the
CG iterations, and a more modest 1.5× speedup for the preconditioner which a) involves operations
which are not perfectly parallelizable and b) incurs in some fixed startup costs. Finally, since the
HIGGS dataset has only 9 features (thus the data matrix is thin), we can use KeOps [8] with great
benefits to the speed of matrix-vector multiplications. Overall our implementation provides a nearly
20× improvement over the baseline, which makes learning on several huge datasets doable in a
matter of minutes.

A.2 Multi-GPU scalability

In this section we look into the scalability of our implementation across multiple GPUs. Scalability
results for the full Falkon algorithm on the TAXI dataset are shown in Figure 6. This result depends
on scaling both the preconditioner and the conjugate gradient iterations. The preconditioner itself
is computed with three main operations: two Cholesky decompositions and one triangular matrix
multiplication (this is called the LAUUM operation in LAPACK terms), see Figure 4 for more details.
Each CG iteration instead consists of two multiplications between the kernel matrix and an arbitrary
vector. First we look at the scalability of the preconditioner operations with multiple GPUs. Then we
examine our out-of-core matrix-vector product implementation and compare it to KeOps for different
settings of n and d.

Figure 6: Multi-GPU scalability of Falkon on the TAXI dataset (settings are the same as per Table 3).
Falkon scales remarkably well, with even 4 GPUs.

Preconditioner scalability. Figure 7 shows the results from running both triangular matrix multi-
plication and the Cholesky decomposition with one and two GPUs. At low matrix sizes the speedup
with two GPUs is negligible, especially for the Cholesky decomposition. In such cases it is best
to use a single GPU (especially since for n = 40000 the whole matrix fits in GPU memory, so an
in-place decomposition can be used). With higher matrix sizes, having more than one GPU starts
bringing real benefits, with a peak speedup around 1.8× for preconditioners of size 140 000. The

14

2.5 5.0 7.5 10.0 12.5
n 1e4

0

50

100

150

Ti
m

e
(s

)

1 GPU
2 GPUs

1.0

1.2

1.4

1.6

1.8

2.0

Re
la

tiv
e

Sp
ee

du
p

(a) Parallel LAUUM.

2.5 5.0 7.5 10.0 12.5
n 1e4

0

50

100

150

Ti
m

e
(s

)

1 GPU
2 GPUs

1.0

1.2

1.4

1.6

1.8

2.0

Re
la

tiv
e

Sp
ee

du
p

(b) Parallel Cholesky decomposition.

Figure 7: Running time of two preconditioner operations with one and two GPUs. The relative
speed-up with 2 GPUs is shown in the black dashed line. The LAUUM operation (triangular matrix
multiplication) was run out-of-place, which is theoretically easier to parallelize, while the Cholesky
decomposition was run in-place.

factors blocking such speedup from reaching a perfect 2× are different for the two operations. Since
the LAUUM operation was run out-of-place (see Appendix C for more details), it does not need
any synchronization – and should therefore be able to scale well across multiple GPUs. The main
blocking factor is the operation at Line 7 of Algorithm 3 which is executed on the CPU (since an
equivalent implementation does not exist in cuSOLVER), thus both GPU threads must share the
same CPU resources. We left porting the LAUUM operation to the GPU as future work, but it has
the potential to speed up the LAUUM operation considerably. For the Cholesky decomposition the
limiting factors are the data-dependencies intrinsic to the algorithm which cannot be easily solved.

Comparing different MVM implementations. We compare our specialized routine for the kernel-
vector multiplication k(X(1), X(2))v implemented in Python, leveraging PyTorch for GPU com-
putations, against the native CUDA implementation from KeOps [8]. Using a similar notation for
the dimensions as in the main text we have X(1) ∈ Rn×d, X(2) ∈ Rm×d,v ∈ Rm×1 and k(·, ·) is
a kernel function. Two distinct scenarios arise in different settings: increasing the number of data
points n produces linear scaling for both implementations, with KeOps being approximately 10
times faster than our implementation (see Figure 8(a)). Increasing the data dimensionality d our
implementation scales linearly, but KeOps scales polynomially, so as it is obvious from Figure 8(b)
KeOps can not be used when the data is high-dimensional. A caveat of this plot is that KeOps is
continuously evolving, and is likely to improve performance with large d in the future. In our final
algorithm we set a threshold on the data dimensionality and switch implementation based on this.
Finally note that this operation scales almost perfectly with multiple GPUs.

A.3 Additional information on the datasets

We used several datasets which we believe represent a broad set of scenarios for kernel learning, in
terms of data size, data type, and learning task. We normally used a standard random split with 80%
training, 20% testing data unless predefined splits existed (as noted below). Preprocessing mostly
consisted in basic data cleaning and data standardization to zero mean and unit standard deviation;
we comment in more detail below on specific preprocessing steps applied to the individual datasets.

HIGGS has dimensions n = 1.1 × 107, d = 28 and a binary target. It was preprocessed to
0 mean and unit variance. Results are reported on a 80-20 split with 1 minus the AUC metric
in Table 2 and with the binary classification error in Table 6. It is available for download at
https://archive.ics.uci.edu/ml/datasets/HIGGS.

TIMIT has dimensions n = 1.2× 106, d = 440 and a multiclass target with 144 classes. TIMIT
comes from audio data, and our dataset uses the 10 ms resampling rate as in [29, 30]. It was
preprocessed to 0 mean and unit standard deviation. The error metric is classification error on a

15

https://archive.ics.uci.edu/ml/datasets/HIGGS

0.0 0.2 0.4 0.6 0.8 1.0
n 1e8

0

50

100

150

200

250

Ti
m

e
(s

)

KeOps 1 GPU
KeOps 2 GPUs
Our 1 GPU
Our 2 GPUs

(a)

0 1000 2000 3000 4000 5000 6000 7000
d

0

5

10

15

20

25

30

Ti
m

e
(s

)

KeOps 1 GPU
KeOps 2 GPUs
Our 1 GPU
Our 2 GPUs

(b)

Figure 8: Scaling of matrix-vector implementations where the matrix is the Gaussian kernel. In (a)
we have set m = 20 000, d = 10 and n is variable; in (b) we set m = n = 20 000 and we vary d. All
experiments are run on 1 and 2 GPUs on single precision random data.

subset of classes (as used in [29]), and is calculated over a standardized subset of 57 242 samples. It
is available for download at https://catalog.ldc.upenn.edu/LDC93S1.

YELP has dimensions n = 1.5×106, d = 6.52×107 and a continuous target. This dataset consists
of text reviews, labeled with their star rating. We used the same data as [57] (Yelp round 9 dataset),
processed by extracting all 3-grams and encoding each review by a count vector which tells us which
3-grams are present. Such encoding produces a large number of sparse features which is reflected in
the huge dimensionality of this dataset. Since the data is sparse we did not normalize it. The error
metric is RMSE, calculated on random 20% of the samples. The dataset can be provided on request.

TAXI has dimensions n = 1.1× 109, d = 9 with a continuous target. Data are normalized to have
zero-mean and unit standard deviation; reported error is RMSE on a 20% random sub-sample. The
data can be downloaded by following instructions at https://github.com/toddwschneider/
nyc-taxi-data. Consistently with other users of this dataset [37] we took the data from January
2009 to December 2015, excluding outliers (taxi trips more than 5 hours long) and trips where the
pickup or drop off location is outside of NYC.

AIRLINE has dimensions n = 5.93×106, d = 8 and a continuous target. Data are normalized
to zero-mean and unit standard deviation, and the error is the MSE over normalized targets calcu-
lated on random test-sets of size 33 % of the full data (consistently with the literature [21, 19]).
The same dataset is also used for binary classification by thresholding the target at 0, which
results in the AIRLINE-CLS dataset. For this latter variation we used 100 000 random points
for testing, reporting classification error in Table 2 and 1 minus the AUC in Table 6 to facilitate
comparisons with the literature. The data can be downloaded from https://www.transtats.
bts.gov/Fields.asp?Table_ID=236 and http://stat-computing.org/dataexpo/2009/
supplemental-data.html.

MSD has dimensions n = 5.1×105, d = 90 with continuous target. Data are normalized to zero-
mean and unit standard deviation, and we report the relative error over a standard test-set of size
51 630. The dataset can be downloaded from https://archive.ics.uci.edu/ml/datasets/
YearPredictionMSD.

SUSY has dimensions n = 5×106, d = 18 with binary target. Data are normalized to zero-mean
and unit standard deviation. We report the classification error on 20% of the data. Data is available
from the UCI repositories https://archive.ics.uci.edu/ml/datasets/SUSY.

A.4 Additional information on the experimental settings

1. EigenPro2. Its only hyperparameters – other than the kernel parameters – are the ones
governing the preconditioner’s complexity making EigenPro easy to tune. It is however

16

https://catalog.ldc.upenn.edu/LDC93S1
https://github.com/toddwschneider/nyc-taxi-data
https://github.com/toddwschneider/nyc-taxi-data
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
http://stat-computing.org/dataexpo/2009/supplemental-data.html
http://stat-computing.org/dataexpo/2009/supplemental-data.html
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/SUSY

limited to datasets which fit entirely in GPU memory, so can not easily scale to larger
datasets; to alleviate this problem, consistently with the original paper, some experiments
were run on sub-sampled datasets. Furthermore, on some experiments we found it necessary
to manually tune the learning rate (we divided the automatically inferred learning rate by a
fixed integer, denoted by η÷ in Table 3).

2. GPFlow (v2.1.3). We used the SVGP model with Gaussian likelihood for regression,
Bernoulli for binary classification and Softmax for multi-class problems. We used Adam for
optimization and tuned the learning rate, the number of inducing points, and the constraints
on the variational distribution covariance (i.e. diagonal or full covariance matrix). We found
that using a full covariance matrix was rarely beneficial and increased training times slightly,
so all final experiments used a diagonal covariance matrix. The number of parameters
was m × d + m × 2 + 3 which includes the inducing points, the variational parameters,
two parameters for the Gaussian kernel (lengthscale and variance) and the variance of the
likelihood. For multi-class problems separate variational parameters were trained for each
class. Since we wished to use single-precision floating point numbers in order to make
GPU training more efficient, we found that natural gradient optimization was unstable. It
remains to be seen whether the tradeoff between double-precision data and natural gradient
optimization could further improve results. We further tested the benefits of using whitening
of the inducing points, and found that it decreased per-epoch running times by about 2×,
while at the same time slowing down convergence by around the same amount. In practice
this meant that the difference in global running time was not strongly affected by whitening,
and we ended up using it only for the HIGGS data.

3. GPyTorch (v.1.2.0). We used the SVGP model with Gaussian and Bernoulli likelihoods.
We were unable to run GPyTorch’s SVGP model on the TIMIT dataset due to problems in
dealing with multiple outputs. We used the natural gradient optimizer to learn the variational
parameters, and Adam to learn the other hyperparameters. The learning rate of the two
optimizers was kept equal and tuned for best performance. We further optimized the number
of inducing points, and variational distribution constraints. In practice we found that we
had to use the natural gradient variational distribution for regression problem, and the
lower-triangular parametrization for classification problems (which are non-conjugate).
We additionally tested whether whitening the inducing points was beneficial: in practice
we found that using the unwhitened strategy was around 3× faster and did not hamper
convergence, so we selected it for all experiments. While GPyTorch is theoretically able
to run on multi-GPU systems, we noticed that this feature was not available for the SVGP
model thus we always used a single GPU; furthermore, while a KeOps integration into
GPyTorch is available, we found that for the SVGP model it would increase the running
time, so we did not use it. The trained parameters were the same as for GPFlow plus another
scalar for the GP mean.

4. Falkon. We tuned the kernel length-scale, number of inducing points and regularization
amount. We used a coarse to fine approach to tune the length-scale which gives good results
with a limited number of validation runs.

5. Logistic Falkon. Here we tuned the kernel length-scale, number of inducing points and regu-
larization path. We found that the algorithm is not very sensitive to the exact regularization
path: it is sufficient to set the final λ, and many different paths which lead to such value will
work in the same way.

A.5 Additional benchmarks

In Table 4 we show the performance of the Falkon algorithm on all considered datasets for 1 and
2 GPUs side by side. It is clear that larger datasets scale better with more GPUs since the startup
cost (mostly taken up by CUDA initialization) and the lower scaling ratio of the preconditioner are
amortized.

In Table 5 we compare the running times of Falkon and ThunderSVM [60] on three popular image
datasets. ThunderSVM was chosen among several SVM implementations as it runs entirely on the
GPU, and can thus solve the hinge-loss problem quickly for problems of moderate size. Smaller
datasets than the ones used for previous experiments were considered, since ThunderSVM solves
the full SVM problem and thus suffers from cubic time scaling. The results obtained show that

17

Table 3: Summary of the most important hyperparameter settings for all algorithm-dataset combina-
tions. We denote by η the learning rate, by subsample the amount of training-set subsampling that
was performed (i.e. training was done on a smaller dataset), and by Newton steps the number of
separate runs of the main Falkon algorithm for Logistic Falkon (see Appendix B).

AIRLINE AIRLINE-CLS MSD SUSY TIMIT YELP HIGGS TAXI

n 5.93×106 5.93×106 5.1×105 5×106 1.2×106 1.6×106 11×107 1.15×109

d 8 8 90 18 440 6.5×107 28 9
labels reg 2-cls reg 2-cls 144-cls reg 2-cls reg

Falkon m 1×105 1×105 5×104 3×104 1×105 5×104 1.2×105 1×105

σ 0.9 0.9 7 3 14.5 20 3.8 1
λ 1×10−8 1×10−8 2×10−6 1×10−6 5×10−9 1×10−6 3×10−8 2×10−7

epochs 20 10 10 5 5 10 10 7
LogFalkon m – 1×105 – 2×104 – – 1×105 –

σ – 0.9 – 3 – – 5 –
λ – 1×10−9 – 1×10−8 – – 1×10−9 –
Newt. steps – 9 – 6 – – 9 –

GPyTorch m 2000 2000 3000 2000 – – 2000 1000
η 5×10−3 2×10−3 2×10−3 1×10−3 – – 2×10−2 2×10−3

epochs 20 20 20 20 – – 15 5
GPflow m 2000 2000 3000 2000 2000 – 2000 1000

η 5×10−3 5×10−3 2×10−3 3×10−3 1×10−2 – 2×10−2 3×10−3

epochs 25 20 45 10 15 – 60 10
whiten no no no no no – yes no

EigenPro η÷ 10 12 20 1 1 – – –
subsample 1×106 1×106 – 6×105 – – – –
epochs 9 10 9 1 4 – – –

Table 4: Benchmark timings using a single GPU. The relative slowdown with respect to Falkon on 2
GPUs is also provided for comparison with Table 2.

1 GPU 2 GPUs Relative change

TAXI 7215±4 s 3628±2 s 1.99×
HIGGS 715±6 s 443±2 s 1.61×
YELP 1981±6 s 1008±2 s 1.97×
TIMIT 416±4 s 288±3 s 1.44×
AIRLINE 334±2 s 245±5 s 1.36×
MSD 81±0 s 62±1 s 1.31×
AIRLINE-CLS 391±5 s 269±3 s 1.45×
SUSY 29±1 s 22±0 s 1.32×

Falkon can work efficiently even on smaller datasets, resulting between 2 and 10 times faster than
ThunderSVM (depending on problem size), with comparable accuracy. To further shave off some time,
we implemented a version of Falkon which runs entirely inside the GPU: we call this InCoreFalkon,
and it can only be used on smaller datasets which fit inside the GPU, leaving some space to spare
which is used for the preconditioner and the other computations. Table 5 shows that InCoreFalkon
gives a further speed-up of – on average – 2× compared to the standard implementation.

Table 5: Comparing the running times of Falkon, the in-core version of Falkon and ThunderSVM on
three image datasets. Hyperparameters (especially the number of inducing points m) were tuned so
that the two algorithms obtained approximately the same accuracy.

MNIST
n = 6 · 104, d = 780

CIFAR10
n = 6 · 104, d = 1024

SVHN
n = 7 · 104, d = 1024

Falkon 10.9 s 13.7 s 17.2 s
InCoreFalkon 6.5 s 7.9 s 6.7 s
ThunderSVM 19.6 s 82.9 s 166.4 s

18

Table 6: Survey of results on the datasets we considered, as reported in the literature. We report the
result of our implementation (Falkon) next to other implementations, along with the time taken and
the hardware used (where available).

Dataset Falkon Other methods

error time error time reference

TAXI
(metric: RMSE)

311.7±0.1 3628±2 s 309.7 6000 s
28 000 vCPUs (AWS)

ADVGP [37]

HIGGS
(metric: c-err)

25.78±0.03 % 443±2 s 32.87 % 1392 s
on 14 node cluster

liquidSVM [51]

YELP
(metric: RMSE)

0.810±0.001 1008±2 s 0.861 ≈ 3500 s Nyström [57]

0.854 ≈ 30 000 s
on 128 machines
(AWS)

Full linear kernel [57]

AIRLINE
(metric: MSE)

0.758±0.005 245±5 s 0.827±0.004 265±6 s
on a laptop

VFF-GP [21]

0.791±0.005 18 360±360 s
on a cluster

SVIGP [21]

MSD
(metric: rel. err.)

4.48×10−3 62±1 s ≈ 4.55×10−3 210 s
on IBM POWER8

Hierarchical [9]

4.58×10−3 289 s
on 8 r3.8xlarge (AWS)

Faster KRR [3]

AIRLINE-CLS
(metric: AUC)

0.739±0.002 186±1 s 0.781±0.001 14 328 s Varitional Deep GP [63]

0.694 5200 s TT-GP [22]

0.788 1375 s Deep TT-GP [22]

0.665 80 000 s cVGP[20]

0.785 ≈ 5000 s RF Deep GPs [11]

SUSY
(metric: c-err)

19.67±0.02 % 22±0 s ≈ 20% ≈ 2000 s
on IBM POWER8

Hierarchical [9]

19.8% 58 s
on 1 Titan Xp

EigenPro 2.0 [30]

A.6 Performance comparisons in a literature review

We scanned the literature for results which used kernel methods on the datasets considered in this
paper, which reported both accuracy and running times. This allowed us to confirm that the results
reported in our benchmarks (see Table 2) were in-line with what had been previously reported. The
outcome is shown in Table 6. We do not report results where running time is not mentioned. Some
of the numbers in Table 6 have higher accuracy than Falkon: this comes from the use of deep GPs
which – through a vast number of parameters – can learn better data representations. Such models
are intrinsically different in spirit from kernel methods, and we do not aim to compare with them
specifically; they are reported in Table 6 for the sake of completeness.

B Logistic Falkon Algorithm

In this section we provide some more details on how to derive fast algorithms with strong theoretical
guarantees for smooth loss functions beyond squared loss. In particular, the main ideas from a
theoretical and algorithmic viewpoint that we are going to recall here are developed in [32], [31].
Our goal, as stated in the main text, is to make these ideas practical, by efficiently implementing
and deploying the algorithms and making full use of the available computational architectures. In
particular, we will focus on the following set of generalized self concordant loss functions:

Definition 1. Generalized self-concordant (GSC) function [32] Let H be a Hilbert space and let
z = (x, y) be an input-output pair. We say that `z : H → R is a generalized self-concordant function
on G ⊂ H, when G is a bounded subset of H and `z is a convex and three times differentiable

19

Algorithm 2 Pseudocode for appr. Newton method with Falkon, for GSC losses (based on [31]).

1: function GSC-FALKON(X ∈ Rn×d,y ∈ Rn, λ,m, t, T)
2: Set α0 = 0 ∈ Rm and µ0 > 0, q > 0 according to [31].
3: Xm,ym ← RANDOMSUBSAMPLE(X,y,m)
4: for k ∈ N do
5: fk+1 ←WEIGHTEDFALKON(X,y, Xm,ymµk, t, αk)
6: µk+1 ← qµk
7: Stop when µk+1 < λ and set αlast ← αk.
8: end forreturn α̂←WEIGHTEDFALKON(X,y, Xm,ym, λ, T, αk)
9: end function

1: function WEIGHTEDFALKON(X ∈ Rn×d,y ∈ Rn, Xm ∈ Rm×d,ym ∈ Rm, λ, t, α0 ∈ Rm)
2: T,A←WEIGHTEDPRECONDITIONER(Xm,ym, α0, λ)
3: function LINOP(β ∈ Rm)
4: v ← A−1β
5: z ← k(X,Xm)β . predictions on the dataset
6: D ← diag[(`(2)((z)1, (y)1), . . . , `(2)((z)n, (y)n))]
7: c← k(Xm, X)Dk(X,Xm)T−1v
8: return A−>T−>c+ λnv
9: end function

10: R← A−>T−>k(X,Xm)y
11: β ← CONJUGATEGRADIENT(LINOP, R, t, α0) . CG solver starting from α0

12: return T−1A−1β
13: end function

1: function WEIGHTEDPRECONDITIONER(Xm ∈ Rm×d,ym ∈ Rm, α ∈ Rm, λ)
2: Kmm ← k(Xm, Xm) . Compute the kernel between inducing points
3: z ← Kmmα . predictions on the Nyström points
4: T ← chol(Kmm)
5: D ← diag[(`(2)((z)1, (ym)1), . . . , `(2)((z)m, (ym)m))]
6: Kmm ← 1/mTDT> + λI
7: A← chol(Kmm)
8: return T,A
9: end function

Note: LINOP performs the multiplications via matrix-vector products.

mapping onH such that

∀f ∈ H, ∀h, k ∈ H, ∇(3)`z(f)[h, k, k] ≤ supg∈G |g · h| ∇2`z(f)[k, k].

Denote by R the quantity supg∈G ‖g‖ <∞. For many loss functions G is just the ball inH centered
in zero and with radius R > 0, then supg∈G |g · h| = R‖h‖). The following loss functions, which
are widely used in machine learning, are generalized self-concordant

Example 1. (Application to finite-sum minimization [32]) The following loss functions are general-
ized self-concordant functions:
(a) Logistic regression: `z(f) = log(1 + exp(−yf(x))), where z = (x, y) with x ∈ X and
y ∈ {−1, 1}.
(b) Robust regression: `z(f) = ϕ(f(x) − y) with ϕ(u) = log(eu + e−u). Here z = (x, y) with
x ∈ X and y ∈ R
(c) Softmax regression: `z(f) = log(

∑k
j=1[f(x)]j)− [f(x)]y, where now f : X → Rk, z = (x, y),

with y ∈ {1, . . . , k} and vj denotes the j-th column of v ∈ Rk.
(d) generalized linear models with bounded features, which include conditional random fields (see
more details in [32]). Note, in particular, that the loss functions above are generalized self concordant,
but not self concordant as discussed in [32].

20

For the learning problem in Eq. (1) with generalized self-concordant loss functions, a strong theoreti-
cal result analogous to the one for kernel ridge regression (3) has been obtained [32]. In particular, the
regularized empirical risk minimization solution (2) with generalized self-concordant losses achieves
the bound

L(f̂λ)− inf
f∈H

L(f) = O
(
n−1/2

)
, (10)

under standard regularity conditions on the learning problem and achieves fast learning rates similar
to kernel ridge regression, considering more refined regularity conditions that are a natural extension
of the conditions for kernel ridge regression [32].

The paper [31] suggests to solve the regularized empirical risk minimization problem (2) for general-
ized self-concordant losses, by using a set of techniques that are extensions of the Falkon algorithm
in [43]. In particular, the problem is cast in terms of an approximate Newton method, with pseudocode
shown in function GSC-Falkon of Algorithm 2. Nyström method is used a first time to reduce the
size of the problem, and then a second time to derive an approximate Newton step [31]. Indeed
a model of the form (4) is considered and the preconditioner now plays the role of approximate
Hessian, to perform the iterated approximation Newton. Given (x̃j , ỹj)

m
j=1 selected uniformly at

random from the dataset, the approximate Hessian H̃ at the step k is a weighted version of the Falkon
preconditioner and has the form

H̃ =
1

m
TD̃kT

> + µkI,

where T is such that T>T = Kmm (e.g. it is the Cholesky decomposition of Kmm) and D̃k ∈
Rm×m is a diagonal matrix whose jth element is `(2)(fk(x̃j), ỹj) where we assume that the loss
function is `(f(x), y) and the second derivative is taken with respect to the first variable. As
for Falkon, the approximate Hessian is never built explicitly, we compute instead its Cholesky
decomposition in terms of the matrices T,A as H̃−1 = P̃ P̃> with P̃ = T−1A−1, see the function
WeightedPreconditioner in Alg. 2. Then conjugate gradient is applied to the preconditioned
problem, to solve the equation

P̃>(K>nmDkKnm + λI)P̃ β = P̃>K>nmgk.

where Dk ∈ Rn×n is a diagonal matrix whose ith element is `(2)(fk(xi), yi) and gk ∈ Rn corre-
sponds to (gk)i = `(1)(fk(xi), yi). To conclude, as proven in [31], to achieve the same learning
rate of (10) and good practical performances, GSC-Falkon (Alg. 2) needs to call WeightedFalkon
only a small number of times with decreasing regularization parameters. Moreover, each time
WeightedFalkon needs to execute only few iterations of the CG algorithm. The algorithm presented
in Alg. 2 has an important theoretical appeal appealing as proved in [31] since it is the fastest to date
to achieve optimal learning rates for generalized self-concordant loss functions. The goal of our work
is to make it also appealing from a practical viewpoint. This requires efficiently implementing and
deploying Alg. 2, making full use of the available computational architectures. Clearly the main
bottlenecks here are the same of Falkon for squared loss and they are introduced and discussed in
Section 3.

C Out-Of-Core Algorithms

In this section we describe more in detail the out-of-GPU core algorithms for 1) Cholesky decompo-
sition of a positive definite matrix and 2) multiplication of a triangular matrix by its transpose. Both
algorithms use a similar technique of dividing the input matrix in smaller tiles such that operations can
be performed in-core on the individual tiles. Then the main challenges of such algorithms consist in
choosing when to bring which tiles in-core, and how to do so in parallel, handling data-dependencies
between different tiles.

We handle parallelism between multiple GPUs using a static work-allocation scheme where the input
matrix is divided into block rows or columns (made up of several tiles), and each GPU is assigned
one or more such rows (or columns) block-cyclically, to ensure that the workload is approximately
balanced. Ensuring a balanced workload is tricky since the input matrices are triangular, and for
example a row at the top of a lower-triangular matrix will have many more tiles than a row towards
the bottom of said matrix. Smaller tile-sizes (so thinner block rows/columns) make each processor’s
workload more even, but – in case the input matrix is not big enough – they reduce overall GPU
utilization.

21

Algorithm 3 Out-of-core LAUUM operation on an upper-triangular matrix. The algorithm’s inputs
are matrix U , a synchronization object barrier, an array of arrays describing which row indices
are assigned to which processor blockAllocs, and the number of tiles per side N . The function
described below should be called for every available GPU with a different procId value.

1: function OOCLAUUM(U ∈ Rn×n, barrier, blockAllocs, procId, N)
2: for i = 1, . . . , N do
3: C ∈ Rt×t·(N−i) ← ToGPU(procId,

[
Ui,i, . . . , Ui,N

]
)

4: barrier.wait()
5: for j ∈ blockAllocs[procId] do
6: if i = j then
7: C1 ← C1C

>
1 . via LAUUM

8: if i 6= N then
9: C1 ← C1 + C1:(N−i+1)C

>
1:(N−i+1) . via SYRK

10: end if
11: else if j > i then
12: D ∈ Rt×t·(N−j) ← ToGPU(procId,

[
Uj,j , . . . , Uj,N

]
)

13: C(j−i) ← C(j−i)D
>
1 . via TRMM

14: if j 6= N then
15: C(j−i) ← C(j−i+1):(N−i+1)D

>
2:(N−j+1) . via GEMM

16: end if
17: end if
18: Ui,j ← FromGPU(procId, C(j−i))
19: end for
20: end forreturn U
21: end function

Triangular matrix multiplication. We begin by describing OOC triangular matrix multiplication,
an operation which is known as LAUUM within the LAPACK library. Given an input upper triangular
matrix U ∈ Rn×n, we want to calculate the upper triangle of UU> and store it in the upper part
of U (thus making this an in-place operation). We divide U in N × N tiles of size t (uneven tile
sizes are possible, and indeed necessary to support all input sizes, but omitted from the description
for clarity), and we index all matrices by their tiles: U2,2 is the square tile at the second block-
row and second block-column of U . The in-place LAUUM operation can be compactly described
as Ui,j =

∑N−1
k=j Ui,kU

>
j,k for j ≥ i: to update a tile of U we need to multiply two block-rows

of the original matrix. However, we can exploit the triangular structure of some of the above
matrix multiplications to improve performance: for example, when i = j it is possible to split the
update into two parts Ui,i = Ui,iU

>
i,i +

∑N
k=i Ui,kU

>
i,k where the first part consists of an in-core

LAUUM operation and the second of a symmetric matrix multiplication (BLAS routine SYRK)
which can be up to twice as fast as the general matrix multiplication routine. Similarly, for i < j,
Ui,j = Ui,jU

>
j,j +

∑N
k=j+1 Ui,kU

>
j,k where the first part can use the TRMM routine from the BLAS

library and the second must use the generic GEMM routine. To avoid overwriting parts of U which
are still needed for the updates – especially in a multi-GPU setting – the rows of U are to be updated
one at a time, from top to bottom. To ensure synchronization between multiple GPUs we use a thread
barrier so that all GPUs start updating a given row after having loaded its original, non-updated
version in GPU memory. GPU memory requirements for Algorithm 3 are two block-columns (i.e.
2Nt2 numbers). As discussed above, rows are assigned to GPUs in a 1D block-cyclic way. Such
allocations are recorded in the blockAllocs variable.

An adaptation of Algorithm 3 is possible when in-place operation is not needed: it is sufficient to
remove the synchronization barrier, and change line 18 to write the output to a different matrix.

Cholesky decomposition. We want to decompose positive definite matrix A into lower triangular
matrix L such that L>L = A. But A does not fit entirely in GPU memory, and potentially more than
one GPU is available. As before it is convenient to subdivide A into smaller tiles such that the tiles fit

22

Algorithm 4 Out-of-core, in-place Cholesky decomposition of symmetric positive definite matrix
A. The lower triangle of A will be overwritten by L such that L>L = A. The function OocPotrf
should be called for each available GPU with different values of the procId variable to parallelize
the decomposition across GPUs. The inputs are the same as for Algorithm 3 but for work-table T ∈
ZN×N whose values are atomically updated by the different GPU processes to ensure synchronization.

1: function OOCPOTRF(A, blockAllocs, procId, T , N)
2: for i = 1, . . . , N do
3: if i ∈ blockAllocs[procId] then
4: B ← Load(A, T , i, j, i)
5: B ← POTRF(B)
6: Ai,i ← Write(B, T , i, i)
7: end if
8: for j ∈ blockAllocs[procId] do
9: if j ≤ i then

10: continue
11: end if
12: B ← Load(A, T , i, i, i+ 1)
13: C ← Load(A, T , j, i, i)
14: C ← C(B−1)> . via TRSM
15: Aj,i ← Write(C, T , j, i)
16: end for
17: for j ∈ blockAllocs[procId] do
18: if j ≤ i+ 1 then
19: continue
20: end if
21: C ← Load(A, T , j, i, i+ 1)
22: for y = i, . . . j do
23: E ← Load(A, T , j, y, i)
24: if y = j then
25: E ← E − CC> . via SYRK
26: else
27: D ← Load(A, T , y, i, i+ 1)
28: E ← E −DC> . via GEMM
29: end if
30: Aj,y ← Write(E, T , j, y)
31: end for
32: end for
33: end for
34: end function

35: function LOAD(A, T, i, j, exp)
36: while Ti,j < exp do
37: wait
38: end while
39: return ToGPU(Ai,j)
40: end function

41: function WRITE(G,T, i, j)
42: Ti,j ← Ti,j + 1
43: return FromGPU(G)
44: end function

in GPU memory.
A1,1

A2,1 A2,2

...
. . .

An,1 . . . An,n

 =


L1,1

L2,1 L2,2

...
. . .

Ln,1 . . . Ln,n



LT1,1 LT2,1 . . . LTn,1

LT2,2 . . . LTn,2
. . .

...
LTn,n


Then the in-place decomposition may proceed column-wise across matrix A, where each column
update requires three steps. The first step is to use the in-core POTRF function from cuSOLVER [34]
on a single tile. Then, a triangular solution step is used to update the remaining rows of the first column
(taking the first column as an example Aj,1 = Lj,1L

>
1,1, 1 < j < N , so clearly Lj,1 = Aj,1(L−11,1)>).

This can be done by using the TRSM operation from any GPU BLAS implementation. Finally,
the trailing submatrix must be updated with those terms which can be computed from the current
column, so that after this last step such column is not needed anymore. This step consists of running
Aij = Aij − Li,1L>j,1 where if c is the current column i > c, c < j ≤ i (refer to Figure 5 for a
more intuitive picture).

Running this algorithm in parallel requires dealing with several data dependencies in-between tiles,
and in general it will not be possible to achieve perfect parallelism due to the inherently serial step of

23

performing the Cholesky decomposition of the first tile in a column. We avoid coarse synchronization
mechanisms such as the thread barrier which was used for the LAUUM OOC implementation, since
we found they could introduce very high waiting times (barriers would be needed after each of
the three steps of the algorithm to ensure proper synchronization). Our solution, which somewhat
follows [28], uses an integer table T with one entry per tile, which is shared between all GPU threads.
The entries of T represent the current state of each tile: basically how many times the tile has been
updated. Since we use a static row-cyclic work allocation like for the triangular matrix multiplication,
each thread knows the expected state of a tile for each step (e.g. to perform the first step on tile Ac,c
the tile must have been updated exactly c times). So it can wait until such state has been reached, then
read the tile into GPU memory, perform the update, write back the tile to main RAM, and increment
the corresponding entry in T . Such a scheme is implemented in Algorithm 4 with the help of the
Load and Write sub-routines. Further optimizations are possible by being careful about which tiles
are swapped in and out of GPU memory and at what times, overlapping computation with memory
transfers when possible. Such optimizations generally require to increase the total memory allocated
on the GPU, thus decreasing the maximum possible tile-size.

24

	Introduction
	Background
	Reformulating kernel solvers for multi-core/multi-GPU architectures
	Overcoming RAM memory bottleneck
	Fitting in GPU memory and dealing with multiple GPUs
	Optimizing data transfers and other improvements.

	Large-scale experiments
	Conclusions
	Further experiment details and results
	Relative impact of performance optimizations
	Multi-GPU scalability
	Additional information on the datasets
	Additional information on the experimental settings
	Additional benchmarks
	Performance comparisons in a literature review

	Logistic Falkon Algorithm
	Out-Of-Core Algorithms

