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In this supplement we present streamlined proofs for the asymptotic results (Section 7), additional
simulations (Section 8), discussion concerning the design matrix conditions (Section 9), full state-
ments and proofs of the non-asymptotic results (Section 10) and a derivation of the VB algorithm
(Section 11).

7 Proofs

Our proofs use the following general result, which allows us to bound the VB probabilities of sets
having exponentially small probability under the true posterior.
Lemma 1 (Theorem 5 of [16]). Let Θn be a subset of the parameter space, A be an event and Q be
a distribution for θ. If there exists C > 0 and δn > 0 such that

Eθ0Π(θ ∈ Θn|Y )1A ≤ Ce−δn , (14)

then
Eθ0Q(θ ∈ Θn)1A ≤ 2

δn

[
Eθ0KL(Q||Π(·|Y ))1A + Ce−δn/2

]
.

We must thus show that there exist events (An) satisfying Pθ0(An)→ 1 such that on An:

1. the posterior puts at most exponentially small probability Ce−δn outside Θn,
2. the KL divergence between the VB posterior Q∗ and true posterior is O(δn).

To aid readibility, in this section we state all intermediate results in asymptotic form, keeping track of
only the leading order terms as n, p→∞. We provide full non-asymptotic statements in Section 10,
which may be skipped on first reading, though most of the technical difficulty is contained in these
results.

For t, L,M1,M2 > 0, define the events

An,1(t) = {‖∇θ`n,θ0(Y )‖∞ ≤ t},
An,2(L) = {Π(θ ∈ Rp : |Sθ| ≤ Ls0|Y ) ≥ 3/4},

An,3(M1,M2) = {Π(θ ∈ Rp : ‖θ − θ0‖2 > M1

√
s0 log p/‖X‖|Y ) ≤ e−M2s0 log p}.

The first event bounds the score function ∇θ`n,θ0(Y ) and is needed to control the first order term
in the Taylor expansion of the log-likelihood, see (20). The second says the posterior concentrates
on models of size at most a constant multiple of the true model dimension. The last event says the
posterior places all but exponentially small probability on an `2-ball of the optimal radius about the
truth and is used for a localization argument.
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The event required to apply Lemma 1 is defined by

An(t, L,M1,M2) = An,1(t) ∩ An,2(L) ∩ An,3(M1,M2). (15)

The proof has an iterative structure, where we localize the posterior based on the event An,i−1 to
prove An,i has high probability. The idea to iteratively localize the posterior during the proofs is a
useful technique from Bayesian nonparametrics (e.g. [14]).
Lemma 2. Suppose the prior satisfies (3) and (4), and the design matrix satisfies condition (8) for
L = 2 max{A4/5, (1.1 + 4α2/κ+ 2A4 + log(4 + κ(s0)))/A4}. Then for p large enough,

Pθ0

(
An(t, L,M1,M2)c

)
= O(1/p),

with t = ‖X‖
√

log p,M1 = D0

√
L/κ((1+4L/A4)s0),D0 = (24/

√
A4) max(25α, 1+A3

16 , 3A4+4
32 ),

and M2 = 2L.

The next two lemmas establish exponential posterior bounds on the event An,1(‖X‖
√

log p) ⊃
An(t, L,M1,M2). The first states that the posterior concentrates on models of size at most a constant
multiple of the true model size s0 = |Sθ0 |. The second states that the posterior concentrates on an
`2-ball of optimal radius about the true parameter θ0.
Lemma 3. Suppose the prior satisfies (3) and (4). If for L ≥ 2(1.1 + 4α2/κ + 2A4 + log(4 +
κ(s0)))/A4 the design matrix satisfies condition (8), then for p large enough,

Eθ0 [Π (θ ∈ Rp : |Sθ| ≥ Ls0 | Y ) 1An,1(‖X‖
√

log p)] ≤ 2 exp {−(LA4/2)s0 log p} .

Lemma 4. Suppose the prior satisfies (3) and (4). If for K > max{A4, 2(1.1 + 4α2/κ + 2A4 +
log(4 + κ(s0))/A4}, the design matrix satisfies (8) with L = 2K/A4, then for p large enough,

Eθ0

[
Π

(
θ ∈ Rp : ‖θ − θ0‖2 ≥

D1

√
K

κ
(
(2K/A4 + 1)s0

)√s0 log p

‖X‖

∣∣∣∣Y
)

1An,1(‖X‖
√

log p)

]
≤ 8e−Ks0 log p,

where D1 = 16A
−1/2
4 max{25α, 3+2A2+A3

16 }.

Lemmas 2, 3 and 4 follow immediately from their non-asymptotic counterparts Lemmas 11, 8 and
10, respectively, in Section 10. We finally control the KL divergence between the VB posterior Q∗
and posterior Π(·|Y ) on the event An; see Lemma 7 for the corresponding non-asymptotic result.
This is the most difficult technical step in establishing our result.
Lemma 5. Consider the event An = An(t, L,M1,M2) in Lemma 2. Then for sufficiently large p,
the VB posterior Q∗ satisfies

KL(Q∗||Π(·|Y ))1An ≤ D2s0 log p,

with D2 = L( (9D0/4+α/2)D0κ̄(Ls0)
κ((1+4L/A4)s0)2 + α

2κ(Ls0) ) and where L,D0 are given in Lemma 2.

We briefly explain the heuristic idea behind the proof of Lemma 5. Since the VB posterior Q∗ is
the minimizer of the KL objective (6), KL(Q∗||Π(·|Y )) ≤ KL(Q||Π(·|Y )) for any Q ∈ Q in the
variational family. We upper bound this quantity for someQ carefully chosen according to the logistic
likelihood. We first identify a model S ⊆ {1, . . . , p} which is not too far from the true model Sθ0
and to which the posterior assigns sufficient, though potentially exponentially small, probability. In
the low dimensional setting p� n, Taylor expanding the log-likelihood `n,θ − `n,θ0 asymptotically
gives a Gaussian linear regression likelihood with rescaled design matrix and data. This motivates
the distribution Q ∈ Q which fits a normal distribution NS(µS , DS) on S with mean µS equal to
the least squares estimator solving the linearized Gaussian approximation and covariance DS (a
diagonalized version of) the covariance matrix of this estimator, again in the linearized model. While
the Taylor expansion is not actually valid in the sparse high-dimensional setting p� n considered
here, we can nonetheless show that the approximation is still sufficiently good to apply Lemma 1.

Proof of Theorem 1. We apply Lemma 1 with

Θn =
{
θ ∈ Rp : ‖θ − θ0‖2 ≥

M
1/2
n
√
s0 log p

κ(Mns0)‖X‖

}
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and A = An = An(t, L,M1,M2) the event in Lemma 2. SinceAn ⊂ An,1(‖X‖
√

log p), Lemma 4
implies that Eθ0Π(θ ∈ Θn|Y )1An ≤ 8e−D

−2
1 Mns0 log p, i.e. (14) holds with δn = D−2

1 Mns0 log p.
Using Lemma 1 followed by Lemma 5, since δn →∞,

Eθ0Q
∗(θ ∈ Θn)1An ≤ 2

δn

[
Eθ0KL(Q∗||Π(·|Y ))1An + 8e−δn/2

]
≤ 2α2D2

Mn
(1 + o(1)) = O(Cκ/Mn).

Since Pθ0(An)→ 1 by Lemma 2, the first result follows. Since ‖Ψ′‖∞ ≤ 1/4,

n‖pθ−p0‖2n ≤ 1
16

n∑
i=1

|xTi (θ−θ0)|2 = 1
16‖X(θ−θ0)‖22 ≤ 1

16κ((Mn+1)s0)‖X‖2‖θ−θ0‖22, (16)

where the last inequality follows from Theorem 3 and the definition of κ(·). The second statement
then follows by combining the first statement of the theorem with the above display.

Proof of Theorem 2. By the duality formula for the KL divergence ([3], Corollary 4.15),∫
f(θ)dQ∗(θ) ≤ KL(Q∗‖Π(·|Y )) + log

∫
ef(θ)dΠ(θ|Y )

for any measurable f such that
∫
ef(θ)dΠ(θ|Y ) < ∞. Let An = A(t, L,M1,M2) be the event in

Lemma 2. Applying Jensen’s inequality and taking f(θ) = cn‖pθ − p0‖2n for c > 0,

cn‖p̂∗ − p0‖2n1An = cn‖EQ
∗
pθ − p0‖2n1An ≤ EQ

∗
cn‖pθ − p0‖2n1An

≤ KL(Q∗‖Π(·|Y ))1An + 1An log

∫
ecn‖pθ−p0‖2ndΠ(θ|Y ). (17)

By Lemma 5, the first term is bounded by D2s0 log p. For notational convenience, write κ∗ =
κ( 2n

A4 log p + s0) and κ∗ = κ( 2n
A4 log p + (1− 2/A4)s0). For D1 defined in Lemma 4 and K > 0 the

minimal constant satisfying the conditions of Lemma 4, set

B0 =
{
θ ∈ Rp : |Sθ| ≤ 2n

A4 log p − 1, n‖pθ − p0‖2n ≤ K
D2

1 κ̄
∗s0 log p

(κ∗)2

}
,

Bj =
{
θ ∈ Rp : |Sθ| ≤ 2n

A4 log p − 1, j
D2

1 κ̄
∗s0 log p

(κ∗)2 < n‖pθ − p0‖2n ≤ (j + 1)
D2

1 κ̄
∗s0 log p

(κ∗)2

}
,

B̄ =
{
θ ∈ Rp : |Sθ| > 2n

A4 log p − 1
}
.

Since E[U1Ω] = E[U |Ω]P (Ω), conditional Jensen’s inequality gives

E[(log V )1Ω] ≤ P (Ω) logE[V |Ω] = P (Ω) logE[V 1Ω]− P (Ω) logP (Ω)

for any random variable V and event Ω. The Eθ0 -expectation of the second term in (17) thus equals

Eθ0

[
log

(∫
B0

ecn‖pθ−p0‖2ndΠ(θ|Y ) +

n/(s0 log p)−1∑
j=K

∫
Bj
ecn‖pθ−p0‖2ndΠ(θ|Y )

+

∫
B̄
ecn‖pθ−p0‖2ndΠ(θ|Y )

)
1An

]

≤ Pθ0(An) logEθ0

[
e
cK

D2
1 κ̄
∗s0 log p

(κ∗)2 +

n/(s0 log p)−1∑
j=K

e
c(j+1)

D2
1 κ̄
∗s0 log p

(κ∗)2 Π(Bj |Y )1An + ecnΠ(B̄|Y )1An

]
− Pθ0(An) logPθ0(An).

Using (16) and Lemma 4 gives Eθ0 [Π(Bj |Y )1An ] ≤ 8e−js0 log p, while Lemma 3 gives
Eθ0 [Π(B̄|Y )1An ] ≤ 2e−n. Taking c = cn = (κ∗)2

2D2
1 κ̄
∗ ≤ 1/(128) and using that Pθ0(Acn) = O(1/p)

by Lemma 2, the last display is bounded by,

log

[
e(K/2)s0 log p + 8

n/(s0 log p)−1∑
j=K

e( j+1
2 −j)s0 log p + 2e−(1−c)n

]
+O(1/p) ≤ Ks0 log p(1 + o(1)).
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Plugging in the preceding bounds for the right hand side of (17),

nEθ0‖p̂∗ − p0‖2n1An ≤ c−1
n (K +D2)s0 log p(1 + o(1)) = O(c−1

n Cκs0 log p),

for Cκ the constant in Theorem 1. Applying Markov’s inequality and Lemma 2,

Pθ0(‖p̂∗− p0‖n ≥ r) ≤ r−2Eθ0 [‖p̂∗− p0‖2n1An ] +Pθ0(Acn) = O(r−2n−1c−1
n Cκs0 log p) + o(1).

Taking r = M
1/2
n (κ∗)1/2(κ∗)−1

√
s0 log p/n gives the result.

Proof of Theorem 3. This follows the same argument as the proof of Theorem 1, taking Θn = {θ ∈
Rp : |Sθ| ≥Mns0}, δn = (A4/2)Mns0 log p and applying Lemma 3 instead of Lemma 4.

8 Additional numerical results

8.1 Description of Bayesian methods for logistic regression

In the varbvs package [5], the standard VB algorithm was implemented for the prior (2) with
Gaussian instead of Laplace slabs and an additional layer of importance sampling for computing
the low-dimensional prior hyperparameters. As for our algorithm, we set a0 = b0 = 1. In the
BinaryEMVS package [11], an expectation-maximization (EM) algorithm is implemented for fitting
Bayesian spike and slab regularization paths for logistic regression. More concretely, the considered
spike and slab prior takes the form

ω ∼ Beta(a0, b0),

zj ∼iid Bern(ω),

θj ∼iid (1− zj)N (0, σ2
1) + zjN (0, σ2

2), with σ1 � σ2.

In the simulation study, we use the parametrization a0 = 1, b0 = 1, σ1 = 0.025 and σ2 = 5. In
the Bayesian hierarchical generalized linear model (BhGLM package) of [18], an EM algorithm is
implemented for a mixture of Laplace priors:

ω ∼ Unif[0, 1],

zj ∼iid Bern(ω),

θj ∼iid (1− zj)Lap(λ1) + zjLap(λ2), with λ1 � λ2.

We also work with the default parametrization of the bmlasso function of the BhGLM package,
i.e. s1 = 1/λ1 = 0.04 and s2 = 1/λ2 = 0.5. We use the implementation of SkinnyGibbs in the
supplementary material to [12], using the function skinnybasad with the settings provided in the
example from the manual, apart from taking pr=0.5 to reflect the present prior setting a0 = b0 = 1.
Finally, we consider the rstanarm package, which makes Bayesian regression modeling via the
probabilistic programming language Stan accessible in R. In the package, Hamiltonian Monte Carlo
[8] was implemented for the horseshoe global-local shrinkage prior [6]. We run the function stan_glm,
again with the default parameterization, i.e. we set the global scale to 0.01 with degree of freedom 1,
and the slab-scale to 2.5 with degrees of freedom 4. The default inferential algorithm runs 4 Markov
chains with 2000 iterations each.

8.2 Additional experiments

We provide five further test cases in addition to the experiment considered in Section 5. In all
cases we consider Gaussian design matrices, but vary all other parameter. In tests 1-3, we take
n = 250 and p = 500 as in Section 5, while in experiments 4 and 5 we set n = 2500 and p = 5000.
The entries of the design matrices have independent centered Gaussian distributions with standard
deviations σ = 0.25, 2, 0.5, 0.5, 1, respectively. The true underlying signal has sparsity levels
s = 5, 10, 15, 25, 25, respectively, with the non-zero signal coefficients located at the beginning of
the signal with values equal to (1) θ0,j = 4, (2) θ0,j = 6, (3) θ0,j ∼iid Unif(−2, 2), (4) θ0,j = 2 and
(5) θ0,j ∼iid Unif(−1, 1) for j = 1, . . . , s.

We ran each experiment 200 times and report the means and standard deviations of the perfor-
mance metrics in Table 3. The `2-error (`2(θ̂, θ0) = ‖θ̂ − θ0‖2) and mean squared prediction
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error (MSPE(p̂) = ( 1
n

∑n
i=1 |Ψ(xTi θ̂) − Ψ(xTi θ0)|2)1/2) are reported with respect to the poste-

rior mean. For the methods performing model selection, we use the standard threshold 0.5 for
the marginal posterior inclusion probability αj , i.e. the posterior includes the jth coefficient in
the model if αj > 0.5. The true positive rate (TPR) and false discovery rate (FDR) are then de-
fined as TPR(α) = s−1

∑
j: θ0,j 6=0 1αj>0.5 and FDR(α) =

∑
j:αj>0.5 1θ0,j=0/|{j : αj > 0.5}|,

respectively. The elapsed times are given for an Intel i7-8550u laptop processor.

As in Section 5, we conclude that our VB approach typically outperforms the other variational
algorithms using prior Gaussian slabs, though again at the expense of greater computational times.
Compared to our approach, the other four methods based on the EM algorithm or MCMC performed
better in some scenarios and worse in others, but with substantially greater computational times.
Unsurprisingly, the rstanarm package using MCMC is the slowest; in many cases it did not even
converge after 8000 iterations. In the high-dimensional case p = 5000 and n = 2500, 4 algorithms
(SkinnyGibbs, BhGLM, BinEMVS, rstanarm) did not finish the computations in a reasonable amount
of time: the fastest required at least 100 hours to execute 200 runs and for rstanarm, even a single run
required multiple hours.

Table 3: Comparing sparse Bayesian methods in high-dimensional logistic regression.

Algorithm Test 1 Test 2 Test 3 Test 4 Test 5

TPR

VB (Lap) 0.99± 0.06 1.00 ± 0.00 0.51± 0.11 1.00 ± 0.00 0.40± 0.28
VB (Gauss) 1.00± 0.01 1.00± 0.02 0.54± 0.11 1.00 ± 0.00 0.85± 0.06
varbvs 1.00 ± 0.00 1.00 ± 0.00 0.68 ± 0.11 1.00 ± 0.00 0.87 ± 0.06
SkinnyGibbs 0.98± 0.06 1.00± 0.02 0.51± 0.12 00.00 –00.00 00.00 –00.00
BinEMVS 0.99± 0.03 1.00 ± 0.00 0.58± 0.11 00.00 –00.00 00.00 –00.00

FDR

VB (Lap) 0.49± 0.11 0.00 ± 0.02 0.41 ± 0.14 0.01 ± 0.02 0.03 ± 0.05
VB (Gauss) 0.63± 0.07 0.09± 0.13 0.52± 0.12 0.81± 0.02 0.95± 0.01
varbvs 0.93± 0.01 0.08± 0.08 0.83± 0.03 0.93± 0.00 0.91± 0.01
SkinnyGibbs 0.80± 0.03 0.11± 0.11 0.71± 0.07 00.00 –00.00 00.00 –00.00
BinEMVS 0.43 ± 0.14 0.19± 0.10 0.63± 0.10 00.00 –00.00 00.00 –00.00

`2-Error

VB (Lap) 3.97± 0.85 1.73 ± 0.59 4.89± 1.29 4.23 ± 0.72 2.31± 0.64
VB (Gauss) 4.99± 0.46 13.82± 0.16 3.86± 0.61 8.34± 0.49 17.05± 0.52
varbvs 7.29± 0.24 16.31± 0.06 3.35± 0.44 7.68± 0.03 1.32 ± 0.13
BhGLM 4.39± 0.65 15.68± 0.53 2.81 ± 0.46 00.00 –00.00 00.00 –00.00
BinEMVS 3.84± 0.97 14.49± 0.28 5.82± 0.89 00.00 –00.00 00.00 –00.00
rstanarm 2.87 ± 1.49 6.74± 0.86 3.14± 0.88 00.00 –00.00 00.00 –00.00

MSPE

VB (Lap) 0.18± 0.02 0.07± 0.02 0.24± 0.03 0.06 ± 0.01 0.22± 0.09
VB (Gauss) 0.21± 0.02 0.08± 0.02 0.25± 0.03 0.21± 0.01 0.34± 0.01
varbvs 0.21± 0.01 0.12± 0.01 0.19 ± 0.02 0.18± 0.00 0.17 ± 0.01
BhGLM 0.22± 0.15 0.06 ± 0.05 0.20± 0.16 00.00 –00.00 00.00 –00.00
BinEMVS 0.15 ± 0.03 0.09± 0.02 0.27± 0.03 00.00 –00.00 00.00 –00.00
rstanarm 0.36± 0.25 0.10± 0.08 0.37± 0.30 00.00 –00.00 00.00 –00.00

Time

VB (Lap) 8.66± 6.19 12.05± 0.55 14.53± 0.78 360.22± 10.97 358.79± 8.43
VB (Gauss) 0.23± 0.05 1.45± 0.66 1.70± 1.37 356.76± 7.22 359.78± 1.02
varbvs 0.05 ± 0.00 0.10 ± 0.03 0.03 ± 0.01 4.29 ± 0.12 8.15 ± 0.48
SkinnyGibbs 19.89± 0.04 19.77± 0.09 20.30± 0.42 00.00 –00.00 00.00 –00.00
BhGLM 1.37± 0.28 2.24± 0.71 1.42± 0.52 00.00 –00.00 00.00 –00.00
BinEMVS 12.43± 4.28 36.52± 4.82 30.44± 2.88 00.00 –00.00 00.00 –00.00
rstanarm 152.46± 18.00 426.20± 50.67 181.53± 26.05 00.00 –00.00 00.00 –00.00

The design matrices X ∈ Rn×p are taken to be Xij ∼iid N(0, σ2). The signal vector θ0 has s non-zero coefficients,
all located at the beginning of the signal.
(1) X ∈ R250×500, σ = 0.25, s = 5, θ0,1:s = 4
(2) X ∈ R250×500, σ = 2, s = 10, θ0,1:s = 6
(3) X ∈ R250×500, σ = 0.5, s = 15, θ0,1:s ∼iid Unif(−2, 2)
(4) X ∈ R2500×5000, σ = 0.5, s = 25, θ0,1:s = 2
(5) X ∈ R2500×5000, σ = 1, s = 10, θ0,1:s ∼iid Unif(−1, 1)
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8.3 Comparing different choices of the hyperparameter λ

Theorems 1-3 state that for the hyperparameter choice λ � ‖X‖
√

log p, our VB algorithm has good
asymptotic properties. In practice, however, the finite-sample performance indeed depends on λ. We
ran our algorithm 200 times on the experiment considered in Section 5 for different choices of λ and
report the results in Table 4. In this example, the performance was sensitive to the choice of λ with
large values of λ, which cause more shrinkage, performing worse.

In linear regression, where more extensive simulations have been carried out, the choice of λ was
similarly found to have an effect, though there was not clear evidence to support a particular fixed
choice of λ, with larger values sometimes performing better and sometime worse [16]. This suggests
using a data-driven choice of λ may be helpful in practice, for example using cross validation.

Table 4: Varying the scale hyperparameter

λ = 1
20 λ = 1

5 λ = 2 λ = 5 λ = 20

TPR 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.81± 0.28
FDR 0.00± 0.00 0.02± 0.08 0.03± 0.10 0.09± 0.16 0.02± 0.10
`2-error 0.53± 0.36 0.58± 0.37 0.48± 0.28 0.39± 0.14 1.73± 0.44
MSPE 0.04± 0.02 0.04± 0.02 0.04± 0.02 0.04± 0.01 0.17± 0.07
Time 12.13± 0.58 12.02± 0.73 11.93± 0.71 11.72± 1.05 12.10± 0.73

X ∈ R250×500, Xij ∼iid N(0, 1), s = 2, θ0,1:s = 2

9 Further discussion of the design matrix and sparsity assumptions

For s ∈ {1, . . . , p}, recall the definitions

κ = inf

{
‖W 1/2Xθ‖22
‖X‖2‖θ‖22

: ‖θSc0‖1 ≤ 7‖θS0‖1, θ 6= 0

}
,

κ(s) = sup

{
‖Xθ‖22
‖X‖2‖θ‖22

: 0 6= |Sθ| ≤ s
}
, κ(s) = inf

{
‖W 1/2Xθ‖22
‖X‖2‖θ‖22

: 0 6= |Sθ| ≤ s
}
.

These definitions are taken from the sparsity literature [4] and are used in sparse logistic regression
[1, 13, 17]. We reproduce some of the discussion here for convenience, but refer the reader to Chapter
6 of [4] for further reading.

The true model S0 is compatible if κ > 0, which implies ‖W 1/2Xθ‖22 ≥ κ‖X‖2‖θ‖22 for all θ in the
relevant set. The number 7 can be altered and is taken to match the conditions used in [1, 7] since
we use some of their results. Compatibility κ > 0 involves approximate rather than exact sparsity,
since the parameters θ need only have small rather than zero coordinates outside S0. In contrast,
κ(s) involves exactly s-sparse vectors. Note that if ‖X‖ = 1, then κ(s)1/2 equals the smallest
scaled singular value of a submatrix of W 1/2X of dimension s. Similarly, κ(s)1/2 upper bounds the
operator norm of X when restricted to exactly s-sparse vectors.

Even though W depends on the unknown θ0, it does not necessarily play a significant role in the
above definitions. If ‖Xθ0‖∞ is bounded, then the true regression function Pθ0(Y = 1|X = xi) =
Ψ(XT

i θ0) is bounded away from zero and one at the design points and W is equivalent to the identity
matrix In. One can then set W = In in the above definitions by simply rescaling the constants.
Note that estimation in classification problems is known to behave qualitatively differently near the
boundary points 0 and 1, see, e.g. [15].

When W = In, we recover the exact compatibility constants used in sparse linear regression [7, 16].
This is natural since when linearizing the logistic regression model, the likelihood asymptotically
looks like that of a linear regression model with design matrix W 1/2X , see Section 7. One therefore
expects similar conditions with X replaced by W 1/2X . For further discussion, see Chapter 6 of
[4] or Section 2.2 of [7]; in particular, Lemma 1 of [7] provides a concise relation between various
notions of compatibility.
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Another common condition in the sparsity literature is the mutual coherence of X , which equals the
largest correlation between its columns:

mc(X) = max
1≤i6=j≤p

|〈X·i, X·j〉|
‖X·i‖2‖X·j‖2

= max
1≤i 6=j≤p

|(XTX)ij |
‖X·i‖2‖X·j‖2

.

Conditions of this nature have been used by many authors (see Section 2.2 of [7] for references) and
measure how far from orthogonal the matrix X is. One can relate the present compatibility constants
to the mutual coherence.
Lemma 6. Suppose ‖Xθ0‖∞ ≤ R is bounded and min1≤i 6=j≤p

‖X·i‖2
‖X·j‖2 ≥ η. Then for C = C(R),

κ(s) ≤ 1 + smc(X), κ ≥ C(R)(η2 − 64s0mc(X)), κ(s) ≥ C(R)(η2 − smc(X)).

Proof. For θ an s-sparse vector, using Cauchy-Schwarz,

‖Xθ‖22 =

p∑
j=1

(XTX)jjθ
2
j +

∑
k 6=j

θj(X
TX)jkθk

 ≤ ‖X‖2‖θ‖22 + mc(X)‖X‖2‖θ‖21

≤ (1 + smc(X))‖X‖2‖θ‖22,

so that κ(s) ≤ 1 + smc(X). For R > 0, one has Ψ(−R) ≥ e−R/2 and Ψ(R) ≤ 1 − e−R/2 , so
that Ψ(xTi θ0) ∈ [e−R/2, 1 − e−R/2]. Using the definition (7), all diagonal entries of W satisfy
Wii ∈ [δR, 1/4] for δR = e−R(2− e−R)/4 > 0, so that ‖W 1/2Xθ‖22 ≥ δR‖Xθ‖22. It thus suffices
to prove the result with W = In at the expense of the factor δR. With W = In, arguing as in Lemma
1 of [7] gives κ ≥ η2 − 64s0mc(X) and κ(s) ≥ η2 − smc(X).

If ‖Xθ0‖∞ is bounded and

s0 = o(1/mc(X)), min
1≤i 6=j≤p

‖X·i‖2
‖X·j‖2

≥ η > 0, (18)

namely the truth is sufficiently sparse and the column norms of X are comparable, then κ(Ls0) ≤
1 + o(1), κ & η2 − o(1) and κ(Ls0) & η2 − o(1) for any L > 0, as required for the results in this
paper. Condition (18) has been considered in [16], and thus the various examples in [16] are also
covered by our results, including:

• (Orthogonal design). If X is an orthogonal matrix with 〈X·i, X·j〉 = 0 for i 6= j with
suitably normalized column lengths ‖X·i‖2 =

√
n.

• (IID responses). Suppose the original matrix entries are i.i.d. random variables Wij and
set Xij =

√
nWij/‖W·j‖2, so that the columns are normalized to have length

√
n . If

|Wij | ≤ C almost surely and log p = o(n), then (18) holds for sparsity levels s0 =

o(
√
n/ log p). Similarly, if Eet|Wij |γ < ∞ for some γ, t > 0 and log p = o(nγ/(4+γ)),

then (18) again holds for s0 = o(
√
n/ log p). This covers the standard Gaussian random

design Wij ∼iid N(0, 1) if log p = o(n1/3). See [16] for details.

• Rescale the columns as in the IID response model so that ‖X·i‖2 =
√
n for all i. Then

the p× p matrix C = XTX/n takes values one on its diagonal and Cij , i 6= j, equals the
correlation between columns i and j. If either Cij = r for a constant 0 < r < (1 + cm)−1

and all i 6= j, or |Cij | ≤ c
2m−1 for every i 6= j, then mc(X) = maxi 6=j Cij = O(1/m) and

so (18) holds for sparsity level s0 = o(m). Such matrices are studied in Zhao and Yu [19],
who show that models up to dimension m satisfy the ‘strong irrepresentability condition’.

For further details of why these satisfy (18), and hence our conditions, see Section 2.2 of [16].

10 Non-asymptotic results and proofs

This section contains the non-asymptotic formulations of all the technical results used in this paper,
together with their proofs. These results imply the more digestible asymptotic formulations presented
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in Section 3. To begin, recall the log-likelihood in model (1) based on data Y = (Y1, . . . , Yn) is

`n,θ(Y ) =

n∑
i=1

Yix
T
i θ − g(xTi θ) =

n∑
i=1

Yi(Xθ)i − g((Xθ)i), (19)

where g(t) = log(1 + et), t ∈ R. We use the following notation for the first-order remainder of the
Taylor expansion of the log-likelihood:

Ln,θ(y) := `n,θ(y)− `n,θ0(y)−∇θ`n,θ0(y)T (θ − θ0). (20)

10.1 The Kullback-Leibler divergence between Q∗ and Π(·|Y )

To apply Lemma 1, we must bound KL(Q∗||Π(·|Y )) on the event An given in (15). We do this by
bounding the KL divergence between the posterior and a carefully selected element of the variational
family. We choose a spike and slab distribution whose slab is centered at the least squares estimator
of the linearized logistic likelihood approximation and whose covariance equals the (diagonalized)
covariance of this estimator. This builds on ideas in [16], extending them to the nonlinear logistic
regression model.

For a given model S ⊆ {1, . . . , p}, we write XS for the n× |S|-submatrix of X keeping only the
columns X·i, i ∈ S, and θS ∈ R|S| for the vector (θi : i ∈ S).

Lemma 7. Consider the event An = An(t, L,M1,M2) in (15) with M2 > L. If (4e)1/(M2−L) ≤
ps0 , then the variational Bayes posterior Q∗ satisfies

KL(Q∗||Π(·|Y ))1An ≤ ζn,
where

ζn = s0 log p

(
L+

9

4
M2

1κ(Ls0) +
λL1/2

‖X‖
√

log p

(
2M1 +

tL1/2

4κ(Ls0)‖X‖
√

log p
+

L1/2√
κ(1) log p

))

+ Ls0 log
1

4κ(Ls0)
+ log(2e).

Proof. Since the VB posterior Q∗ minimizes the KL objective (6), we have KL(Q∗||Π(·|Y )) ≤
KL(Q||Π(·|Y )) for all Q ∈ Q. It thus suffices to bound this last KL divergence for a suitably chosen
element Q ∈ Q, which may (and will) depend on the true unknown parameter θ0, on the event
An = An(t, L,M1,M2).

Recall that the posterior distribution is a mixture over all possible submodels and can thus be written

Π(·|Y ) =
∑

S⊆{1,...,p}

ŵSΠS(·|Y )⊗ δSc , (21)

where the posterior model weights satisfy 0 ≤ ŵS ≤ 1 and
∑
S ŵS = 1 and ΠS(·|Y ) denotes the

posterior for θS ∈ R|S| in the restricted model with Yi ∼ Bin(1,Ψ((XSθS)i)), i.e. the logistic
regression model (1) with θSc = 0.

Choosing Q′ ∈ Q. Recall that Eθ0Yi = Ψ(xTi θ0) and for a model S ⊆ {1, . . . , p} set

µS = θ0,S + (XT
SXS)−1XT

S (Y − Eθ0Y ), ΣS = (XT
SXS)−1, (22)

and define the |S| × |S| diagonal matrix DS by

(DS)jj =
1

(Σ−1
S )jj

=
1

(XT
SXS)jj

, (23)

j = 1, . . . , |S|. We choose as element of our variational family the distribution

Q′(θ) = NS′(µS′ , DS′)(θS′)× δS′c(θS′c) =
∏
j∈S′

N
(
µS′,j ,

1
(XT

S′XS′ )jj

)
(θi)

∏
j∈S′c

δ0(θi),

for a model S′ ⊆ {1, . . . , p} satisfying the following three properties:

|S′| ≤ Ls0, ‖θ0,S′c‖2 ≤M1

√
s0 log p/‖X‖, ŵS′ ≥ (2e)−1p−Ls0 , (24)
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where L,M1 are the constants in An(t, L,M1,M2). Note that Q′ is indeed an element of the
mean-field variational family Q in (5) with γj = 1 if i ∈ S′ and γj = 0 otherwise.

Existence of S′ satisfying (24). We first show that on the eventAn, there exists a subset S′ satisfying
(24), so that our choice of Q′ is indeed valid. On An,

Π(θ : ‖θ0,Scθ
‖2 > M1

√
s0 log p/‖X‖|Y ) ≤ Π(θ : ‖θ − θ0‖2 > M1

√
s0 log p/‖X‖|Y )

≤ e−M2s0 log p → 0,

so that the posterior model weights satisfy∑
S:|S|≤Ls0

‖θ0,Sc‖2≤M1

√
s0 log p/‖X‖

ŵS ≥ 3/4− e−M2s0 log p ≥ 1/2

on An, since e−M2s0 log p ≤ (4e)−M2/(M2−L) ≤ (4e)−1 ≤ 1/4 by assumption. Using
(
p
s

)
≤ ps/s!,

the number of elements in the last sum is bounded by

∑
S:|S|≤Ls0

1 ≤
Ls0∑
s=0

(
p

s

)
≤

Ls0∑
s=0

ps

s!
≤ epLs0 ,

which implies that on An there exists a set S′ ⊆ {1, . . . , p} of size |S′| ≤ Ls0 with ‖θ0,S′c‖2 ≤
M1

√
s0 log p/‖X‖ and with posterior probability ŵS′ ≥ (2e)−1p−Ls0 , i.e. satisfying (24).

Reduction to the non-diagonal covariance case. Since Q′ is only absolutely continuous with
respect to the ŵS′ΠS′(·|Y )⊗ δS′c term of the posterior (21),

KL(Q′||Π(·|Y )) = Eθ∼NS′ (µS′ ,DS′ )⊗δS′c log
dNS′(µS′ , DS′)⊗ δS′c
ŵS′dΠS′(·|Y )⊗ δS′c

(θ)

= log(1/ŵS′) + KL(NS′(µS′ , DS′)||ΠS′(·|Y )),

where the last KL divergence is over distributions in R|S′|. On An, log(1/ŵS′) ≤ log(2epLs0) =
log(2e) + Ls0 log p by (24). Writing EµS′ ,DS′ for the expectation under the law θS′ ∼
NS′(µS′ , DS′),

KL(NS′(µS′ , DS′)||ΠS′(·|Y )) = EµS′ ,DS′

[
log

dNS′(µS′ , DS′)

dNS′(µS′ ,ΣS′)
(θS) + log

dNS′(µS′ ,ΣS′)

dΠS′(·|Y )
(θS)

]
,

(25)
where again ΣS′ = (XT

S′XS′)
−1. Using the formula for the KL divergence between two multivariate

Gaussian distributions, the first term in the last display equals

KL(NS′(µS′ , DS′)||NS′(µS′ ,ΣS′)) =
1

2

(
log

det ΣS′

detDS′
− |S′|+ Tr(Σ−1

S′ DS′)

)
.

Using the definitions (22)-(23) gives Tr(Σ−1
S′ DS′) = |S′|. Turning to the determinants,

detD−1
S′ =

|S′|∏
j=1

(XT
S′XS′)jj =

∏
j∈S′
‖X·j‖22 ≤ ‖X‖2|S

′|.

Let Λmax(A) and Λmin(A) denote the largest and smallest eigenvalues, respectively, of a square matrix
A. Recall the diagonal matrixW from (7), whose entries satisfyWii ∈ (0, 1/4]. Using the variational
characterization of the minimal eigenvalue of a symmetric matrix ([9], p234),

Λmin(XT
S′XS′) = min

u∈R|S′|:u 6=0

uTXT
S′XS′u

‖u‖22
≥ 4 min

v∈Rp:v 6=0,vS′c=0

vTXTWXv

‖v‖22
≥ 4κ(|S′|)‖X‖2.

(26)
Since ΣS′ = (XT

S′XS′)
−1 is positive definite, the last display implies

det ΣS′ ≤ Λmax((XT
S′XS′)

−1)|S
′| = (1/Λmin(XT

S′XS′))
|S′| ≤ 1

(4κ(|S′|)‖X‖2)|S′|
.
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Combining these bounds,

KL(NS′(µS′ , DS′)||NS′(µS′ ,ΣS′)) = 1
2 log(det ΣS′ detD−1

S′ )

≤ |S′| log(1/(4κ(|S′|))
≤ Ls0 log(1/(4κ(Ls0)).

It thus remains to bound the second term in (25), which has non-diagonal covariance matrix ΣS′ .

Bounding the non-diagonal covariance case. One can check that − 1
2 (θS′ − µS′)TΣ−1

S′ (θS′ − µS′)
equals

− 1
2 (θS′ − θ0,S′)

TXT
S′XS′(θS′ − θ0,S′) + (Y − Eθ0Y )TXS′(θS′ − θ0,S′) + CS′(X,Y ),

where CS′(X,Y ) does not depend on θ. Let θ̄S′ denote the extension of a vector θS′ ∈ R|S′| to Rp
with θ̄S′,j = θS,j for j ∈ S′ and θ̄S′,j = 0 for j 6∈ S′. Since (Y − Eθ0Y )TXS′(θS′ − θ0,S′) =
∇θ`n,θ0(Y )T (θ̄S′− θ̄0,S′), the density function of theNS′(µS′ ,ΣS′) distribution is thus proportional

to e−
1
2‖XS′ (θS′−θ0,S′ )‖

2
2+∇θ`n,θ0 (Y )T (θ̄S′−θ̄0,S′ ), θS′ ∈ R|S′|. Using Bayes formula and the Taylor

expansion (20), ΠS′(·|Y ) has density proportional to

exp
(
`n,θ̄S′ (Y )− `n,θ0(Y )− λ‖θS′‖1

)
∝ exp

(
∇θ`n,θ0(Y )T (θ̄S′ − θ̄0,S′) + Ln,θ̄S′ (Y )− λ‖θS′‖1

)
.

Using these representations of the two densities, the second term in (25) can be rewritten as

EµS′ ,DS′

[
log

DΠe
− 1

2‖XS′ (θS′−θ0,S′ )‖
2
2+∇θ`n,θ0 (Y )T (θ̄S′−θ̄0,S′ )−λ‖θ0,S′‖1

DNe
∇θ`n,θ0 (Y )T (θ̄S′−θ̄0,S′ )+Ln,θ̄

S′
(Y )−λ‖θS′‖1

]
= EµS′ ,DS′

[
− 1

2‖XS′(θS′ − θ0,S′)‖22 − Ln,θ̄S (Y )
]

+ λEµS′ ,DS′ (‖θS′‖1 − ‖θ0,S′‖1) + log(DΠ/DN )

=: (I) + (II) + (III),

where the normalizing constants are DΠ =
∫
R|S′| e

∇θ`n,θ0 (Y )T (θ̄S′−θ̄0,S′ )+Ln,θ̄S′ (Y )−λ‖θS′‖1dθS′

and DN =
∫
R|S′| e

− 1
2‖XS′ (θS′−θ0,S′ )‖

2
2+∇θ`n,θ0 (Y )T (θ̄S′−θ̄0,S′ )−λ‖θ0,S′‖1dθS′ . We now bound (I)−

(III) in turn.

(I): Using the likelihood (19) and the mean-value form of the remainder in the Taylor expansion (20),
for ξi between xTi θ̄S′ and xTi θ0,

Ln,θ̄S′ = −1

2

n∑
i=1

g′′(ξi)|xTi (θ̄S′ − θ0)|2

≥ −1

8

n∑
i=1

2|xTi (θ̄S′ − θ̄0,S′)|2 + 2|xTi (θ̄0,S′ − θ0)|2

= −1

4
‖XS′(θS′ − θ0,S′)‖22 −

1

4
‖XS′cθ0,S′c‖22,

(27)

so that (I) is bounded by ‖XS′cθ0,S′c‖22/4. On An, using (24),

‖XS′cθ0,S′c‖22 = ‖Xθ̄0,S′c‖22 ≤ κ(|S0 ∩ S′c|)‖X‖2‖θ0,S′c‖22 ≤ κ(s0)M2
1 s0 log p,

so that (I) ≤ κ(s0)M2
1 s0 log p/4.

(II): Under the expectation EµS′ ,DS′ , we have the equality in distribution θS′ − θ0,S′ =d

(XT
S′XS′)

−1XT
S′(Y − Eθ0Y ) + Z, where Z ∼ NS′(0, DS′). Applying the triangle inequality

and Cauchy-Schwarz,

(II) ≤ λ‖(XT
S′XS′)

−1XT
S′(Y − Eθ0Y )‖1 + λEµS′ ,DS′‖Z‖1

≤ λ|S′|1/2(‖(XT
S′XS′)

−1XT
S′(Y − Eθ0Y )‖2 + Tr(DS′)

1/2),
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since by Jensen’s inequality E‖Z‖2 ≤ (E‖Z‖22)1/2 = Tr(DS′)
1/2. Using the definition (23), for ej

the jth unit vector in Rp,

Tr(DS′) =

|S′|∑
j=1

1

(XT
S′XS′)jj

=
∑
j∈S′

1

‖Xej‖22
≤
∑
j∈S′

1

κ(1)‖X‖2
=

|S′|
κ(1)‖X‖2

.

The matrix operator norm (from R|S′| to R|S′|) of (XT
S′XS′)

−1 equals its largest eigenvalue, which
is bounded by 1/(4κ(|S′|)‖X‖2) using (26). Recalling that∇θ`n,θ0(Y ) = XT (Y −Eθ0Y ), on the
event An the first term in the second to last display is therefore bounded by

λ|S′|1/2

4κ(|S′|)‖X‖2
‖XT

S′(Y − Eθ0Y )‖2 ≤
λ|S′|

4κ(|S′|)‖X‖2
‖XT (Y − Eθ0Y )‖∞ ≤

λLs0t

4κ(Ls0)‖X‖2
.

We have thus shown that

(II) ≤ λLs0

‖X‖

(
t

4κ(Ls0)‖X‖
+

1

κ(1)1/2

)
.

(III): It remains to control the ratio of normalizing constants log(DΠ/DN ). Define

BS′ = {θS′ ∈ R|S
′| : ‖θS′ − θ0,S′‖2 ≤ 2M1

√
s0 log p/‖X‖}.

On An, using (21) and (24),

ΠS′(B
c
S′ |Y ) ≤ ŵS′

ŵS′
ΠS′(θS′ ∈ R|S

′| : ‖θ̄S′ − θ0‖2 > 2M1

√
s0 log p/‖X‖ − ‖θ0,S′c‖2|Y )

≤ ŵ−1
S′ Π(θ ∈ Rp : ‖θ − θ0‖2 > M1

√
s0 log p/‖X‖|Y )

≤ 2epLs0e−M2s0 log p = 2e1−(M2−L)s0 log p ≤ 1/2,

where the last inequality follows from rearranging the assumption (4e)1/(M2−L) ≤ ps0 . Using Bayes
formula, this gives

ΠS′(BS′ |Y )1An =

∫
BS′

e
`n,θ̄

S′
(Y )−`n,θ0 (Y )−λ‖θS′‖1dθS′∫

R|S′| e
`n,θ̄

S′
(Y )−`n,θ0 (Y )−λ‖θS′‖1dθS′

1An ≥
1

2
1An .

By (20) the denominator in the last display equals e∇θ`n,θ0 (Y )T (θ̄0,S′−θ0)DΠ, which implies that on
An, DΠ ≤ 2

∫
BS′

e
∇θ`n,θ0 (Y )T (θ̄S′−θ̄0,S′ )+Ln,θ̄S′ (Y )−λ‖θS′‖1dθS′ . Thus on An,

log
DΠ

DN
≤ log

2
∫
BS′

e
∇θ`n,θ0 (Y )T (θ̄S′−θ̄0,S′ )+Ln,θ̄

S′
(Y )−λ‖θS′‖1dθS′∫

BS′
e−

1
2‖XS′ (θS′−θ0,S′ )‖

2
2+∇θ`n,θ0 (θ̄S′−θ̄0,S′ )−λ‖θ0,S′‖1dθS′

≤ log

(
sup

θS′∈BS′
e
Ln,θ̄

S′
(Y )+ 1

2‖XS′ (θS′−θ0,S′ )‖
2
2+λ‖θ0,S′‖1−λ‖θS′‖1

)
+ log 2

≤ sup
θS′∈BS′

Ln,θ̄S′ (Y ) + 1
2‖XS′(θS′ − θ0,S′)‖22 + λ‖θS′ − θ0,S′‖1 + log 2.

Now Ln,θ̄S′ (Y ) < 0 by (27) since g′′ > 0. Using Cauchy-Schwarz and the definition of BS′ , on An,

(III) = log
DΠ

DN
≤ sup
θS′∈BS′

1
2κ(|S′|)‖X‖2‖θS′ − θ0,S′‖22 + λ|S′|1/2‖θS′ − θ0,S′‖2 + log 2

≤ 2κ(Ls0)M2
1 s0 log p+

2M1λL
1/2s0

√
log p

‖X‖
+ log 2.

Combining all of the above bounds gives the result.
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10.2 Contraction results

The second part to applying Lemma 1 is showing that on an event, the desired sets have all but
exponentially small posterior probability. This involves using results on dimension selection and
posterior contraction from high-dimensional Bayesian statistics, especially Atchadé [1] and Castillo
et al. [7]. The following results follow closely the proofs in [1], but we reproduce them here for
convenience, since in that paper they are not stated or proved in the exponential form needed to apply
Lemma 1. We are also able to simplify certain technical conditions and streamline some proofs. Note
that his results, including the definitions of the compatibility constants, match when ‖X‖ ∼

√
n.

We next introduce some notation from [1], used throughout this section. A continuous function r :
[0,∞)→ [0,∞) is called a rate function if it is strictly increasing, r(0) = 0 and limx↓0 r(x)/x = 0.
For a rate function r and a ≥ 0, define

φr(a) = inf{x > 0 : r(z) ≥ az, for all z ≥ x}, (28)

with the convention inf ∅ =∞. Let B(Θ,M) = {θ ∈ θ0 + Θ : ‖θ− θ0‖2 ≤M} denote the `2-ball
of radius M > 0 centered at θ0 with elements in θ0 + Θ. For ε > 0, we denote by D(ε,B(Θ,M))
the ε-packing number of B(Θ,M), namely the maximal number of points in B(Θ,M) such that the
`2 distance between any two points is at least ε.

The following result bounds the posterior probability of selecting a model of size larger than a
multiple of the true model size.

Lemma 8 (Theorem 4(1) of [1]). Suppose the prior satisfies (3) and (4), pA4 ≥ 8A2, and that
‖X‖ ≥ (64/3)αs0

√
log p/κ. Then for any L > 1,

Eθ0 [Π (θ ∈ Rp : |Sθ| ≥ Ls0 | Y ) 1An,1(λ/2)] ≤ 2 exp

(
−s0 log p

[
L
(
A4 −

log(4A2)

log p

)
− C

])
,

where C = 1 + 4α2

κ + log(4 + κ(s0)/ log p) + (1 + 1
s0

)(A4 − log(4A2)
log p ).

Proof. By Lemma 12(1), for any k ≥ 0,

Eθ0 [Π(θ : |Sθ| ≥ s0 + k|Y )1An,1(λ/2)] ≤ 2ea
(

4 +
κ(s0)‖X‖2

λ2

)s0 ( p
s0

)(
4A2

pA4

)k
,

where a = − 1
2 infx>0[ κ‖X‖2x2

1+4s
1/2
0 ‖X‖∞x

− 4λs
1/2
0 x]. It remains to simplify the right-hand side.

One can check that for τ, b, c > 0, infx>0[ τx
2

1+bx − cx] ≥ − c2

4τ1/2(τ−cb)1/2 ≥ − c2

2τ if τ ≥ 4bc/3. In
our setting, this condition equals ‖X‖2κ ≥ (64/3)λs0‖X‖∞, which holds by assumption. This
yields a ≤ 4λ2s0

‖X‖2κ . Using the upper bound
(
p
s0

)
≤ ps0 , setting k = b(L − 1)s0c and using that

(L− 1)s0 − 1 ≤ b(L− 1)s0c ≤ (L− 1)s0 gives the result.

The next result is the analogous version of Theorem 4(2) in [1] with the exponential bounds we
require here. It provides a contraction rate for posterior models of a given size.

Lemma 9. Suppose the prior satisfies (3) and (4), pA4 ≥ 8A2, and that ‖X‖ ≥ 50α(L +
2)s0

√
log p‖X‖∞/κ((L+ 1)s0) for some L > 0. Then for any θ0 ∈ Rp, and M ≥ max(25α, (1 +

A3)/16),

Eθ0

[
Π(θ ∈ Rp : |Sθ| ≤ Ls0, ‖θ − θ0‖2 ≥

8M
√

(L+ 2)s0 log p

κ((L+ 1)s0)‖X‖
|Y )1An,1(‖X‖

√
log p)

]
≤ 6e−s0 log p(8LM−CL),

where CL = max(L(1 + log(24)
log p ), C̃p) and C̃p =

logA1+log(1+4α2 log p)
log p .

While C̃p is not a true constant since it depends on p, we write it as such since it is asymptotically
negligible. As p→∞, we have C̃p → 0 and CL → L.
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Proof. We write κL = κ((L+ 1)s0) during this proof to ease notation. By Lemma 12(2), for any
M > 2,
Eθ0Π(θ ∈ θ0 + Θ̄L : ‖θ − θ0‖2 > Mε|Y )1An,1(‖X‖

√
log p)

≤
∑
j≥1

Dje
−r( jMε2 )/8 + 2

(
p

s0

)(pA3

A1

)s0(
1 +

4λ2

κ̄(s0)‖X‖2
)s0 ∑

j≥1

e−r(
jMε

2 )/8e3λc0jMε,
(29)

where the quantities in (29) are defined in that lemma. Note that for θ satisfying |Sθ| ≤ Ls0, then
|Sθ−2θ0 | ≤ (L+ 1)s0, so that θ− θ0 ∈ Θ̄L. We may thus further restrict the set in the last display to
{θ : |Sθ| ≤ Ls0}, as in the posterior probability in the lemma. We first compute ε and then simplify
the right-hand side of (29).

Recall that we may take as rate any ε ≥ φr(2ηL) for r the rate function in Lemma 12(2). For a rate
function r(x) = τx2

1+bx , τ, b > 0, the inequality r(x) ≥ ax is equivalent to x((τ−ab)x−a) ≥ 0. Using
the definition (28) thus gives φr(a) = a

τ−ab . Setting τ = κL‖X‖2 and b = ‖X‖∞
√

(L+ 1)s0/2

as in Lemma 12(2), and using our assumption 1
2‖X‖

2κL ≥ 25α(L + 2)s0‖X‖
√

log p‖X‖∞ ≥
ηL
√

(L+ 1)s0‖X‖∞, we get

φr(2ηL) =
2ηL

κL‖X‖2 − ηL‖X‖∞
√

(L+ 1)s0

≤ 4ηL
κL‖X‖2

=
8
√

(L+ 2)s0 log p

κL‖X‖
=: ε

Turning to the right-hand side of (29), note that c0 = supv∈Θ̄L ‖v‖1/‖v‖2 ≤
√

(L+ 2)s0. Arguing
as on p. 29-30 of [1] gives

∑
j≥1Dje

−r(jMε/2)/8 ≤ 2 exp
(
(L + 2)s0 log p[1 + log(24)

log p − 8M ]
)
.

Similarly, setting x = jMε/2,

3λ
√

(L+ 2)s0jMε− 1

8
r(jMε/2) = −x

8

(
‖X‖2κLx

1 + 1
2

√
(L+ 1)s0‖X‖∞x

− 48λ
√

(L+ 2)s0

)

≤ −x
8

(
‖X‖2κLMε

2

1 + 1
2

√
(L+ 1)s0‖X‖∞Mε

2

− 48λ
√

(L+ 2)s0

)

≤ −
λ
√

(L+ 2)s0x

4
as long as

‖X‖2κLMε
2

1 + 1
2

√
(L+ 1)s0‖X‖∞Mε

2

≥ 50λ
√

(L+ 2)s0.

We show the last display holds under the present assumptions. Since
√

(L+ 1)s0‖X‖∞ε ≤
8(L+2)s0

√
log p‖X‖∞

‖X‖κL
≤ 8/(50α) by assumption, the left-hand side is lower bounded by

‖X‖2κLMε
2+4M/(50α) ≥ (50α/8)‖X‖2κLε for M ≥ 25α. Since λ ≤ α‖X‖

√
log p by assumption, the

last display holds following from
(50α/8)‖X‖2κLε

50
√

(L+ 2)s0

= α‖X‖
√

log p.

This implies ∑
j≥1

e−
1
8 r(jMε/2)e3λc0jMε ≤

∑
j≥1

e−
jMλ
√

(L+2)s0ε

8 ≤ 2e−8M(L+2)s0 log p,

where the last inequality again follows by the same argument on p. 29-30 of [1].

Summing up these bounds and using
(
p
s0

)
≤ ps0 and κ̄(s0) ≥ κ̄(1) = 1, the right-hand side of (29)

is bounded by

2 exp
(

(L+ 2)s0 log p
[
1 + log(24)

log p − 8M
])

+ 4 exp
(
(1 +A3)s0 log p+ s0 log

(
1 + 4α2 log p

)
− s0 logA1 − 8M(L+ 2)s0 log p

)
≤ 6 exp

(
− s0 log p

[
8LM −max(L(1 + log(24)

log p ), C̃p))
])
.
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Combining the last two lemmas yields the contraction rate result with exponential bounds.
Lemma 10. Suppose the prior satisfies (3) and (4), and pA4 ≥ 8A2. If for K > 0, the design matrix
satisfies condition (8) with L = LK = K+C

A4−log(4A2)/ log p , with C the constant in Lemma 8, then for
any θ0 ∈ Rp,

Eθ0

[
Π

(
θ ∈ Rp : ‖θ − θ0‖2 ≥ CK

√
s0 log p

‖X‖

∣∣∣∣Y ) 1An,1(‖X‖
√

log p)

]
≤ 8e−Ks0 log p,

where CK = 8MK

√
LK+2

κ((LK+1)s0) , MK = max(25α, 1+A3

16 ,
K+C̃p
8LK

+ 1
8 + log(24)

8 log p ) and C̃p is given in Lemma
9.

If all the compatibility constants are bounded away from zero and infinity, the constants in Lemma
10 scale like LK ∼ K, MK ∼

√
K and CK ∼ K as K →∞. We now have the required event to

apply Lemma 1.
Lemma 11. Suppose the prior satisfies (3) and (4), and pA4 ≥ 8A2. Set L = 1+C

A4−log(4A2)/ log p ,
where C is the constant in Lemma 8, and assume the design matrix satisfies (8) for this L. Then for
t = ‖X‖

√
log p, M2 = 2L and M1 = C3L, where C3L is the constant in Lemma 10 with K = 3L,

and any θ0 ∈ Rp,

Pθ0

(
An(t, L,M1,M2)c

)
≤ 2/p+ (8/3)p−s0 + 8p−Ls0 ,

where An(t, L,M1,M2) is defined in (15).

Proof. Using a union bound and the definition (15),

Pθ0

(
An(t, L,M1,M2)c

)
≤ Pθ0(An,1(‖X‖

√
log p)c) + Pθ0(An,2(L)c ∩ An,1(‖X‖

√
log p))

+ Pθ0(An,3(M1,M2)c ∩ An,1(‖X‖
√

log p)).

Since ∂
∂θj

`n,θ0(Y ) =
∑n
i=1(Yi − g′(xTi θ0))Xij , by Hoeffding’s inequality,

Pθ0(An,1(t)c) = Pθ0

(
max

1≤j≤p

∣∣∣∣∣
n∑
i=1

(Yi − g′(xTi θ0))Xij

∣∣∣∣∣ > t

)

≤ 2

p∑
j=1

e
− 2t2

‖X·j‖22 ≤ 2pe
− 2t2

‖X‖2 =
2

p
.

Applying Markov’s inequality and Lemma 8 with the present choice of L, the second term is bounded
by

(4/3)Eθ0

[
Π(θ ∈ Rp : |Sθ| > Ls0|Y )1An,1(‖X‖

√
log p)

]
≤ (8/3)e−s0 log p.

Similarly, using Markov’s inequality and Lemma 10 with K = 3L, the third term is bounded by

eM2s0 log pEθ0

[
Π(θ ∈ Rp : ‖θ − θ0‖2 ≥M1

√
s0 log p/‖X‖|Y )1An,1(‖X‖

√
log p)

]
≤ 8e−Ls0 log p.

The following is a simplified version of Theorem 3 of Atchadé [1], which applies to general settings,
tailored to the sparse high-dimensional logistic regression model. It gives high level technical
conditions under which one can control (1) the posterior model dimension and (2) the posterior `2
norm for models of restricted dimension.
Lemma 12. Suppose the prior satisfies (3) and pA4 ≥ 8A2.

(1) For any integer k ≥ 0,

Eθ0Π
(
θ ∈ Rp : |Sθ| ≥ s0 + k|Y

)
1An,1(λ/2) ≤ 2ea

(
4 +

κ(s0)‖X‖2

λ2

)s0( p
s0

)(4A2

pA4

)k
,

where

a = −1

2
inf
x>0

[
κ‖X‖2x2

1 + 4s
1/2
0 ‖X‖∞x

− 4λ
√
s0x

]
.
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(2) For L > 0, set Θ̄L = {θ ∈ Rp : |Sθ−θ0 | ≤ (L+ 1)s0} and define the rate function r(x) =
κ((L+1)s0)‖X‖2x2

1+‖X‖∞
√

(L+1)s0x/2
. Further set ηL = 2

√
(L+ 2)s0‖X‖

√
log p and ε = φr(2ηL),

where φr uses the same rate function r and is defined in (28). Then for any M0 > 2,

Eθ0Π(θ ∈ θ0 + Θ̄L : ‖θ − θ0‖2 > M0ε|Y )1An,1(‖X‖
√

log p)

≤
∑
j≥1

Dje
−r( jM0ε

2 )/8 + 2

(
p

s0

)(pA3

A1

)s0(
1 +

4λ2

κ(s0)‖X‖2
)s0 ∑

j≥1

e−r(
jM0ε

2 )/8e3λc0jM0ε,

where c0 = supu∈Θ̄L supv∈Θ̄L, ‖v‖2=1 |〈sign(u), v〉| and Dj = D
(
jM0ε

2 , B(Θ̄L, (j +

1)M0ε)
)
.

Proof. This is a combination of Theorems 3 and 4 in [1]. In particular, we verify that certain technical
assumptions of that result hold automatically in the logistic regression model, giving the simpler
result above. Firstly note that Assumptions H1-H3 of [1] are satisfied (H1) by definition, (H2) since
θ 7→ `n,θ in (19) is concave and differentiable and (H3) by (3).

For y ∈ {0, 1}n data in model (1), Ln,θ defined in (20), Θ0 = {θ : Sθ ⊆ Sθ0} and r some rate
function, define

N =

θ ∈ Rp : θ 6= 0, and
∑
i∈Sc0

|θi| ≤ 7‖θS0‖1

 ,

Ěn,1(N , r) =
{
y ∈ {0, 1}n : ∀θ ∈ θ0 +N : Ln,θ(y) ≤ − 1

2r(‖θ − θ0‖2)
}
,

Ên,1(Θ0, L̄) =
{
y ∈ {0, 1}n : ∀θ ∈ θ0 + Θ0, Ln,θ(y) ≥ − L̄2 ‖θ − θ0‖22

}
,

En,0(Θ, λ) =

{
y ∈ {0, 1}n : sup

u∈Θ,‖u‖2=1

|〈∇θ log `n,θ0(y), u〉| ≤ λ
2

}
,

where L̄ > 0 and λ > 0 is the regularization parameter in the prior (2). This matches the notation in
[1] (except note his ρ is our λ), where it is shown the theorem’s two conclusions hold under various
choices of parameters in the last displays.

Part (1): [1] considers the event En,0(Rp, λ) ∩ Ên,1(Θ0, L̄) ∩ Ěn(N , r), which we now simplify.
Arguing as on p27 of [1] yields

Ln,θ(y) ≤ −
n∑
i=1

g′′(xTi θ0)
|xTi (θ − θ0)|2

2 + |xTi (θ − θ0)|
,

For θ − θ0 ∈ N ,

|xTi (θ − θ0)| ≤ ‖X‖∞‖θ − θ0‖1 ≤ 8‖X‖∞s1/2
0 ‖θ − θ0‖2,

which gives

Ln,θ(y) ≤ − 1

2 + maxi |xTi (θ − θ0)|
(θ − θ0)TXTWX(θ − θ0)

≤ − κ‖X‖2‖θ − θ0‖22
2 + 8s

1/2
0 ‖X‖∞‖θ − θ0‖2

=: −1

2
r(‖θ − θ0‖2)

for the rate function r(t) = κ‖X‖2t2/(1+4s
1/2
0 ‖X‖∞t). Thus the event Ěn,1(N , r) holds determin-

istically true for any y ∈ {0, 1}n and this choice of r. Furthermore, since g′′(t) ≤ 1/4, by considering
the remainder in the Taylor expansion of `n,θ(y)− `n,θ0(y), for θ − θ0 ∈ Θ0 = {θ′ : Sθ′ ⊆ Sθ0},

Ln,θ(y) ≥ − 1
8 (θ − θ0)TXTX(θ − θ0) ≥ − 1

8κ(s0)‖X‖2‖θ − θ0‖22.

Thus Ên,1(Θ0, L̄) = {0, 1}n for L̄ = κ(s0)‖X‖2/4. Inspection of the proof of Theorem 3 of [1]
shows that he actually only requires the larger event An,1(λ/2) = {‖∇θ`n,θ0(Y )‖∞ ≤ λ/2} )
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En,0(Rp, λ) to hold rather than En,0(Rp, λ) (see p. 23 of [1] - they are incorrectly stated as being
equal). In our setting, we may thus replace the event of Theorem 3(1) of [1] by

An,1
(
λ/2
)
∩ Ěn,1(N , r) ∩ Ên,1(Θ0, L̄) = An,1

(
λ/2
)

for r, L̄ as above, from which the result follows.

Part (2): [1] considers the event En,0(Θ̄L, ηL) ∩ Ên,1(Θ0, L̄) ∩ Ěn(Θ̄L, r), which we again simplify.
From Part (1), we again take Ên,1(Θ0, L̄) = {0, 1}n for L̄ = κ(s0)‖X‖2/4. Arguing as in Part
(1), we get Ěn,1(Θ̄L, r) = {0, 1}n for rate function r(x) = κ((L+1)s0)‖X‖2x2

1+‖X‖∞
√

(L+1)s0x/2
using that for

θ ∈ Θ̄L, |xTi (θ − θ0)| ≤ ‖X‖∞‖θ − θ0‖1 ≤ ‖X‖∞
√

(L+ 1)s0‖θ − θ0‖2. For any θ ∈ θ0 + Θ̄L,
by Cauchy-Schwarz,

|〈∇θ`n,θ0(y), θ − θ0〉| ≤ ‖∇θ`n,θ0(y)‖∞‖θ − θ0‖1 ≤ ‖∇θ`n,θ0(y)‖∞
√

(L+ 2)s0‖θ − θ0‖2,

so that En,0(Θ̄L, ηL) ⊃ An,1
(
‖X‖
√

log p
)
. We hence conclude that

En,0(Θ̄L, ηL) ∩ Ěn,1(Θ̄L, r) ∩ Ên,1(Θ0, L̄) = En,0(Θ̄L, ηL) ⊃ An,1
(
‖X‖

√
log p

)
for the above choices of L̄, r and ηL. Applying Theorem 3(2) of [1] then gives the result.

The following is the non-asymptotic analogue of Theorem 1 in Section 3.
Theorem 4. Suppose the prior satisfies (3) and (4), and pA4 ≥ 8A2. If for K > 0, the design matrix
satisfies condition (8) with L = LK = K+C

A4−log(4A2)/ log p and C the constant in Lemma 8, then for
any θ0 ∈ Rp,

Eθ0Q
∗
(
θ ∈ Rp : ‖θ − θ0‖2 ≥ CK

√
s0 log p

‖X‖

)
≤ ζn + 8e−(K/2)s0 log p

(K/2)s0 log p
+

2

p
+

8

3
p−s0 + 8p−Ls0 ,

where ζn is given in Lemma 7,CK = 8MK

√
LK+2

κ((LK+1)s0) , andMK = max(25α, 1+A3

16 ,
K+C̃p
8LK

+ 1
8 + log(24)

8 log p )

with C̃p given in Lemma 9.

Furthermore, the mean-squared prediction error ‖pθ − p0‖2n = 1
n

∑n
i=1(Ψ(xTi θ)−Ψ(xTi θ0))2 of

the VB posterior Q∗ satisfies

Eθ0Q
∗
(
θ ∈ Rp : ‖pθ − p0‖2n ≥

CK
√
κ̄((LK + 1)s0)

4

√
s0 log p

n

)
≤ ζn + 8e−(K/2)s0 log p

(K/4)s0 log p
+ 2/p+ (8/3)p−s0 + 8p−Ls0 .

Proof. We first apply Lemma 1 with

Θn =
{
θ ∈ Rp : ‖θ − θ0‖2 ≥ CK

√
s0 log p

‖X‖

}
,

A = An = An(t, L,M1,M2) the event in Lemma 11, δn = Ks0 log p, and C = 8. Since
An ⊂ An,1(‖X‖

√
log p), Lemma 10 implies that the condition (14) holds. Using Lemma 1 followed

by Lemma 7,

Eθ0Q
∗
(
θ ∈ Rp : ‖θ − θ0‖2 ≥ CK

√
s0 log p

‖X‖

)
1An ≤

Eθ0KL(Q∗||Π(·|Y ))1An + 8e−δn/2

δn/2

≤ ζn + 8 exp(−(K/2)s0 log p)

(K/2)s0 log p
.

By Lemma 11,

Eθ0Q
∗
(
θ ∈ Rp : ‖θ − θ0‖2 ≥ CK

√
s0 log p

‖X‖

)
1Acn ≤ Pθ0(Acn) ≤ 2/p+ (8/3)p−s0 + 8p−Ls0 .

The first statement follows by combining the above two displays.
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Turning to the second statement, Lemma 10 implies the condition (14) holds with
Θn = {θ ∈ Rp : |Sθ| ≥ LKs0},

δn = Ks0 log p and C = 2. Therefore, similarly as above,

Eθ0Q
∗
(
θ ∈ Rp : |Sθ| ≥ LKs0

)
1An ≤

ζn + 2 exp(−(K/2)s0 log p)

(K/2)s0 log p
.

For any θ in the set in the last display, since ‖Ψ′‖∞ ≤ 1/4,

n‖pθ − p0‖2n ≤
1

16

n∑
i=1

|xTi (θ − θ0)|2 ≤ 1

16
‖X(θ − θ0)‖22 ≤

1

16
κ̄((LK + 1)s0)‖X‖2‖θ − θ0‖22,

where the last inequality follows from the definition of κ̄(·). The second statement then follows by
combining the first statement of the theorem and the last two displays.

11 Deriving the variational algorithm

11.1 Coordinate ascent equations

Since the VB minimization problem (6) is intractable for Bayesian logistic regression, we instead
minimize a surrogate objective obtained by lower bounding the likelihood [2, 10]. This is a standard
approach, but we include full details for completeness. For the log-likelihood `n,θ defined in (19), it
holds that

`n,θ(x, y) ≥
n∑
i=1

log Ψ(ηi)−
ηi
2

+ (yi − 1
2 )xTi θ −

1

4ηi
tanh(ηi/2)

(
(xTi θ)

2 − η2
i

)
=: f(θ, η)

(30)
for any η = (η1, . . . , ηn) ∈ Rn, see Section 11.2 for a proof. Hence for any distribution Q for θ,

KL(Q||Π(·|Y )) =

∫
log

(
dQ(θ)

e`n,θ(x,y)dΠ(θ)

)
dQ(θ) + C

≤
∫

log
dQ

dΠ
(θ)− f(θ, η) dQ(θ) + C

= KL(Q||Π)− EQ[f(θ, η)] + C,

(31)

whereC is independent ofQ. We minimize the right-hand side over the variational familyQµ,σ,γ ∈ Q,
i.e. over the parameters µ, σ, γ. Since we seek the tightest possible upper bound in (31), we also
minimize this over the free parameter η. In particular, the coordinate ascent variational inference
(CAVI) algorithm alternates between updating η for fixed µ, σ, γ and then cycling through µj , σj , γj
and updating these given all other parameters are fixed.

Write Eµ,σ,γ for the expectation when θ ∼ Qµ,σ,γ . For fixed µ, σ, γ, update η = (η1, . . . , ηn) by

η2
i = Eµ,γ,σ(xTi θ)

2 =

p∑
k=1

γkx
2
ik(µ2

k + σ2
k) +

p∑
k=1

∑
l 6=k

(γkxikµk)(γlxilµl), (32)

see Section 11.2 for a proof. We now derive the coordinate update equations for µj , σj , γj keeping all
other parameters, including η, fixed. For completeness, we allow the Laplace slab to have non-zero
mean ν if desired.
Proposition 1 (Coordinate updates with Laplace prior). Consider the prior (9) with Laplace slab
density g(x) = λ

2 e
−λ|x−ν|, where ν ∈ R, λ > 0. Given all other parameters are fixed, the values µj

and σj that minimize (31) with Q = Qµ,σ,γ ∈ Q are the minimizers of the objective functions:

µj 7→ λσj

√
2

π
e
−

(µj−ν)2

2σ2
j + λ(µj − ν)erf

(
µj − ν√

2σj

)
+ µ2

j

n∑
i=1

1

4ηi
tanh(ηi/2)x2

ij

+ µj

( n∑
i=1

1

2ηi
tanh(ηi/2)xij

∑
k 6=j

γkxikµk −
n∑
i=1

(yi − 1/2)xij

)
,

σj 7→ λσj

√
2

π
e
−

(µj−ν)2

2σ2
j + λ(µj − ν)erf

(
µj − ν√

2σj

)
− log σj + σ2

j

n∑
i=1

1

4ηi
tanh(ηi/2)x2

ij ,
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respectively, where erf(x) = 2/
√
π
∫ x

0
e−t

2

dt is the error function. The value γj that minimizes (31)
given all other parameters are fixed, is the solution to

− log
γj

1− γj
= log

b0
a0
− log(λσj) + λσj

√
2

π
e
−

(µj−ν)2

2σ2
j + λ(µj − ν)erf

(
µj − ν√

2σj

)
− 1

2

− µj
n∑
i=1

(yi − 1/2)xij +

n∑
i=1

1

4ηi
tanh(ηi/2)

(
x2
ij(µ

2
j + σ2

j ) + 2xijµj
∑
k 6=j

γkxikµk

)
.

Proof. Throughout this proof we fix the parameter η ∈ Rn and let C denote any term constant with
respect to the parameters currently being optimized, possibly different on each line. We first compute
the update equations for µj and σj based on (31). We compute KL(Qµ,σ,γ|zj=1||Π), which considers
the distribution Qµ,σ,γ conditional on zj = 1, as a function of (µj , σj), holding all other parameters
fixed. Using that Qµ,σ,γ is a factorizable distribution and that conditional on zj = 1 the variational

distribution of θj is singular to the Dirac measure δ0, we can simplify
dQµ,σ,γ|zj=1

dΠ = C
dQµj,σj |zj=1

dΠcj
,

where Πc
j is the continuous part of the prior distribution for θj and C does not depend on µj or

σj . Recall that Πc
j =

∫ 1

0
wLap(ν, λ)dw = a0/(a0 + b0)Lap(ν, λ). Thus for φµ,σ the density of a

N(µ, σ2) distribution and w = a0/(a0 + b0),

log
dQµ,σ,γ|zj=1

dΠ
(θ) = log

dQµj ,σj |zj=1

dΠc
j

(θj) + C = log
φµj ,σj (θj)

wgj(θj)
+ C.

Taking expectations with respect to Qµ,σ,γ|zj=1,

Eµ,σ,γ|zj=1

[
log

φµj ,σj (θj)

wgj(θj)

]
= Eµ,σ|zj=1

[
− log(λσj)−

(θj − µj)2

2σ2
j

+ λ|θ − ν|

]
+ C

= − log(λσj) + λEµ,σ|zj=1|θj − ν|+ C,

where we have used Eµ,σ,γ|zj=1[(θj − µj)2/σ2
j ] = 1. Under the variational distribution, λ|θj − ν|

follows a folded Gaussian distribution, hence

λEµj ,σj |zj=1|θj − ν| = λσj

√
2

π
e
−

(µj−ν)2

2σ2
j + λ(µj − ν)erf

(
µj − ν√

2σj

)
.

Combining the last three displays gives KL(Qµ,σ,γ|zj=1||Π) as a function of µj , σj . Using this
expression and evaluating Eµ,σ,γ|zj=1

[
f(θ, η)

]
using Lemma 15 below, the upper bound in (31)

equals, as a function of µj , σj ,

− log(λσj) + λσj

√
2

π
e
−

(µj−ν)2

2σ2
j + λ(µj − ν)erf

(
µj − ν√

2σj

)

−
n∑
i=1

(yi − 1/2)xijµj +

n∑
i=1

1

4ηi
tanh(ηi/2)

x2
ij(µ

2
j + σ2

j ) + 2xijµj
∑
k 6=j

γkxikµk

+ C,

where C is independent of µj , σj . Minimizing the display with respect to either µj or σj gives the
desired result.

For updating the inclusion probabilities γj , we proceed as above without conditioning on zj = 1.
Keeping track of only the γj terms,

Eµ,σ,γ

[
log

dQµ,σ,γ
dΠ

(θ)

]
= Eµ,σ,γ

[
log

d(γjN(µj , σ
2
j ) + (1− γj)δ0)

d(wLap(ν, λ) + (1− w)δ0)
(θj)

]
+ C

= Eµ,σ,γ

[
1{zj=1} log

γjdN(µj , σ
2
j )

wdLap(ν, λ)
(θj) + 1{zj=0} log

1− γj
1− w

]
+ C

= γjEµ,σ,γ|zj=1

[
log

φµj ,σj (θj)

gj(θj)

]
+ γj log

γj
w

+ (1− γj) log
1− γj
1− w

+ C.
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The first expectation was evaluated above. Using this and evaluating Eµ,σ,γ
[
f(θ, η)

]
using Lemma

15 below, the upper bound in (31) equals, as a function of γj ,

γj

{
− log(λσj) + λσj

√
2

π
e
−

(µj−ν)2

2σ2
j + λ(µj − ν)erf

(
µj − ν√

2σj

)
− µj

n∑
i=1

(yi − 1/2)xij

− 1

2
+

n∑
i=1

1

4ηi
tanh(ηi/2)

x2
ij(µ

2
j + σ2

j ) + 2xijµj
∑
k 6=j

γkxikµk

}

+ γj log
γj
w

+ (1− γj) log
1− γj
1− w

+ C,

where C is independent of γj . As a function of γj , this takes the form

h(γj) = γj log
γj
a

+ (1− γj) log
1− γj
b

+ cγj ,

with a, b ∈ (0, 1) and c ∈ R. By differentiating, h is convex and has a global minimizer γ̄j ∈ [0, 1]
satisfying

− log
γ̄j

1− γ̄j
= c+ log

b

a
.

Substituting in the above values for a, b, c gives the result.

11.2 Variational lower bound

We now derive the lower bound (30) as in [10]. Recall the log-likelihood (19):

`n,θ(x, y) =

n∑
i=1

yix
T
i θ − g(xTi θ),

where g(t) = log(1 + et), t ∈ R. We lower bound the second term above using a Taylor expansion
in x2. The following lemma fills in some details from [10], where this technique was proposed.
Lemma 13. For Ψ(x) = (1 + e−x)−1 the standard logistic function and any η ∈ R,

log Ψ(x) ≥ x− η
2

+ log Ψ(η)− 1

4η
tanh(η/2)(x2 − η2).

Proof. Note that we can write log Ψ(x) = x/2 − log(ex/2 + e−x/2). By elementary calculations,
it can be shown that the second term on the right hand side is convex in the variable x2. We can
therefore use its first order Taylor approximation in x2 to derive a lower bound for log Ψ(x), i.e. for
any η ∈ R,

log Ψ(x) ≥ x

2
− log(eη/2 + e−η/2)− 1

4η
tanh(η/2)(x2 − η2)

=
x− η

2
+ log Ψ(η)− 1

4η
tanh(η/2)(x2 − η2).

Substituting this lower bound into each term −g(xTi θ) = log Ψ(−xTi θ) in the log-likelihood yields
(30).

We next obtain the update equation (32) for the free parameter η ∈ Rn. Minimizing (31) over η for
fixed Q = Qµ,σ,γ ∈ Q is equivalent to solving

η̃ = arg max
η∈Rn

Eµ,σ,γ
[
f(θ, η)

]
.

Lemma 14. The function fa : R→ R, a ≥ 0, given by

fa(x) = log Ψ(x)− x

2
− 1

4x
tanh(x/2)

(
a2 − x2

)
is symmetric about zero and possesses unique maximizers at x = ±a.
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Proof. Indeed, tanh(−x) = − tanh(x) shows that the last term is symmetric around zero. Moreover,
Ψ(−x) = 1 − Ψ(x) yields log Ψ(−x) + x/2 = log Ψ(x) − x/2 thereby proving symmetry of fa.
Using 2Ψ(x)− 1 = tanh(x/2),

f ′a(x) =
Ψ′(x)

Ψ(x)
− 1

2
+

1

4

(
tanh(x/2) +

x

2(cosh x/2)2

)
−
(
x(cosh x/2)−2 − 2 tanh(x/2)

8x2

)
a2

= (a2 − x2)

(
tanh(x/2)

4x2
− 1

8x(cosh x/2)2

)
.

Since f ′a(±a) = 0, it remains to show f ′′a (±a) < 0. Note that

f ′′a (x) = (a2 − x2)
d

dx

(
tanh(x/2)

4x2
− 1

8x(cosh x/2)2

)
− tanh(x/2)

2x
+

1

4(cosh x/2)2
.

The first term vanishes at x = ±a and the second is symmetric about zero, so the formula
sinh(x) cosh(x) = sinh(2x)/2 yields

f ′′a (±a) = −2 sinh(a/2) cosh(a/2)− a
4a(cosh a/2)2

= − sinh(a)− a
4a(cosh a/2)2

.

This concludes the proof as sinh(x)/x ≥ 1.

By the last lemma, we can restrict the free parameter to η ∈ Rn≥0 and take η̃2
i = Eµ,γ,σ(xTi θ)

2 to
maximize Eµ,σ,γf(θ, η). The update (32) then follows from the following lemma.
Lemma 15. For Qµ,σ,γ ∈ Q,

Eµ,σ,γ [xTi θ] =

p∑
k=1

γkµkxik,

Eµ,σ,γ
[
(xTi θ)

2
]

=

p∑
k=1

γkx
2
ik(µ2

k + σ2
k) +

p∑
k=1

∑
l 6=k

(γkxikµk)(γlxilµl).

If the expectations are instead taken over Eµ,σ,γ|zj=1, then the same formulas hold true with γj = 1.

Proof. Since θk ∼iid (1− γk)δ0 + γkN (µk, σ
2
k) under Qµ,σ,γ , the first claim follows by linearity

of the expectation. Using that θk = θk1{zk=1}, Qµ,σ,γ-almost surely, and that (θk) are independent
under the mean-filed distribution Qµ,σ,γ ,

Eµ,σ,γ
[
(xTi θ)

2
]

= Eµ,σ,γ

(
p∑
k=1

xikθk1{zk=1}

)2

=

p∑
k=1

γkx
2
ik(µ2

k + σ2
k) +

p∑
k=1

∑
l 6=k

(γkxikµk)(γlxilµl).
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