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1 Proofs

1.1 Proof of Proposition 3

Here, we follow the guidance of [13] to prove Proposition 3] Let S be a sample set of size m, and let
T be a probabilistic function of X into an arbitrary finite target space, defined by p(¢|x) forallz € X
and ¢ € 7. To prove Proposition [3) we bound the deviations of the entropy estimations from its
expectation: |H (T')| — E[H (T)]|, and then use a bound on the expected bias of entropy estimation.

To bound the deviation of the entropy estimates, we use McDiarmid’s inequality [13]], in a manner
similar to [1]]. For this, we must bound the change in value of each of the entropy estimations when a
single instance in S is arbitrarily changed. A useful and easily proven inequality in that regard is the
following: for any natural m and for any a € [0,1 — 1/m] and A < 1/m,

|(a+ A)log(a + A) — alog(a)| < logrglm) . (1)

With this in equality, a careful application of McDiarmid’s inequality leads to the following lemma.
Lemma 1. For any § € (0, 1), with probability of at least 1 — 0 over the sample set, we have that,

. . |7 log(m)+/log(2/9)
(7) = Bl ()| < TROEm Vo),
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Proof. First, we bound the change caused by a single replacement in H (T'). We have that,
1) =3 (Sottoto os (Soteipon ). o
t T x

If we change a single instance in S, then there exist two pairs (x,y) and (2/,y’) such that p(z, y)
increases by 1/m, and p(2’,y’) decreases by 1/m. This means that p(z) and p(z’) also change by
at most 1/m, while all other values in the distribution remain the same. Therefore, for each t € T,
>, p(t|z)p(x) changes by at most 1/m.

Based on this and Eq. (T), H(T") changes by at most | 7| log(mn)/m. Applying McDiarmid’s inequal-
ity, we get Eq. (2). We have thus proven Lemmal[T} O

Lemmaprovides bounds on the deviation of the A (T') from their expected values. In order to relate
these to the true values of the entropy H (7'), we use the following bias bound from [[14] and [15]).
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Lemma 2 (PaninskiA [14]; Shamir et al. [15]], Lemma 9). For a random variable T € T, with the
plug-in estimation H (-) on its entropy, based on an i.i.d. sample set of size m, we have that,

Tt

m
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Biar(r) ~ A1) < tog 1+ T2

From this lemma, the quantity |E[H (T') — H(T)]| is upper bounded by (| 7| — 1) /m. Combining it
with Eq. (Z), we get the bound in Proposition [3]

Proposition 3. Let Y be a fixed probabilistic function of X into an arbitrary finite target space ),
determined by a fixed and known conditional probability distribution py|x, and S be a sample set of
size N drawn from the joint probability distribution pxy. For any 0 € (0, 1), with probability of at
least 1 — 0 over the sample set S, we have,

< Wllog(N)ylog(2/0) | [¥I—1

H(Y)-H(Y 5
(V) — H(Y)] < =28 - ®
Proof. To prove the proposition, we start by using the triangular inequality to write,
[H(Y) = H(Y)| < |H(Y) = E[HY)]| + |H(Y) - E[H(Y)]|. (6)
Because H(Y) is constant, we have:
[H(Y) —E[H(Y)]| = [E[H(Y)] - E[H(Y)]. ©)
By the linearity of expectation, we have:
[E[H(Y)] - E[H(Y)]| = [E[H(Y) - H(Y)]]. (8)
Combining these with Lemmas [[]and 2] we get the bound in Proposition 3] O

1.2 Proof of Corollary 1

The proof of Corollary [T)is based on the following bound proposed by [7].

Lemma 3 (Kolchinsky et al. [7], Theorem 1). Let Z be a random variable (continuous or discrete),
and Y be a random variable with a finite set of outcomes ). Consider two joint distributions
over Z and Y, pzy and pzy, which have the same marginal over Z, p(z) = p(z), and obey
lpzy — Pzyl, < €< 3. Then,

€

[H(p(Y]X)) — H(p(Y|X))| < —elog e )

This lemma upper bounds the quantity |H (p(Y|X)) — H(5(Y|X))| by —eloglog(e/|V]*). After
extending it to the case when Y is a deterministic function of X, we get the bound in Corollary T}
Corollary 1. Let X be a random variable and Y be a random variable with a finite set of outcomes
Y. Let pxy be a joint distribution over X and Y under which Y = f(X). Let pxy be a joint
distribution over X and'Y which has the same marginal over X as pxvy, i.e., px = px, and obey
Pxy —pxv|; <e< % Then, we have that,

€

[H(p(Y|X))| < —€log —. (10)

Y
Proof. Since Y is a deterministic function of X, i.e., Y = f(X), we then have H (p(Y|X)) = 0.
Combining this with Eq. (9), we prove the bound in Corollary [T} O

2 Implementation Details

2.1 BNN Variant

We follow [3] to implement the BNN variant of our method. Let x be the observed input variable and
0 be a set of latent variables. Deep neural networks can be viewed as a probabilistic model p(y|z, 6),



where D = {z;,y;}, is a set of training examples and y is the network output which belongs to a set
of object categories by using the network parameters €. The variational inference aims to calculate
this conditional probability distribution over the latent variables (network parameters) by finding the
closest proxy to the exact posterior by solving an optimization problem.

Following the guidance of [3]], we first assume a family of probability densities over the latent
variables 6 parameterized by v, i.e., ¢(0]1). We then find the closest member of this family to the
true conditional probability p(6|D) by minimizing the KL-divergence between ¢(0|t) and p(0|D),
which is equivalent to minimizing the following variational free energy:

Lenn (0, D) = D [q(0]9)[1p(0)] — Eq(opy) log(p(DI6))] - (11)

This objective function can be approximated using 7" Monte Carlo samples 6; from the variational
posterior [3]:

Lenn (0, D) Zlog (0:]v)) —log(p(6:)) — log(p(D]6:))- (12)

We assume ¢(6|¢)) have a Gaussian probability density function with diagonal covariance and
parameterized by i) = (u, o). A sample weight of the variational posterior can be obtained by the
reparameterization trick [6]]: we sample it from a unit Gaussian and parameterized by = 1 4+ o o€,
where ¢ is the noise drawn from the unit Gaussian A/(0, 1) and o is the point-wise multiplication.
For the prior, as suggested by [3]], a scale mixture of two Gaussian probability density functions are
chosen: they are zero-centered but have two different variances of o7 and o3 with the ratio of 7.
In this work, we let —logo; = 0, —logoy = 6, and m = 0.25. Then, the optimizing objective of
adversarial perturbations in the maximization phase of our method is redefined by:

T
X} € argmax { Lce(6;2,Y;) Z —ve((2,Ya), (XL Ya) oy (13)
zeX j=1

where 6; is sampled 7" times from the learned variational posterior.

2.2 PACS

The learning principle of the previous state-of-the-art method on this dataset follows two streams.
The first stream of methods, including DSN [4], L-CNN [9]], MLDG [[10], Fusion [12]], MetaReg [2]]
and Epi-FCR [11]], engages domain identifications, which means that when training the model, each
source domain is regarded as a separate domain. The second stream of methods, containing AGG [11]],
HEX [[L7], and PAR [16], does not leverage domain identifications and combines all source domains
into a single one during the training procedure. We can find that the first stream leverages more
information, i.e., the domain identifications, during the network training, and thus often yields better
performance than the second stream. Our work belongs to the latter stream.

Table 1: The settings of different target domains on PACS.

Target Domain K T (loop) Tmn (loop) Tmax (loop) «@ n o1 15}
Art 1 45,000 100 50 0.001 50.0 10.0 1.0
Cartoon 1 45,000 100 50 0.001 50.0 10.0 100.0
Photo 1 45,000 100 50 0.001 50.0 10.0 1.0
Sketch 1 45,000 100 50 0.001 50.0 10.0 100.0

We follow the setup of [9] for network training. To align with the previous methods, the ImageNet
pretrained AlexNet [8] is employed as the baseline network. In the network training, we set the batch
size to 32. We use SGD with the learning rate of 0.001 (the learning rate decays following a cosine
annealing schedule [18]), the momentum of 0.9, and weight decay of 0.00005 for minimization, while
we use the SGD with the learning rate of 50.0 for maximization. Table[I]shows more detailed setting
of all parameters under four different target domains.



Table 2: The settings of different network architectures on CIFAR-10-C and CIFAR-100-C.

K T (epoch) Twin (epoch) Twmax (loop) « U] v B

AllConvNet 2 100 10 5 01 200 01 100
DenseNet 2 200 10 15 01 200 10 1000
CIFAR-10-C  \GijecResNet 2 100 10 15 01 200 10 100
ResNeXt 2 200 10 15 01 200 10 100
AllConvNet 2 100 10 5 01 200 01 100
DenseNet 2 200 10 15 01 200 100 100
CIFAR-100-C (i icResNet 2 100 10 15 0.1 200 10 100
ResNeXt 2 200 10 15 01 200 100 100
2.3 CIFAR-10 and CIFAR-100

The experimental settings follow the setups in [S]. We use SGD for both minimization and max-
imization. In Table [2] we report the detailed settings of all parameters under different network
architectures on CIFAR-10-C and CIFAR-100-C. Note that 7" and Ty are measured by number of
training epoches, while Tiyax is measured by number of iterations. In this work, we do not compare

our

method with [3]], since the design of [S] depends on a set of pre-defined image corruptions which

is with a different research target compared to our method.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

(12]

Andrds Antos and Ioannis Kontoyiannis. Convergence properties of functional estimates for discrete
distributions. Random Structures & Algorithms, 19(3-4):163-193, 2001.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain generalization
using meta-regularization. In Advances in Neural Information Processing Systems (NeurIPS), pages
998-1008, 2018.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In Proceedings of the International Conference on Machine Learning (ICML), pages 1613-1622,
2015.

Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan.
Domain separation networks. In Advances in Neural Information Processing Systems (NeurIPS), pages
343-351, 2016.

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshminarayanan.
AugMix: A simple data processing method to improve robustness and uncertainty. In Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

Artemy Kolchinsky, Brendan D. Tracey, and Steven Van Kuyk. Caveats for information bottleneck in
deterministic scenarios. In Proceedings of the International Conference on Learning Representations
(ICLR), 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), pages 1097-1105,
2012.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages
5542-5550, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Learning to generalize: Meta-learning
for domain generalization. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2018.

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M. Hospedales. Episodic
training for domain generalization. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 1446-1455, 2019.

Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. Best sources forward: domain
generalization through source-specific nets. In Proceedings of the IEEE International Conference on Image
Processing (ICIP), pages 1353-1357, 2018.



[13]

(14]

[15]

(16]

[17]

(18]

Colin McDiarmid. On the method of bounded differences, page 148—188. London Mathematical Society
Lecture Note Series. Cambridge University Press, 1989.

Liam Paninski. Estimation of entropy and mutual information. Neural Computation, 15(6):1191-1253,
2003.

Ohad Shamir, Sivan Sabato, and Naftali Tishby. Learning and generalization with the information
bottleneck. Theoretical Computer Science, 411(29-30):2696-2711, 2010.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P. Xing. Learning robust global representations
by penalizing local predictive power. In Advances in Neural Information Processing Systems (NeurIPS),
pages 10506-10518, 2019.

Haohan Wang, Zexue He, Zachary C. Lipton, and Eric P. Xing. Learning robust representations by project-
ing superficial statistics out. In Proceedings of the International Conference on Learning Representations

(ICLR), 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British Machine
Vision Conference (BMVC), 2016.



	Proofs
	Proof of Proposition 3
	Proof of Corollary 1

	Implementation Details
	BNN Variant
	PACS
	CIFAR-10 and CIFAR-100


