
COINPRESS: Practical Private Mean
and Covariance Estimation∗

Sourav Biswas
Cheriton School of Computer Science

University of Waterloo
s23biswa@uwaterloo.ca

Yihe Dong
Microsoft

yihdong@microsoft.com

Gautam Kamath
Cheriton School of Computer Science

University of Waterloo
g@csail.mit.edu

Jonathan Ullman
Khoury College of Computer Sciences

Northeastern University
jullman@ccs.neu.edu

Abstract

We present simple differentially private estimators for the mean and covariance
of multivariate sub-Gaussian data that are accurate at small sample sizes. We
demonstrate the effectiveness of our algorithms both theoretically and empirically
using synthetic and real-world datasets—showing that their asymptotic error rates
match the state-of-the-art theoretical bounds, and that they concretely outperform
all previous methods. Specifically, previous estimators either have weak empirical
accuracy at small sample sizes, perform poorly for multivariate data, or require the
user to provide strong a priori estimates for the parameters.

1 Introduction

One of the most basic problems in statistics and machine learning is to estimate the mean and
covariance of a distribution based on i.i.d. samples. The optimal solutions to these problems are
folklore—simply output the empirical mean and covariance of the samples. However, this solution
is not suitable when the samples consist of sensitive, private information belonging to individuals,
as it has been shown repeatedly that even releasing just the empirical mean can reveal this sensitive
information [13, 23, 8, 18, 17]. Thus, we need estimators that are not only accurate with respect to
the underlying distribution, but also protect the privacy of the individuals represented in the sample.

The most widely accepted solution to individual privacy in statistics and machine learning is differen-
tial privacy (DP) [15], which provides a strong guarantee of individual privacy by ensuring that no
individual has a significant influence on the learned parameters. A large body of work now shows
that, in principle, nearly every statistical task can be solved privately, and differential privacy is now
being deployed by Apple [11], Google [20, 3], Microsoft [12], and the US Census Bureau [10].

Differential privacy requires adding random noise to some stage of the estimator, and this noise might
increase the error of the final estimate. Typically, the amount of noise vanishes as the sample size n
grows, and one can often show that as n→∞, the additional error due to privacy vanishes faster than
the sampling error of the estimator, making differential privacy highly practical for large samples.

However, differential privacy is often difficult to achieve for small datasets, or when we want to look
at some small subpopulation within a large dataset. Thus, a recent trend has been to focus on simple,
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widely used estimation tasks, and design estimators with good concrete performance at small sample
sizes. Most relevant to our work, Karwa and Vadhan [27] and Du, Foot, Moniot, Bray, and Groce [14]
give practical mean and variance estimators for univariate Gaussian data. However, as we show, these
methods do not scale well to the more challenging multivariate setting.

1.1 Contributions

In this work we give simple, practical estimators for the mean and covariance of multivariate sub-
Gaussian data.2 We validate our estimators theoretically and empirically. On the theoretical side,
we show that our estimators match the state-of-the-art asymptotic bounds for private sub-Gaussian
mean and covariance estimation [24]. On the empirical side, we give an extensive evaluation with
synthetic data, as well as a demonstration on a real-world dataset. We show that our estimators have
error comparable to that of the non-private empirical mean and covariance at samples sizes on the
order of 1,000. Our mean estimator also improves over the state-of-the-art method [14], which was
developed for univariate data but can be applied coordinate-wise to estimate multivariate data.

We highlight that, like most private estimators, we require the user to input some a priori knowledge
of the mean and covariance. For mean estimation, we require the mean lives in a specified ball of
radius R, and for covariance estimation we require that the covariance matrix can be sandwiched
spectrally between A and KA for some matrix A. Some a priori boundedness is necessary for
algorithms like ours that satisfy concentrated DP [16, 6, 29, 4], or satisfy pure DP.3 We show that our
estimator is practical when these parameters are taken to be extremely large, meaning the user only
needs a very weak prior. Also, for simplicity, we focus on Gaussian data, but using both heavy-tailed
synthetic data and real-world data, we show that our method remains useful beyond Gaussian data.
Note that some restriction on the decay of the tails is necessary in the worst case [26].

Figure 1: Visualizing a run of the mean
estimator with n = 160, ρ = 0.1, t = 3

Approach. At a high-level, our estimators iteratively re-
fine an estimate of the parameters. For mean estimation,
we start with some (potentially large) ball B1 of radius
R1 that contains most of the mass of the probability dis-
tribution. We use this ball to get a naïve estimate: clip
the data to the ball, then obtain an estimate of the mean
by adding noise to the empirical mean of the clipped
data, with magnitude proportional to R1/n. Using this
estimate, and knowledge of how we obtained it, we can
draw a (hopefully smaller) ball B2 of radius R2 that
contains most of the mass and then repeat. After a few
iterations, we will have some ball Bt of radius Rt that
tightly contains most of the datapoints, and use this to
make an accurate final private estimate of the mean with noise proportional to Rt/n. Our covariance
estimation uses the same iterative approach, although the geometry is significantly more subtle.

1.2 Problem Formulation

We now detail the problem we consider in this work. We are given samplesX = (X1, . . . , Xn) ⊆ Rd
where each Xi represents some individual’s sensitive data. We would like an estimator M(X) that is
private for the individuals in the sample, and also accurate in that when X consists of i.i.d. samples
from some distribution P , then M(X) estimates the mean and covariance of P with small error.
Note that accuracy relies on distributional assumptions, but the privacy guarantee is worst-case. For
privacy, we require that M is insensitive to any one datapoint in the following sense: We say that two
samples X,X ′ ⊆ Rd of size n are neighboring if they differ on at most one datapoint.4 Informally,
M is differentially private [15] if the distributions M(X) and M(X ′) are similar for every pair of

2While our results are stated for Gaussian data, we comment that identical arguments hold for sub-Gaussian
distributions as well.

3Under pure or concentrated DP, the dependence on R and K must be polylogarithmic [27, 5]. One can
allow R = ∞ for mean estimation under (ε, δ)-DP with δ > 0 [27], although the resulting algorithm has
poor concrete performance even for univariate data. It is an open question whether one can allow K =∞ for
covariance estimation even under (ε, δ)-DP.

4For simplicity, we use the common convention that the size of the sample n is fixed and public.
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neighboring datasets X,X ′.5 In this work, we adopt concentrated differential privacy (zCDP) [16, 6].

Definition 1.1. M(X) satisfies ρ-zCDP if for every pair of neighboring samples X,X ′ of size n,
and every α ∈ (1,∞), Dα(M(X)‖M(X ′)) ≤ ρα, where Dα is the Rényi divergence of order α.

This formulation sits in between general (ε, δ)-differential privacy and the special case of (ε, 0)-
differential privacy,6 and better captures the privacy cost of private algorithms in high dimension [17].

To formulate the accuracy of our mechanism, we posit that X is sampled i.i.d. from some distribution
P , and our goal is to estimate the mean µ ∈ Rd and covariance Σ ∈ Rd×d with µ = Ex∼P [x] and
Σ = Ex∼P [(x− µ)T (x− µ)]. We assume that our algorithms are given some a priori estimate of the
mean in the form of a radius R such that ‖µ‖2 ≤ R and some a priori estimate of the covariance in
the form of K such that I � Σ � KI (equivalently all singular values of Σ lie in [1,K]).

We measure the error in Mahalanobis distance ‖ · ‖Σ, which compares the error to the covariance of
the distribution, and has the benefit of being invariant under affine transformations. Specifically,

‖µ̂− µ‖Σ = ‖Σ−1/2(µ̂− µ)‖2 and ‖Σ̂− Σ‖Σ = ‖Σ−1/2Σ̂Σ−1/2 − I‖F .

For any distribution, the empirical mean µ̂ and empirical covariance Σ̂ satisfy E[‖µ̂− µ‖Σ] ≤
√
d/n

and E[‖Σ̂ − Σ‖Σ] ≤
√
d2/n, and these estimators are minimax optimal. Our goal is to obtain

estimators that have similar accuracy to the empirical mean and covariance. The folklore naïve
estimators (see e.g. [27, 24]) for mean and covariance based on clipping the data to an appropriate
ball and adding carefully calibrated noise to the empirical mean and covariance would guarantee

E[‖µ̂− µ‖Σ] ≤
√
d

n
+

Rd

n
√
ρ

and E
[
‖Σ̂− Σ‖Σ

]
≤
√
d2

n
+
Kd2

n
√
ρ
.

The downside of the naïve estimators is that they depend linearly on R and K, and thus have large
error unless the user has strong a priori knowledge of the mean and covariance. Requiring users to
provide such a priori bounds is a major challenge in systems for differentially private analysis [21].
Our estimators have much better concrete and asymptotic dependence on these parameters.

Related Work. The most relevant line of work is that initiated by Karwa and Vadhan [27], studying
private parameter estimation for Gaussian data focused on important issues for practice like dealing
with weak a priori bounds on the parameters. Later works studied the multivariate setting [24, 9, 25]
and estimation under weaker moment assumptions [7, 26], though these investigations are primarily
theoretical. Our algorithm for covariance estimation can be seen as a simpler and more practical
variant of [24]: they iteratively threshold eigenvalues to find directions of high and low variance,
whereas we employ a softer method to avoid wasting information. To be explicit: the results of [24]
focused on getting algorithms which were theoretically sample near-optimal. However, this is far
from designing practical or realizable methods – our work can be seen as a refinement of their results
to provide algorithms which achieve reasonable error with minimal hyperparameter tuning. A notable
work is [14], providing practical private confidence intervals in the univariate setting. Instead, our
investigation is focused on realizable algorithms for the multivariate setting. Several works consider
private PCA or covariance estimation [19, 22, 2], though, unlike our work, these methods assume
strong a priori bounds on the covariance. Additional related work appears in the supplement.

2 New Algorithms for Multivariate Gaussian Estimation

We present new algorithms for Gaussian parameter estimation (Figure 2). While these do not result
in improved asymptotic sample complexity bounds, they are much more practical in the multivariate
setting. In particular, they will avoid the curse of dimensionality incurred by multivariate histograms,
but also eschew many of the hyperparameters that arise in previous methods [24]. Note that our
algorithms with t = 1 precisely describe the naïve method that was informally outlined in Section 1.2.
We describe the algorithms and sketch ideas behind the proofs, which appear in the supplement (along
with simpler univariate algorithms in the same style). Our core primitive is the Gaussian mechanism.

5We assume familiarity with basic properties of differential privacy, which appear in the supplement.
6zCDP and DP are on different scales, but otherwise can be ordered from most-to-least restrictive. Specifically,

(ε, 0)-DP implies ε2

2
-zCDP, which implies (ε

√
log(1/δ), δ)-DP for every δ > 0 [6].
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Input: X1...n ∼ N(µ, Id×d), B2(c, r) contain-
ing µ, t ∈ N+, ρ1...t, β > 0
Output: A (

∑
t ρt)-zCDP estimate of µ

MVMREC(X1...n, c, r, t, ρ1...t, β):

1. Let (c0, r0) = (c, r)

2. For i = 1, . . . , t− 1:

(ci, ri) = MVM(X1...n, ci−1, ri−1, ρt,
β

4(t−1)
)

3. (ct, rt) = MVM(X1...n, ct−1, rt−1, ρt,
β
4
)

4. Return ct

Input: X1...n ∼ N(µ, Id×d), B2(c, r) contain-
ing µ, ρs, βs > 0
Output: A ρ2-zCDP ball B2(c

′, r′)

MVM(X1...n, c, r, ρs, βs):

1. Let γ =

√
d+ 2

√
d log( n

βs
) + 2 log( n

βs
)

2. Project each Xi into B2(c, r + γ)

3. Let Z = 1
n

∑
iXi+Y , Y ∼ N(0, 2(r+γ)2

n2ρs
I)

4. Let c′ = Z, r′ = γ
√

1
n
+ 2(r+γ)2

n2ρs

5. Return (c′, r′)

Figure 2: Mean Estimation Algorithms

Lemma 2.1. Let f be an Rd-valued function with `2-sensitivity ∆f,2 = maxX∼X′∈Xn ‖f(X) −
f(X ′)‖2, where X ∼ X ′ denotes that X and X ′ are neighboring databases, differing in at most one
entry. Then the Gaussian mechanism Mf (X) = f(X) +N(0, (

∆f,2√
2ρ

)2 · I) satisfies ρ-zCDP.

2.1 Multivariate Private Mean Estimation

We first present our multivariate private mean estimation algorithm MVMREC. This is an iterative
algorithm, which maintains a confidence ball that contains the true mean with high probability. For
ease of presentation, we state the algorithm for a Gaussian with identity covariance, though a rescaling
argument allows it to work for an arbitrary known covariance Σ.

MVMREC calls MVM t− 1 times, each time with a new `2-ball B2(ci, ri) centered at ci with radius
ri. We desire that each invocation is such that µ ∈ B2(ci, ri), and the ri’s should decrease rapidly, so
that we quickly converge to a fairly small ball which contains the mean. Our goal will be to acquire
a small enough radius. With this in hand, we can run the naïve algorithm which clips the data and
applies the Gaussian mechanism. With large enough n, this will have the desired accuracy.

It remains to reason about MVM. We need to argue: a) privacy; b) accuracy: given B2(c, r) 3 µ,
it is likely to output B2(c′, r′) 3 µ; and c) progress: the radius r′ output is much smaller than the
r input. The algorithm first chooses some γ and clips the data to B2(c, r + γ). γ is chosen based
on Gaussian tail bounds such that if µ ∈ B2(c, r), then none of the points will be affected by this
operation. This bounds the sensitivity of the empirical mean, and applying the Gaussian mechanism
guarantees privacy. While the noised mean will serve as a point estimate c′, we actually have more:
again using Gaussian tail bounds on the data combined with the added noise, we can define a radius
r′ such that µ ∈ B2(c′, r′), establishing accuracy. Finally, a large enough n will ensure r′ < r/2,
establishing progress. Since each step reduces our radius ri by a constant factor, setting t = O(logR)
will reduce the initial radius from R to O(1) as desired. Formalizing this gives the following theorem.

Theorem 2.2. MVMREC is (
∑t
i=1 ρi)-zCDP. Furthermore, suppose X1, . . . , Xn are samples

from N(µ, I) with µ contained in the ball B2(C,R), and n = Ω̃(( d
α2 + d

α
√
ρ +

√
d logR√
ρ ) · log 1

β ).
Then MVMREC(X1, . . . , Xn, C,R, t = O(logR), ρ

2(t−1) , . . . ,
ρ

2(t−1) ,
ρ
2 , β) will return µ̂ such that

‖µ− µ̂‖Σ = ‖µ− µ̂‖2 ≤ α with probability at least 1− β.

2.2 Multivariate Private Covariance Estimation

We describe our multivariate private covariance estimation algorithm, which due to space restrictions,
appears in the supplement. The ideas conceptually similar to mean estimation, but subtler due to
the more complex geometry. We assume data is drawn from N(0,Σ) where I � Σ � KI for some
known K. One can reduce to the zero-mean case by differencing pairs of samples. Further, if we
know some PSD matrix A such that A � Σ � KA then we can rescale the data by A−1/2.

Similar to MVMREC, we repeatedly call a private algorithm that makes a constant-factor progress,
and then run the naïve algorithm. Rather than maintaining a ball containing the true mean, we
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maintain a pair of ellipsoids which sandwich the true covariance between them (in fact, we rescale at
each step so that the outer covariance is always the identity). Once the axes of these ellipsoids are
within a constant factor we can apply the naïve algorithm, which is accurate given enough samples.

The step algorithm is similar to before. We first clip the points at a distance based on Gaussian tail
bounds with respect to the outer ellipsoid, which is unlikely to affect the dataset when it dominates
the true covariance. After this operation, we can show that the sensitivity of an empirical covariance
statistic is bounded using the following lemma. [24] proved a similar statement without an explicit
constant, but the optimal constant is important in practice.

Lemma 2.3. Consider the function f(D) = 1
n

∑
iDiD

T
i , where ‖Di‖22 ≤ τ . Then the `2-sensitivity

of f (i.e., maxD∼D′ ‖f(D)− f(D′)‖F where D ∼ D′ are neighbors) is at most τ
√

2
n .

Applying the Gaussian mechanism (à la [19]) in combination with this sensitivity bound, we again get
a private point estimate Z for the covariance, and can also derive inner and outer confidence ellipsoids.
This time we require more sophisticated tools, including confidence intervals for the spectral norm of
both a symmetric Gaussian matrix and the empirical covariance matrix of Gaussian data. Using valid
confidence intervals ensures accuracy, and a sufficiently large n again results in a constant factor
squeezing of the ellipsoids, guaranteeing progress. This leads to the following theorem.

Theorem 2.4. There exists an algorithm MVCREC which is (
∑t
i=1 ρi)-zCDP. Furthermore, suppose

X1, . . . , Xn ∼ N(0,Σ), where I � Σ � KI , and n = Ω̃(( d
2

α2 + d2

α
√
ρ +

√
d3 logK
√
ρ ) · log 1

β ). Then
running the algorithm MVCREC(X1, . . . , Xn, I,K, t = O(logK), ρ

2(t−1) , . . . ,
ρ

2(t−1) ,
ρ
2 , β) will

return Σ̂ such that ‖Σ̂−1/2ΣΣ̂−1/2 − I‖F ≤ α with probability at least 1− β.

3 Mean Estimation Experiments

We now present our experimental results on multivariate mean estimation. Additional experiments,
and code to reproduce these experiments, appear in the supplement. At a high level, there are two
general approaches for the multivariate problem. The first is to solve the univariate problem in each
dimension, and combine these results in the natural way. As shown in [24], with an appropriate
setting of parameters, an asymptotically optimal algorithm for the univariate problem leads to an
asymptotically near-optimal algorithm for the multivariate problem. The other class of approaches is
to work directly in the multivariate space, as done in our novel method MVMREC (Figure 2).

We compare the following approaches, labeled with their names as in the legend of our plots: (1) The
non-private empirical mean (Non-private); (2) Univariate naïve method applied coordinatewise
(Naive coordinatewise); (3) Karwa-Vadhan [27] applied coordinatewise (KV); (4) SYMQ of Du
et al. [14] applied coordinatewise (SYMQ); (5) Multivariate naïve method (MVMREC with t = 1) (t
= 1); (6) MVMREC for various t > 1 (t = ♠, for integer ♠ > 1).

Implementation Details. We use our own implementation of these algorithms except for SYMQ,
for which we use the code that accompanies [14]. There are a number of small tuning details that
affect performance in practice that we highlight. Our algorithm has essentially four hyperparameters:
choice of t, splitting the privacy budget, radius of the clipping ball, and radius of the confidence ball.
We explore the role of t in our experiments. We found that assigning most of the privacy budget to
the final iteration increased performance, namely 3ρ/4 goes to the final iteration and ρ/4(t− 1) to
each other. In theory, we use a relatively large value for the clipping threshold because it is more
convenient for the analysis. In practice, we use a smaller clipping threshold to reduce sensitivity,
which we find to improves practical performance.

Experimental Setup. We describe our setup for all the following experiments (later highlighting any
relevant deviations). We generate a dataset of n samples from a d-dimensional Gaussian N(0, I),
where we are promised the mean is bounded in `2-distance by R. We run all the methods being
compared to ensure a guarantee of ρ-CDP. We run each method 100 times, and report the trimmed
mean, with trimming parameter 0.1. We trim because a single failure can significantly inflate the
average error. Our plots display the `2-error of a method on the y-axis. We did not focus on optimizing
the running time, but most of the plots (each involving about 1,000 runs of our algorithm) took only a
few minutes to generate on a laptop computer with an Intel Core i7-7700HQ CPU.
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Figure 3: Baseline comparison of mean estimation algorithms (left and middle, d = 50, R =
10
√
d, ρ = 0.5). Our algorithm with t = 2 outperforms all other methods. Effect of increasing R

(right, d = 50, ρ = 0.5, n = 1000). Our method with t = 10 remains effective for very large R, with
no perceptible disadvantage for small R.
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Figure 4: Comparison in low-dimensions d = 2 (left) and high-dimensions d = 500 (middle) with
ρ = 0.5. Our method is superior in just 2 dimensions and is effective in 500 dimensions. Varying
privacy level (right, d = 50, n = 2000, R = 10

√
d), our method is effective for small ρ.

Results and Discussion. In our first experiments (Figure 3, left and middle), we consider estimation
in d = 50 dimensions with ρ = 0.5. We set the initial radius to R = 10

√
d, which roughly means

that the user can estimate the mean of each coordinate a priori to within ±10 standard deviations.
We then measure the error with varying choices of sample size n between 103 and 104. The first
and second panels show that our method (with t = 2 iterations) significantly outperforms previous
methods, and offers error that is quite close to the non-private error. Concretely, we see that the
additional cost of privacy is about 27% for n = 1, 000 and decreases to just 2% for n = 10, 000.

In our next experiment (Figure 3, right), we consider the effect of increasing the initial radius
R, which corresponds to a user with less a priori knowledge of the parameters. Here, we fix
d = 50, n = 1, 000, ρ = 0.5 and vary R. We can see that when our method is run with t = 10
iterations, its error is essentially independent of R, showing no visible change in error as R increases
by three orders of magnitude. In contrast, all other methods show dramatically worse performance as
R grows. Note that, in these experiments, SYMQ is advantaged by receiving twice as many samples
as our method—with the same number of samples SYMQ’s error scaled linearly with R.
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Figure 5: Mean estimation with non-Gaussian data
(d = 50, R = 10

√
d, ρ = 0.5). Our method (with

t = 2) is still effective for heavier-tailed data.

In the next set of experiments (Figure 4, left and
middle) we consider both larger (d = 500) and
smaller dimension (d = 2). In both cases we
consider R = 10

√
d and ρ = 0.5 and vary n.

For bivariate data (left), our method (with t = 2
iterations) has the best performance, while other
methods have error comparable to the naïve al-
gorithm. For large dimension (middle), SYMQ
is ineffective at small sample sizes while our
method (with t = 2) competes well with non-
private estimation—even with n < 4d samples,
the cost of privacy is less than a factor of 2.

Next (Figure 4, right), we consider the effect of
varying the privacy parameter ρ, fixing d = 50, n = 1000, R = 10

√
d. We observe that our methods

remain superior for all choices of ρ, while coordinatewise methods are ineffective for high levels of
privacy.

Lastly (Figure 5), we give evidence that our methods work for non-Gaussian distributions. We fix
d = 50, R = 10

√
d, ρ = 0.5 and t = 2 iterations, and consider data drawn from various distributions
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Figure 6: Baseline comparison of covariance estimation algorithms with isotropic (left) or skewed
(middle) covariance, varying n (d = 10,K = 10

√
d, ρ = 0.5). All values of t > 1 significantly

outperform the t = 1 baseline, with the best choice of t achieves a factor 1.5 more error than the
non-private method at about n = 3000. Effect of incresing K (right, d = 10, n = 7000, ρ = 0.5).

with heavier tails: the multivariate Laplace and Student’s t-distribution with 3 degrees of freedom.
We plot excess error compared to non-private estimation, observing that it is well behaved even for
non-Gaussian data.

Choice of t. Our theory prescribes that the best choice of t isO(logR). However, this is not extremely
useful in practice, as it eliminates the constants which are key to choosing an appropriate value.
Empirically, we found that choosing t to be a small constant was effective, and the performance of the
algorithm was relatively insensitive to generous settings of this parameter. In different experiments,
the best performance uses different choices of t. However, we observe that in all experiments t = 10
performs competitively with the best choice of t for that setting, showing that the method is relatively
robust to how this hyperparameter is tuned. No other hyperparameters tuning was used between
different experiments.

4 Covariance Estimation Experiments

We present our experimental results on multivariate covariance estimation. Additional experiments,
as well as code to reproduce these experiments, appear in the supplement.

Covariance estimation offers fewer approaches to compare with, as it is unclear how to apply a
univariate algorithm to the multivariate setting. In particular, estimating the off-diagonal terms of
the covariance matrix is a very different problem than estimating the variance of a single normal, so
an entrywise approach will run into significant challenges unless we assume the covariance matrix
is diagonal. Thus, we compare the following two approaches: (1) Naïve method (MVCREC with
t = 1)7 (2) Our method (MVCREC for various t > 1). We do not compare with the algorithm of [24].
When implementing their algorithm, we found it too difficult to tune the numerous intertwined
hyperparameters well enough to produce non-trivally accurate estimates. However, we note that our
method can be seen as a “smoother” variant of their approach that is easier to implement and tune.

Implementation Details. Full details of the algorithm appear in our accompanying code. We find
that the same optimizations to the choice of t and the division of the privacy budget ρ are helpful for
covariance estimation. However, for covariance estimation we also find that an even more aggressive
shrinking of the confidence ellipsoids gives the best concrete performance.

4.1 Synthetic Data Experiments

Experimental Setup. We describe our setup for the following experiments, highlighting any relevant
deviations later. We generate a dataset of n samples from a d-dimensional Gaussian, either N(0, I)
(the isotropic case), or N(0,Σ), where Σ is a random rotation of a matrix with d/2 eigenvalues equal
to each of the values K and 1 (the skewed case). As with mean estimation, we run 100 trials of the
algorithm and report the trimmed mean with trimming level 0.1. Our plots display the Mahalanobis
error of a method on the y-axis, or, equivalently, the Frobenius error after accounting for differences in
scaling in all directions. All experiments were completed within a few minutes on a laptop computer
with an Intel Core i7-7700HQ CPU.

7This method, which amounts to clipping the data and then adding noise to the empirical covariance, is
sometimes called “Analyze Gauss,” due to its use in [19].
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√
d) with isotropic covariance.

Results and Discussion. In our first exper-
iments (Figure 6, left and middle), we vary
n while keeping other parameters fixed (d =
10,K = 10

√
d, ρ = 0.5). Note that with

d = 10 dimensions, the covariance matrix has(
d+1

2

)
= 55 non-redundant parameters, so these

experiments are somewhat comparable to our
experiments on mean estimation with d = 50
parameters. We first examine the isotropic case
(left) where our method (with any t > 1) signifi-
cantly outperforms the baseline method (t = 1).
For t = 3 we are competitive within a factor of
1.5 for n > 3000. For the skewed case (middle) we obtain similar competitiveness, albeit using the
t = 2 variant of our algorithm instead. The fact that the algorithm’s performance is sensitive to the
choice of t, which was not true for mean estimstion, is an interesting phenomenon for further study,
although private hyperparameter tuning of this sort can be addressed using [28].

Next, (Figure 6, right), we fix other parameters (d = 10, n = 7000, ρ = 0.5, isotropic covarance)
consider the effect of increasing the initial radius K, simulating a user with less initial knowledge of
the covariance. We see that the method performs well, with error growing roughly logarithmically in
K, although larger choices of t appear optimal when K is large.

Lastly (Figure 7), we vary the privacy parameter ρ, fixing other parameters (d = 50, n = 8000,K =

10
√
d), showing that our method performs well as the privacy level increases.

4.2 Map of Europe

Figure 8: Privately recovering Europe. Top: color-
coded map of Europe, middle-left: non-private
projection, middle-right: naïve private baseline
(t = 1). Most structure is lost. Our results (bottom,
t = 3 and t = 5) are much more effective at
privately estimating the projection.

To demonstrate a practical use of our algorithm,
we investigate an application of our method to
private principal component analysis, a core
technique used by data scientists in exploratory
data analysis. We revisit the classic “genes
mirror geography” discovery of Novembre et
al. [30]. In this work, the authors investigated a
multivariate dataset collected as part of the Pop-
ulation Reference Sample (POPRES) project.
This dataset contained the genetic data of over
1387 European individuals, annotated by their
country of origin. The authors projected this
dataset onto its top two principal components to
produce a two-dimensional representation of the
genetic variation, which bears a strong resem-
blance to the map of Europe. However, a sig-
nificant pitfall is that the given dataset is highly
sensitive in nature, consisting of individuals’ ge-
netic data. As such, it would be advantageous if
we could extract the same insights from the data,
even under the constraint of differential privacy.
To this end, we investigate the efficacy of our
method in comparison to the baseline private
method.

Though the original dataset is very high dimen-
sional, we obtained a 20-dimensional version
of the dataset (n = 1387) from the authors’
GitHub.8 We randomly rotate the data to ensure
that any structure in their representation is lost.
Recall that the analyst must have some prior knowledge about the covariance: in our algorithm’s
phrasing, they must select a parameter K and a transformation of the data which places the true

8https://github.com/NovembreLab/Novembre_etal_2008_misc
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covariance between I and KI . We simulate an analyst who has minimal information about the data,
scaling up the data by a factor of 20 and setting K = 30 – the true top two eigenvalues afterwards are
roughly 4.8 and 1.2, so the loose upper bound on K signifies that there is significant uncertainty on
the scale of the data. An analyst with even less information could pick a larger scaling factor and K.

Our results are presented in Figure 8. The first subplot shows the results of the experiment using the
non-private empirical covariance. The second subplot is the private projection of the dataset using the
naïve method (t = 1). We can see that most of the structure is lost – the inner product of the top two
private principal components with the true ones are 0.48 and 0.28. The third subplot is the private
projection of the dataset when we use our method with t = 3. This bears a stronger resemblance to
the original image – the same dot products are now 0.98 and 0.48. As the top principal component is
much larger in magnitude than the second one, it is easier to accurately recover. Finally, the fourth
subplot is the private projection of our method with t = 5. This bears the strongest resemblance to
the original image, with dot products of 0.96 and 0.92. Thus, our method demonstrates promise for
improving performance of private exploratory data analysis.

5 Conclusions

We gave the first practical algorithms for differentially private estimation of mean and covariance in
the multivariate setting. We showed that these algorithms have strong theoretical guarantees (matching
the state-of-the-art), and are accurate even at relatively low sample sizes and high dimensions. They
significantly outperform all prior methods, possess few hyperparameters, and remain precise when
given minimal prior info about the data. We also showed that our methods can be used for private
PCA, a task which is common in data science and exploratory data analysis. As we are seeing the
rise of a number of new libraries for practical differentially private statistics and data analysis [31, 1]
we believe our results add an important tool to the toolkit for the multivariate setting.

Broader Impact

Our work provides realizable tools for private data analysis. Given recent concerns centered around
large-scale data collection and surveillance, the production of a mature and robust set of tools which
preserve privacy can help assuage public fears involving misuse of personal data. Additionally, we
hope that developing tools which approach the non-private accuracy will inspire companies to adopt
privacy by default.

As differential privacy requires technical domain knowledge, incorrect use or misinterpretation of
differential privacy is unfortunately easy and can lead to negative side effects including providing
a misleading or false sense of security. Such issues can be avoided by sufficient training and/or
consultation with experts in data privacy, although this may present more of a challenge for smaller,
resource-constrained organizations.
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