
We thank all reviewers for their detailed feedback. We will be sure to address all questions and incorporate all1

suggestions in the final version of the paper. Please see individual responses below.2

Reviewer #1. Thank you for your positive comments!3

Reviewer #2. “The decoding procedure in Phase 3 is quite elaborate...”. The regression procedures in phases 1 and4

2 only allow us to approximate K∞, representing the solution of the Riccati equations for (A,B,Q). This does not5

immediately allow us to approximate the optimal controller, which is a function of the latent state xt and is given by6

π?(yt) = K∞xt. To approximate π?(yt), we need to learn a decoder f̂t(yt) ≈ xt. The decoder learned during the first7

phase is only guaranteed to be accurate on the state distribution generated by taking random actions from the start state.8

There is no guarantee that this decoder will be accurate on the state distribution induced by a near-optimal policy, so we9

need to learn a new decoder at each step with new data generated using π̂. We emphasize that this is simply an instance10

of a common technical issue in statistical learning; In general, given a function f̂ such that EP ‖f̂(x)− f?(x)‖2 ≤ ε11

for a distribution P , we have no guarantee that EQ‖f̂(x)− f?(x)‖2 ≤ ε for a different distribution Q unless we put12

strong structural assumptions on either P/Q or the function class F . Since we do not make such assumptions, we solve13

this problem by re-learning on the new distribution.14

“In Algorithm 4 line 28, why is noise added to the optimal policy...?” This is closely related to the point above: Since15

we train on a distribution in which random noise is injected, our decoders are only guaranteed to have low error on this16

distribution. However, since the noise decays with O(ε), the resulting controller is still ε-suboptimal.17

“Most practical systems are only locally linear... How difficult is it to extend this algorithm to the locally-linear18

setting?” Extending our algorithm to the locally linear setting is a very exciting direction for future research, but we are19

not yet aware of sample complexity guarantees for locally linear control even when the state is fully observed, let alone20

for the more challenging nonlinear-observation setup we consider.21

Figure 1: Green
dot = position or
velocity vector.

Reviewer #3. “The paper lacks any empirical evaluation...With such an experiment this paper22

merits a higher score in my opinion” We believe that our paper represents a substantial theoretical23

contribution and stands on its own merits even without experiments. Nonetheless, we have24

performed some basic validation experiments, which we can include in the appendix, focusing in25

Phase 1 and 2 of the algorithm for simplicity. We considered a 2-d Newtonian dynamical system26

with unit process noise, where A ∈ R4×4 upper triangular matrix and B ∈ R4×2. We slightly27

dampened the dynamics to ensure that ρ(A) < 1. The final system is 2-controllable. Observations28

come in pairs of images, one for position information and one for velocity information. Each image29

contains one green pixel representing either a vector of position or velocity. Greyscale noise is30

added to the rest of the pixels (see Figure 1). We model the function h using a 3-layer convolutional31

neural network with Leaky ReLu nonlinearity. After executing phases 1 and 2 of our algorithm, we32

successfully recover the systems’ dynamics, i.e. the matrices A and B, up to a similarity transform.33

In our preliminary experiments, using nid = 30000, we can recover the system matrices up to element-wise absolute34

error of < 0.07.35

Reviewer #4. “The paper uses “decoder” in place of what in traditional autoencoding...” We will add a note on36

this to avoid any confusion. “...it is certainly not the case that this paper is introducing this as a novel problem...”37

Our main claim is that we introduce the theoretical problem of developing finite-sample bounds for this setting, which38

we believe is true. We will update the abstract to be more precise.39

“... if F is a family of neural networks, isn’t the search space (capacity) |F | increases exponentially? (much faster40

than T?)” Our sample complexity depends logarithmically in |F| and polynomially in T , and so even if |F| were to41

grow exponentially in T , this would not be an issue—the sample complexity would remain polynomial in T . More42

broadly, we emphasize that the log |F| factor in our theorem arises from a standard generalization bound for the square43

loss, and can trivially be replaced by more standard learning-theoretic quantities such as the Rademacher complexity or44

covering numbers of F (indeed, if you look at the appendix, our intermediate results are already in terms of covering45

numbers). In particular, this means that we can appeal to modern Rademacher complexity bounds for deep neural46

networks, such as Bartlett et al. (2017) or Golowich et al. (2018). We will make this clear in the final version.47

“During phase 3, is the sequence of decoders ft has any convergence promise? Can you give more detailed expla-48

nation of how parameterized neural network decoder updated for each parameter?” The objective function used to49

learn the (parameterized neural network) decoder f̂t is an average square-loss see (20) and (21). Any out-of-the-box50

neural network architecture / training algorithm (e.g., SGD) can be used to minimize the objective. As long as the51

objective is approximately minimized, Theorem 4 ensures that the decoders f̂t will have low decoding error, and thus52

lead to an approximately optimal controller. The sequence (f̂t) is not guaranteed to converge to a fixed decoder, but this53

is not required for our theoretical guarantees to hold.54


