
Learning the Linear Quadratic Regulator
from Nonlinear Observations

Zakaria Mhammedi
ANU and Data61

zak.mhammedi@anu.edu.au

Dylan J. Foster
MIT

dylanf@mit.edu

Max Simchowitz
UC Berkeley

msimchow@berkeley.edu

Dipendra Misra
Microsoft Research NYC
dimisra@microsoft.com

Wen Sun
Microsoft Research NYC
sun.wen@microsoft.com

Akshay Krishnamurthy
Microsoft Research NYC
akshaykr@microsoft.com

Alexander Rakhlin
MIT

rakhlin@mit.edu

John Langford
Microsoft Research NYC

jcl@microsoft.com

Abstract

We introduce a new problem setting for continuous control called the LQR with
Rich Observations, or RichLQR. In our setting, the environment is summarized
by a low-dimensional continuous latent state with linear dynamics and quadratic
costs, but the agent operates on high-dimensional, nonlinear observations such as
images from a camera. To enable sample-efficient learning, we assume the learner
has access to a class of decoder functions (e.g., neural networks) that is flexible
enough to capture the mapping from observations to latent states. We introduce a
new algorithm, RichID, which learns a near-optimal policy for the RichLQR with
sample complexity scaling only with the dimension of the latent state space and the
capacity of the decoder function class. RichID is oracle-efficient and accesses the
decoder class only through calls to a least-squares regression oracle. Our results
constitute the first provable sample complexity guarantee for continuous control
with an unknown nonlinearity in the system model.

1 Introduction

In reinforcement learning and control, an agent must learn to minimize its overall cost in a unknown
dynamic environment that responds to its actions. In recent years, the field has developed a com-
prehensive understanding of the non-asymptotic sample complexity of linear control, where the
dynamics of the environment are determined by a noisy linear system of equations. While studying
linear models has led to a number of new theoretical insights, most practical control tasks are nonlin-
ear. In this paper, we develop efficient algorithms with provable sample complexity guarantees for
nonlinear control with rich, flexible function approximation.

For some control applications, the dynamics themselves are truly nonlinear, but another case—
which is particularly relevant to real-world systems—is where there are (unknown-before-learning)
latent linear dynamics which are identifiable through a nonlinear observation process. For example,
cameras watching a robot may capture enough information to control its actuators, but the optimal
control law is unlikely to be a simple linear function of the pixels. More broadly, with the decrease
in costs of sensing hardware, it is now common to instrument complex control tasks with high-
throughput measurement apparatus such as cameras, lidar, contact sensors, or other alternatives.
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These measurements constitute rich observations which often capture relevant information about
the system state. However, deriving a control policy from these complex, high-dimensional sources
remains a significant challenge in both theory and practice.

The RichLQR setting. We propose a learning-theoretic framework for rich observation continuous
control in which the environment is summarized by a low dimensional continuous latent state (such
as joint angles), while the agent operates on high-dimensional observations (such as images from
a camera). While this setup is more general, we focus our technical developments on perhaps the
simplest instantiation: the rich observation linear quadratic regulator (RichLQR). The RichLQR
posits that latent states evolve according to noisy linear equations and that each observation can be
associated with a latent state by an unknown nonlinear mapping.

We assume that every possible high-dimensional observation of the system corresponds to a unique
latent system state, a property we term decodability. This assumption is natural in applications where
the observations contain significantly more information than needed to control the system. However,
decoding the latent state may require a highly nonlinear mapping, in which case linear control on the
raw observations will perform poorly. Our aim is to learn such a mapping from data and use it for
optimal control in the latent space.

1.1 LQR with Rich Observations

RichLQR is a continuous control problem described by the following dynamics:

xt+1 = Axt +But +wt, yt ∼ q(⋅ ∣ xt). (1)

Starting from x0, the system state xt ∈ Rdx evolves as a linear combination of the previous state,
a control input ut ∈ Rdu selected by the learner, and zero-mean i.i.d. process noise wt ∈ Rdx . The
learner does not directly observe the state, and instead sees an observation yt ∈ Rdy drawn from the
observation distribution q(⋅ ∣ xt).1 Here dy ≫ dx; xt might represent the state of a robot’s joints,
while yt might represent an image of the robot in a scene. Given a policy πt(y0, . . . ,yt) that selects
control inputs ut based on past and current observations, we measure performance as

JT (π) ∶= Eπ [ 1

T

T

∑
t=1

x⊺tQxt + u⊺tRut] , (2)

where Q,R ≻ 0 are quadratic state and control cost matrices and Eπ denotes the expectation when
the system’s dynamics (1) evolve under ut = πt(y0, . . . ,yt).

In our model, the dynamics matrices (A,B) and the observation distribution q(⋅ ∣ x) are unknown to
the learner. We assume that the control cost matrix R ≻ 0 is known, but the state cost matrix Q ≻ 0
is unknown (so as not to tie the cost matrices to the system representation). We also assume the
instantaneous costs ct ∶= x⊺tQxt + u⊺tRut, are revealed on each trajectory at time t (this facilitates
learning Q, but not A or B). The learner’s goal is to PAC-learn an ε-optimal policy: given access to
n trajectories from the dynamics (1), produce a policy π̂ such that JT (π̂) − JT (π∞) ≤ ε, where π∞
is the optimal infinite-horizon policy. If the dynamics matrices (A,B) were known and the state xt
were directly observed, the RichLQR would reduce to the classical LQR problem [18], and we could
compute an optimal policy for (2) using dynamic programming. Indeed, the optimal policy has the
form π∞(xt) =K∞xt, where K∞ is the optimal infinite-horizon state-feedback matrix given by the
Discrete Algebraic Riccati Equation (Eq. (A.1) in Appendix A.2). To facilitate the use of optimal
control tools in our nonlinear observation model, we make the following assumption, which asserts
the state xt can be uniquely recovered from the observation yt.
Assumption 1 (Perfect decodability). There exists a decoder function f⋆ ∶ Rdy → Rdx such that
f⋆(y) = x for all y ∈ supp q(⋅ ∣ x).2

While a perfect decoder f⋆ is guaranteed to exist under Assumption 1 (and thus the optimal LQR
policy can be executed from observations), f⋆ is not known to the learner in advance. Instead, we
assume that the learner has access to a class of functions F (e.g., neural networks) that is rich enough
to express the perfect decoder. Our statistical rates depend on the capacity of this class.

1Our results do not depend on dy, and in fact do not even require that y belongs to a vector space.
2We remark that f⋆ is typically referred to as an encoder rather than a decoder in the autoencoding literature.
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Assumption 2 (Realizability). The learner’s decoder class F contains the true decoder f⋆.

While these assumptions—especially decodability—may seem strong at first glance, we show that
without strong assumptions on the observation distribution, the problem quickly becomes statistically
intractable. Consider the following variant of the model (1):

xt+1 = Axt +But +wt, yt = f−1
⋆ (xt) + εt, (3)

where εt is an independent output noise variable with E[εt] = 0. In the absence of the noise εt, the
system (3) is a special case of (1) for which f⋆ is the true decoder, but in general the noise breaks
perfect decodability. Unfortunately, our first theorem shows that in general, output noise can lead to
exponential sample complexity for learning nonlinear decoders, even under very benign conditions.
Theorem (informal). Consider the dynamics (3) with dx = dy = du = T = 1 and unit Gaussian
noise. For every ε > 0 there exists an O(ε−1)-Lipschitz decoder f⋆ and realizable function class F

with ∣F ∣ = 2 such that any algorithm requires Ω(2( 1
ε
)2/3) trajectories to learn an ε-optimal decoder.

A full statement and proof for this lower bound is deferred to Appendix D for space.

Our Algorithm: RichID. Our main contribution is a new algorithmic principle, Rich Iterative De-
coding, or RichID, which solves the RichLQR problem with sample complexity scaling polynomially
in the latent dimension dx and the decoder class capacity ln∣F ∣. We analyze an algorithm based on
this principle called RichID-CE (“RichID with Certainty Equivalence”), which solves the RichLQR by
learning an off-policy estimator for the decoder, using the off-policy decoder to approximately recover
the dynamics (A,B), and then using these estimates to iteratively learn a sequence of on-policy
decoders along the trajectory of a near-optimal policy. Our main theorem is as follows.
Theorem 1 (Main theorem). Under appropriate regularity conditions on the system parameters
and noise process (Assumptions 1-8), RichID-CE learns an ε-optimal policy for horizon T using
C ⋅ (dx+du)

16T 4 ln∣F ∣
ε6

trajectories, where C is a problem-dependent constant.3

Theorem 1 shows that it is possible to learn the RichLQR with complexity polynomial in the latent
dimension and decoder class capacity ln∣F ∣, and independent of the observation space. To our
knowledge, this is the first polynomial-in-dimension sample complexity guarantee for continuous
control with an unknown system nonlinearity and general function classes. The main challenge
we overcome in attaining Theorem 1 is trajectory mismatch; a learned decoder f̂ which accurately
approximates the true decoder f⋆ well on one trajectory may significantly deviate from f⋆ on another.
Our algorithm addresses this issue using a carefully designed iterative decoding procedure to learn a
sequence of decoders on-policy.We present our main theorem for finite classes F for simplicity, but
this quantity arises only through standard generalization bounds for least squares, and can trivially be
replaced by learning-theoretic complexity measures such as Rademacher complexity (in fact, local
Rademacher complexity). For example, if F has pseudodimension d, one can replace ln∣F ∣ with
Õ(d).

Theorem 1 requires relatively strong assumptions on the dynamical system—in particular, we require
that the system matrixA is stable, and that the process noise is Gaussian. Nonetheless, we believe that
our results represent an important first step toward developing provable and practical sample-efficient
algorithms for continuous control beyond the linear setting, and we are excited to see technical
improvements addressing these issues in future research.

1.2 Technical Preliminaries

In the interest of brevity, we present an abridged discussion of technical preliminaries; all omitted
formal definitions, further assumptions, and additional notation are deferred to Appendix A. The
main assumptions used by RichID are as follows.
Assumption 3 (Gaussian initial state and process noise). The initial state satisfies x0 ∼ N(0,Σ0),
and process noise is i.i.d. wt ∼ N(0,Σw). Here, Σ0,Σw are unknown to the learner, with Σw ≻ 0.

Assumption 4 (Controllability). For each k ≥ 1, define Ck ∶= [Ak−1B ∣ . . . ∣ B] ∈ Rdx×kdu . We
assume that (A,B) is controllable, meaning that Cκ⋆ has full column rank for some κ⋆ ∈ N.

3See Theorem 1a in Appendix J for the full theorem statement.
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Note that Assumption 4 imposes the constraint duκ⋆ ≥ dx, which we use to simplify expressions.
Assumption 5 (Growth Condition). There exists L ≥ 1 such that ∥f(y)∥ ≤ Lmax{1, ∥f⋆(y)∥} for
all y ∈ Y and f ∈ F .
Assumption 6 (Stability). A is stable; that is, ρ(A) < 1, where ρ(⋅) denotes the spectral radius.

Our algorithms and analysis make heavy use of the Gaussian process noise assumption, which we use
to calculate closed-form expressions for certain conditional expectations that arise under the dynamics
model (1). We view relaxing this assumption as an important direction for future work. Controllability
is somewhat more standard [24], and the growth condition ensures predictions do not behave too
erratically. Stability ensures the state remains bounded without an initial stabilizing controller. While
assuming access to an initial stabilizing controller is fairly standard in the recent literature on linear
control, this issue is more subtle in our nonlinear observation setting. These assumptions can be
relaxed somewhat; see Appendix B.4. We make the stability assumption quantitative via the notion of
“strong stability” (Appendix A). Finally, we assume access to bounds on various system parameters.
Assumption 7. We assume that the learner has access to parameter upper bounds Ψ⋆ ≥ 1, α⋆ ≥ 1,
γ⋆ ∈ (0,1), and κ ∈ N such that (I) κ ≥ κ⋆, (II) A and (A+BK∞) are both (α⋆, γ⋆)-strongly stable,
and (III) Ψ⋆ is an upper bound on the operator norms of A, B, Q, R, Σw, Σ−1

w , Σ0, K∞, and P∞.4

We use O⋆(⋅) to suppress polynomial factors in α⋆, γ−1
⋆ , (1 − γ⋆)−1,Ψ⋆, L, and σ−1

min(Cκ), and all
logarithmic factors except for ln∣F ∣ and ln(1/δ). We also write f = Ǒ(g) if f(x) ≤ cg(x) for all
x ∈ X , where c = poly(γ⋆(1 − γ⋆), α−1

⋆ ,Ψ
−1
⋆ , L

−1, σmin(Cκ)) is a sufficiently small constant.

2 An Algorithm for LQR with Rich Observations

Algorithm 1 RichID-CE
1: Inputs:

ε (suboptimality), T (horizon), F (decoder class), dx, du (latent dimensions),
Ψ⋆, κ,α⋆, γ⋆ (system parameter upper bounds), R (control cost).

2: Parameters: // see Appendix J for values.

nid, nop // sample size for Phase/Phase II and Phase III, respectively.

κ0 // burn-in time index.

rid, rop // radius for sets Hid and Hop.

σ2 // exploration variance.

b̄ // clipping parameter for decoders.

3: Phase I // learn a coarse decoder (see Section 2.1)

4: Set f̂id ← GETCOARSEDECODER(nid, κ0, κ, rid). // Algorithm 3

5: Phase II // learn system’s dynamics and cost (see Section 2.2)

6: Set (Âid, B̂id, Σ̂w,id, Q̂id) ← SYSID(f̂id, nid, κ0, κ). // Algorithm 4

7: Phase III // compute optimal policy (see Section 2.3 and Appendix H)

8: Set π̂ ← COMPUTEPOLICY(Âid, B̂id, Σ̂w,id, Q̂id,R,nop, κ, σ
2, T, b̄, rop). // Algorithm 5

9: Return: π̂.

We now present our main algorithm, RichID-CE (Algorithm 1), which attains a polynomial sample
complexity guarantee for the RichLQR.

Algorithm overview. Algorithm 1 consists of three phases. In Phase I (Algorithm 3), we roll in
with Gaussian control inputs and learn a good decoder under this roll-in distribution by solving a
certain regression problem involving our decoder class F . In Phase II (Algorithm 4), we leverage
this decoder to learn a model (Â, B̂) for the system dynamics (up to a similarity transform). Due
to linearity of the dynamics, this model is valid on any trajectory. Moreover, we can synthesize a
controller K̂ so that the controller ut = K̂xt is optimal for (Â, B̂), and thus near-optimal for (A,B).

4Here, P∞ solves the DARE ((DARE) in Appendix A.2), and K∞ is the optimal infinite horizon controller.
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To actually implement this feedback controller, we still need a good decoder for the state. Unfortu-
nately, our decoder from Phase I may be inaccurate along the optimal (or near-optimal) trajectory.
Thus, in Phase III (Algorithm 5) we inductively solve a sequence of regression problems—one for
each time t = 0, . . . , T—to learn a sequence of state decoders (f̂t), such that for each t, f̂t ≈ f⋆
under the roll-in distribution induced by playing K̂f̂s(ys) for s < t. We do this by rolling in with
this near-optimal policy until t, but rolling out with purely Gaussian inputs. The former ensures that
the decoder is accurate along the desired trajectory. The latter ensures that the regression at time
t is essentially “independent” of approximation errors incurred by steps 0, . . . , t − 1, avoiding an
accumulation of errors which would otherwise compound exponentially in the horizon T .

In what follows, we walk through each phase in detail and explain the motivation, the technical
assumptions required, and the key performance guarantees.

2.1 Phase I: Learning a Coarse Decoder

In Phase I (Algorithm 3), we gather 2nid trajectories by selecting independent standard Gaussian
inputs ut ∼ N(0, Idu) for each 0 ≤ t ≤ κ1 ∶= κ0 + κ, where we recall that κ is an upper-bound on the
controllability index κ⋆, and where κ0 is a “burn-in” time used to ensure mixing to a near-stationary
distribution (this is useful for learning (A,B) in (9), ensuring f̂id is accurate at both time κ1 and
κ1 + 1). κ0 is given by:

κ0 ∶= ⌈(1 − γ⋆)−1 ln (84Ψ5
⋆α

4
⋆dx(1 − γ⋆)−2 ln(103 ⋅ nid))⌉ . (4)

Let (u(i)
0 ,y

(i)
0 ,c

(i)
0 ), . . . , (u(i)

κ1 ,y
(i)
κ1 ,c

(i)
κ1 ),y

(i)
κ1+1 denote the ith trajectory gathered in this fashion.

We now show that for the state distribution induced the control inputs above, the true decoder f⋆ can
be recovered up to a linear transformation by solving a regression problem whose goal is to predict a
sequence of control inputs from the observations at time κ1. Define v ∶= (u⊺κ0

, . . . ,u⊺κ1−1)⊺. Our
key lemma (Lemma G.3) shows that

∀y ∈ Rdy , h⋆(y) ∶= E[v ∣ yκ1 = y] = C⊺κΣ−1
κ1
f⋆(y), (5)

Cκ ∶= [Aκ−1B ∣ . . . ∣ B]; and Σκ1
∶= Aκ1Σ0(Aκ1)⊺ + ∑κ1

t=0A
t−1(Σw + BB⊺)(At−1)⊺. where we

recall that Cκ = [Aκ−1B ∣ . . . ∣ B] and define

Σκ1
∶= Aκ1Σ0(Aκ1)⊺ +

κ1

∑
t=0

At−1(Σw +BB⊺)(At−1)⊺.

This lemma relies on perfect decodability and the fact that v and xκ1 are jointly Gaussian. In
particular, by verifying ∥C⊺κΣ−1

κ1
∥

op
≤
√

Ψ⋆, the expression (5) ensures that h⋆ belongs to the class

Hid ∶= {Mf(⋅) ∣ f ∈ F , M ∈ Rκdu×dx , ∥M∥op ≤
√

Ψ⋆}(that is, we can take rid =
√

Ψ⋆). The
main step of Phase I solves the well-specified regression problem:

ĥid ∈ arg min
h∈Hid

nid

∑
i=1

∥h(y(i)
κ1

) − v(i)∥2. (6)

Phase I is computationally efficient whenever we have a regression oracle for the induced function
class Hid. For many function classes of interest, such as linear functions and neural networks, solving
regression over this class is no harder than regression over the original decoder class F , so we believe
this is a reasonably practical assumption. For nid sufficiently large, a standard analysis for least
squares shows that the regressor ĥid has low prediction error relative to h⋆ in (5). However, this
representation is overparameterized and takes values in Rκdx even though the true state lies in only
dx dimensions. For the second part of Phase I, we perform principle component analysis to reduce
the dimension to dx. Specifically, we compute a dimension-reduced decoder via

f̂id(y) ∶= V̂ ⊺
id ⋅ ĥid(y) ∈ Rdx , (7)

where V̂id ∈ Rκdu×dx is an arbitrary orthonormal basis for the top dx eigenvectors of the empirical
second moment matrix ∑2nid

i=nid+1 ĥid(y(i)
κ1 )ĥid(y(i)

κ1 )⊺/nid. This approach exploits that the output
of the Bayes regressor h⋆—being a linear function of the dx-dimensional system state—lies in a
dx-dimensional subspace. Having reviewed the two components of Phase I, we can now state the
main guarantee for this phase. In light of (5), the result essentially follows from standard tools for
least-squares regression with a well-specified model, plus an analysis for PCA with errors in variables.
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Theorem 2 (Guarantee for Phase I). If nid = Ω⋆(dxduκ(ln ∣F ∣ + dudxκ)), then with probability at
least 1 − 3δ, there exists an invertible matrix Sid ∈ Rdx×dx such that

E∥f̂id(yκ1) − Sidf⋆(yκ1)∥2 ≤ O⋆(
duκ(ln ∣F ∣ + dudxκ) ln3(nid/δ)

nid
),

and for which σmin(Sid) ≥ σmin,id ∶= σmin(Cκ)(1 − γ⋆)(4Ψ2
⋆α

2
⋆)−1 and ∥Sid∥op ≤ σmax,id ∶=

√
Ψ⋆.

2.2 Phase II: System Identification

In Phase II, we use the decoder from Phase I to learn the system dynamics, state cost, and process
noise covariance up to the basis induced by the transformation Sid. Our targets are:

Aid ∶= SidAS
−1
id , Bid ∶= SidB, Σw,id ∶= SidΣwS

⊺
id, Qid ∶= S−⊺id QS

−1
id . (8)

The key technique we use is to pretend that the decoder’s output f̂id(yκ1) is the true state xκ1 , then
perform regressions which mimic the dynamics in (1):

(Âid, B̂id) ∈ arg min
(A,B)

3nid

∑
i=2nid+1

∥f̂id(y(i)
κ1+1) −Af̂id(y(i)

κ1
) −Bu(i)

κ1
∥2, and (9)

Σ̂w,id = 1

nid

3nid

∑
i=2nid+1

(f̂id(y(i)
κ1+1) − Âidf̂id(y(i)

κ1
) − B̂idu(i)

κ1
)⊗2, where v⊗2 ∶= vv⊺. (10)

Similarly, we recover the state cost Q by fitting a quadratic function to observed costs via

Q̃id ∈ arg min
Q

3nid

∑
i=2nid+1

(c(i)
κ1

− (u(i)
κ1

)⊺Ru(i)
κ1

− f̂id(y(i)
κ1

)⊺Qf̂id(y(i)
κ1

))
2
, (11)

and then setting Q̂id = ( 1
2
Q̃id + 1

2
Q̃⊺

id)+ as the final estimator, where (⋅)+ truncates non-positive
eignvalues to zero. This is the only place where the algorithm uses the cost oracle.

Since Theorem 2 ensures that f̂id(yκ1) is not far from Sidxκ1 , the regression problems (9)–(11) are
all nearly-well-specified, and we have the following guarantee.

Theorem 3 (Guarantee for Phase II). If nid = Ω⋆(d2
xduκ(ln ∣F ∣ + dudxκ)max{1, σmin(Cκ)−4}),

then with probability at least 1 − 11δ over Phases I and II,

∥[Âid; B̂id] − [Aid;Bid]∥op ∨ ∥Q̂id −Qid∥op ∨ ∥Σ̂w,id −Σw,id∥op ≤ εid, (12)

where εid ≤ O⋆(n−1/2
id ln2(nid/δ)

√
dxduκ(ln ∣F ∣ + dudxκ)).

To simplify presentation, we assume going forward that Sid = Idx , which is without loss of generality
(at the cost of increasing parameters such as Ψ⋆ and α⋆ by a factor of ∥Sid∥op ∨ ∥S−1

id ∥op),5 and drop
the “id” subscript on the estimators Âid, B̂id, and so forth to reflect this.6

2.3 Phase III: Decoding Observations Along the Optimal Path

Given the estimates (Â, B̂, Q̂) from Theorem 3, we can use certainty equivalence to synthesize an
optimal controller matrix K̂ for the estimated dynamics. As long as εid in (12) is sufficiently small,
the policy ut = K̂xt is stabilizing and near optimal.

To (approximately) implement this policy from rich observations, it remains to accurately estimate the
latent state. The decoder learned in Phase I does not suffice; it only ensures low error on trajectories
generated with random Gaussian inputs, and not on the trajectory induced by the near-optimal policy.
Indeed, while it is tempting to imagine that the initial decoder f̂ might generalize across different
trajectories, this is not the case in unless we place strong structural assumptions on F .

5The controller SidK∞ attains the same performance on (Aid,Bid) as K∞ on (A,B)
6We make this reasoning precise in the proof of Theorem 1.
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Instead, we iteratively learn a sequence of decoders f̂t—one per timestep t = 1, . . . , T . Assuming
K̂ ≈K∞ is near optimal, the suboptimality JT (π) − JT (π∞) of the policy π(y0∶t) ∶= K̂f̂t(y0∶t) is
controlled by the sum ∑Tt=1 Eπ∥f̂t(y0∶t) − f⋆(yt)∥

2
(note that the regret does not take into account

step 0). Thus, to ensure low regret, we ensure that, for all t ≥ 1, the decoder f̂t has low prediction error
on the distribution induced by running π with previous decoders (f̂τ)1≤τ<t and K̂. This motivates
the following iterative decoding procedure, executed for each time step t = 1, . . . , T :

Step 1. Collect 2nop trajectories by executing the randomized control input uτ = K̂f̂τ(y0∶τ) + ντ ,
for 0 ≤ τ ≤ t, and uτ = ντ , for t < τ < t + κ, where ντ ∼ N(0, σ2Idu); here, nop ∈ N and
σ2 ≤ 1 are algorithm parameters to be specified later.

Step 2. Obtain a residual decoder ĥt satisfying (13) by solving regressions (21) and (22) using a
regression oracle.

Step 3. Form a state decoder f̂t+1 from ĥt and f̂t using the update equation (14).

Forming the decoder f̂1 requires additional regression steps (described in Appendix B.3) which
account for the uncertainty in the initial state x0. At each subsequent time t, the most important part
of the procedure above is Step 2, which aims to produce a regressor ĥt such that

ĥt(yt+1) −Aĥt(yt) ≈ But +wt = xt+1 −Axt. (13)
As we shall see, enforcing accuracy on the increments xt+1 −Axt allows us to set up regression prob-
lems which do not depend on, and thus do not propagate forward, the errors in f̂t. In contrast, a naive
regression—say, arg minf E [∥f(yt+1) − (A +BK̂)f̂t(yt) −Bνt∥2]—could compound decoding
errors exponentially in t.

Luckily, the increments in (13) are sufficient for recovery of the state by unfolding a recursion; this
comprises Step 3. Let b̄ > 0 be an algorithm parameter. Given a regressor ĥt satisfying (13) and the
current decoder f̂t, we form next state decoder f̂t+1 via

f̂t+1(⋅) ∶= f̃t+1(⋅)I{∥f̃t+1(⋅)∥ ≤ b̄}; f̃t+1(y0∶t+1) ∶= (ĥt(yt+1) − Â ⋅ ĥt(yt)) + Â ⋅ f̂t(y0∶t), (14)

where we set f̃0 ≡ f̂0 ≡ 0. By clipping f̃t, we ensure states remain bounded, which simplifies the
analysis. Crucially, by building our decoders (f̂τ) this way,we ensure that the decoding error grows
at most linearly in t—as opposed to exponentially—as long as the system is stable (i.e. ρ(A) < 1).

It remains to describe how to obtain a regressor ĥt satisfying (13). To this end, we use the added
Gaussian noise νt to set up the regression.

Warm-up: Invertible B. As a warm-up, suppose that B is invertible. Then, for the matrix
M1 ∶= B⊺(BB⊺ + σ−2Σw)−1, one can compute

E[νt ∣ y0∶t+1]
(∗)= E[νt ∣ wt +Bνt]

(∗∗)= M1(wt +Bνt) =M1(xt+1 −Axt −BK̂f̂t(y0∶t)). (15)
The identity (∗) uses the fact that conditioning on y0∶t+1 is equivalent to conditioning on x0∶t+1, due
to perfect decodability. We then use that the conditional distribution of νt ∣ x0∶t+1 is equivalent to
νt ∣ xt,xt+1, which is in turn equivalent to νt ∣ wt +Bνt due to the linear dynamics Eq. (1).

Since conditional expectations minimize the square loss, learning a residual regressor ĥt which
approximately minimizes

h↦ E [∥νt −M1(h(yt+1) −Ah(yt) −BK̂f̂t(y0∶t))∥2] (16)

produces a decoder ĥt+1 approximately satisfying (13):

M1(ĥt(yt+1) −Aĥt(yt+1)) ≈M1(xt+1 −Axt+1), (17)

since M1(ĥt(yt+1) −Aĥt(yt+1) −BK̂f̂t(y0∶t)) ≈M1(xt+1 −Axt+1 −BK̂f̂t(y0∶t)).

For invertible B, the matrix M1 is invertible, and so from (17), our state decoder ĥt+1 indeed satisfies
(13): ĥt(yt+1) −Aĥt(yt) ≈ xt+1 −Axt. We emphasize that regressing to purely Gaussian inputs νt
is instrumental in ensuring the conditional expectation equality in (15) holds. The noise variance σ2

trades off between the conditioning of the regression, and the excess suboptimality caused by noise
injection; we choose it so that the final suboptimality is O⋆(ε).
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Extension to general controllable systems. For non-invertible B, we aggregate more regressions.
For k ∈ [κ], let Mk ∶= C⊺k(CkC

⊺
k + σ

−2∑ki=0A
i−1Σw(Ai−1)⊺)−1, where we recall Ck from Assump-

tion 4. Generalizing (15), we show (Lemma I.7 in Appendix H) that the outputs (yτ) and the
Gaussian perturbation vector νt∶t+k−1 ∶= (ν⊺t , . . . ,ν⊺t+k−1)

⊺ generated according to Step 1 above
satisfy, for all k ∈ [κ],

E[νt∶t+k−1 ∣ y0∶t,yt+k] =Mk(xt+k −Akxt −Ak−1Bf̂t(y0∶t)) =∶ φ⋆t,k(y0∶t+k). (18)

Defining concatentations φ⋆
t ∶= (φ⋆t,1, . . . , φ⋆t,κ) andM ∶= [M⊺

1 ∣ (M2A)⊺ ∣ ⋯ ∣ (MκA
κ−1)⊺]⊺ and

stacking the conditional expectations gives:

E[φ⋆
t (y0∶t+κ) ∣ y0∶t+1] =M(Bνt +wt) =M(f⋆(yt+1) −Af⋆(yt) −BK̂f̂t(y0∶t)). (19)

Hence, with infinite samples (and knowledge of B), we are able to recover the residual quantity
M(f⋆(yt+1) − Af⋆(yt)). Again, the Gaussian inputs enable the conditional expectations (18)
and (19). The crucial insight for the stacked regression is that by rolling in and switching to pure
Gaussian noise only after time t, we maintain Gaussianity, while still yielding decoders that are valid
on-trajectory up to time t. To ensure that we accurately recover the increment f⋆(yt+1) −Af⋆(yt),
we require the overdetermined matrixM to be invertible. To facilitate this, letMσ2 denote the value
ofM as a function of σ2, and let

M ∶= lim
σ→0
Mσ2/σ2 (20)

be the (normalized) limiting matrix as noise tends to zero, which is an intrinsic problem parameter.

Assumption 8. The limiting matrixM satisfies λM ∶= λ1/2
min(M

⊺M) > 0.

This assumption is central to the analysis, and we believe it is reasonable: we are guaranteed that it
holds if the system is controllable and either A or B has full column rank—see Appendix B.5.

To approximate the conditional expectations (18), (19) from finite samples, we define another
expanded function class

Hop ∶= {Mf(⋅) ∣ f ∈ F ,M ∈ Rdx×dx , ∥M∥op ≤ Ψ3
⋆},

and use (M̂k) and M̂ to denote plugin estimates of (Mk) andM, respectively, constructed from Â

and B̂. Here, the subscript “op” subscript on Hop abbreviates “on-policy”.

Next, given a state decoder f̂t for time t and k ∈ [κ], we define

φ̂t,k(h,y0∶t,yt+k) ∶= M̂k (h(yt+k) − Âkh(yt) − Âk−1B̂K̂f̂t(y0∶t)) for h ∈ Hop.

With this and the 2nop trajectories {(y(i)
τ ,ν

(i)
τ )}1≤i≤2nop gathered in Step 1 above, we obtain ĥt by

solving the following two-step regression:

ĥt,k ∈ arg min
h∈Hop

nop

∑
i=1

∥φ̂t,k(h,y(i)
0∶t ,y

(i)
t+k) − ν

(i)
t∶t+k−1∥

2
, ∀k ∈ [κ], (21)

ĥt ∈ arg min
h∈Hop

2nop

∑
i=nop+1

∥M̂ ⋅ (h(y(i)
t+1) − Â ⋅ h(y(i)

t ) − B̂K̂ ⋅ f̂t(y(i)
0∶t )) − φ̂t(y(i)

0∶t+κ)∥
2
, (22)

where φ̂t(y0∶t+κ) ∶= [φ̂t,1(ĥt,1,y0∶t,yt+1)⊺, . . . , φ̂t,κ(ĥt,κ,y0∶t,yt+κ)⊺]⊺ ∈ R(1+κ)κdu/2. (23)

We see that the first regression approximates (18), while the second approximates (19). We can now
state the guarantee for Phase III.

Theorem 4. Suppose ε2
id ≤ Ǒ((ln∣F ∣ + d2

x)n−1
op). If we set b̄2 = Θ⋆((dx + du) ln(nop)), rop = Ψ3

⋆,
and σ2 = Ǒ(λM), we are guaranteed that for any δ ∈ (0,1/e], with probability at least 1 −O(κTδ),

Eπ̂ [max
1≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2] ≤ O⋆(
λ−2
M
σ4

⋅ T 3κ2(dx + du)4 ⋅
(d2

x + ln∣F ∣) ln5(nop/δ)
nop

). (24)

To obtain Theorem 1, we combine Theorem 3 and Theorem 4, then appeal to Theorem 7 (Appendix F),
which bounds the policy suboptimailty in terms of regression errors. Finally, we set σ ∝ ε so that the
suboptimality due to adding the Gaussian noise (νt)0≤t≤T is low. See Appendix J for details.
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3 Discussion

We introduced RichID, a new algorithm for sample-efficient continuous control with rich observations.
We hope that our work will serve as a starting point for further research into sample-efficient
continuous control with nonlinear observations, and we are excited to develop the techniques we have
presented further, both in theory and practice. To this end, we list a few interesting directions and
open questions for future work.

• While our results constitute the first polynomial sample complexity guarantee for the RichLQR,
the sample complexity can certainly be improved. An important problem is to characterize the
fundamental limits of learning in the RichLQR and design algorithms to achieve these limits, which
may require new techniques. Of more practical importance, however, is to remove various technical
assumptions used by RichID. We believe the most important assumptions to remove are (I) the
assumption that the open-loop system is stable (Assumption 6), which is rarely satisfied in practice;
and (II) the assumption that process noise is Gaussian, which is currently used in a rather strong
sense to characterize the Bayes optimal solutions to the regression problems solved in RichID.

• RichID-CE is a model-based reinforcement learning algorithm. We are excited at the prospect of
expanding the family of algorithms for RichLQR to include provable model-free and direct policy
search-based algorithms. It may also be interesting to develop algorithms with guarantees for more
challenging variants of the RichLQR, including regret rather than PAC-RL, and learning from a
single trajectory rather than multiple episodes.

• Can we extend our guarantees to more rich classes of latent dynamical systems? For example, in
practice, rather than assuming the latent system is linear, it is common to assume that it is locally
linear, and apply techniques such as iterative LQR [44].

Related work. Our model and approach are related to the literature on Embedding to Control
(E2C), and related techniques [44, 2, 13, 22, 36, 7] (see also [23]). At a high level, these approaches
learn a decoder that maps images down to a latent space, then performs simple control techniques
such as iterative LQR (iLQR) in the latent space (Watter et al. [44] is a canonical example). These
approaches are based on heuristics, and do not offer provable sample complexity guarantees to learn
the decoder in our setting.

Our work is also related to recent results on rich observation reinforcement learning with discrete
actions [16]. We view our model as the control-theoretic analog of the Block MDP model studied
by Du et al. [8], Misra et al. [28], in which a latent state space associated with a discrete Markov
Decision Process is decodable from rich observations. However, our RichLQR setting is quite
different technically due to the continuous nature of the latent space, and the results and techniques
are incomparable. In particular, discretization approaches immediately face a curse-of-dimensionality
phenomenon and do not yield tractable algorithms. Interestingly, our setting does not appear to have
low Bellman rank in the sense of Jiang et al. [16].

A recent line of work [29, 33, 11] gives non-asymptotic system identification guarantees for a simple
class of “generalized linear” dynamical systems. These results address a non-linear dynamic system,
but are incomparable to our own as the non-linearity is known and the state is directly observed. Our
results also are related to the LQG problem, which is a special case of (3) with linear observations;
recent work provides non-asymptotic guarantees [24, 39, 20]. These results show that linear classes
do not encounter the sample complexity barrier exhibited by Theorem 5.

Finally, we mention two concurrent works which consider similar settings. First, [12] give guarantees
for a simpler problem in which we observe a linear combination of the latent state and a nonlinear
nuisance parameter, and where there is no noise. Second, Dean and Recht [6] (see also Dean et al.
[7]) give sample complexity guarantees for a variant of the our setting in which there is no system
noise, and where yt = g⋆(Cxt), where C ∈ Rp×dx and g⋆ ∶ Rp → Rdy is a smooth function. They
provide a nonparametric approach which scales exponentially in the dimension p. Compared to this
result, the main advantage of our approach is that it allows for general function approximation; that
is, we allow for arbitrary function classes F , and our results depend only on the capacity of the
class under consideration. In terms of assumptions, the addition of the C matrix allows for maps that
(weakly) violate the perfect decodability assumption; we suspect that our results can be generalized
in this fashion. Likewise, we believe that our stability assumption (i.e. ρ(A) < 1) can be removed in
the absence of system noise (system noise is one of the primary technical challenges we overcome).
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Broader Impact

There is potential for research into the RichLQR setting, or more generally perception-based control,
to have significant societal impact. Perception-based control systems are already being deployed in
applications such as autonomous driving and aerial vehicles where algorithmic errors can have catas-
trophic consequences. Unfortunately, there has been little research into the theoretical foundations of
such systems, and so the methods being deployed do not enjoy the formal guarantees that we should
demand for high-stakes applications. Thus, we are hopeful that with a principled understanding of
the foundations of perception-based control, which we pursue here, we will develop the tools and
techniques to make these systems safe, robust, and reliable.
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A Organization, Notation, and Preliminaries

A.1 Appendix Organization

This appendix is organized as follows.

• This section (Appendix A)—beyond this overview—contains additional notation and techni-
cal preliminaries omitted from the main body for space.

• Appendix B contains omitted details for the main algorithm (RichID-CE), including pseu-
docode with parameter values instantiated precisely (Appendix B.2), an overview of the
initial state learning phase (Appendix B.3), and extensions and additional discussion of
assumptions (Appendix B.4, Appendix B.5).

• Appendix C contains a validation experiment for Phases I and II of RichID-CE.
• Appendix D contains a formal statement and proof for the lower bound (Theorem 5).
• Appendix E and Appendix F contain basic technical tools for learning theory and linear

control theory, respectively, which are invoked within the proof of the main theorem.
• All subsequent sections are devoted to proving our main theorem (Theorem 1):

– Appendix G contains statements and proofs for all results concerning Phases I and II
of RichID-CE, including Theorem 2 and Theorem 3.

– Appendix H contains statements and proofs for Phase III, including Theorem 4.
– Appendix J states the full version of the Theorem 1 (Theorem 1a), and shows how to

deduce the proof from the results of Appendix G and Appendix H.

We remind the reader that each numbered theorem from the main body has an corresponding “full”
version in the appendix, which we denote using the “a” suffix (e.g., the full version of Theorem 1 is
Theorem 1a).

A.2 Additional Preliminaries

Policies, interaction model, and sample complexity. Formally, a policy π for the setup (1) is
a sequence of mappings (πt)Tt=0, where πt maps the observations y0, . . . ,yt to an output control
signal ut. In each round of interaction, the learner proposes a policy π and observes a trajectory
u0,y0, . . . ,uT ,yT where ut = πt(y0, . . . ,yt). We measure the sample complexity to learn an
ε-optimal policy for JT in terms of the number of trajectories observed in this model. However,
to simplify the description of our algorithm, we allow the learner to execute trajectories of length
2T + O⋆(1) during the learning process, even though the objective is JT . To avoid trivial issues
caused by unidentifiability of the initial state x0, we define JT to measure cost on times 1, . . . , T . On
the other hand, our rollouts begin at time 0: the initial state is x0, and the first control input executed
is u0.

Cost functions. We assume that the control cost matrix R ≻ 0 is known but, to avoid tying costs to
the unknown latent representation x, we assume that the state cost matrix Q ≻ 0 is unknown. Instead,
we assume that the learner has access to an additional cost oracle which on each trajectory at time t
reveals ct ∶= x⊺tQxt + u⊺tRut. For simplicity, we place the following mild regularity conditions on
the cost matrices.
Assumption 9. The cost matrices Q and R satisfy λmin(Q), λmin(R) ≥ 1.

This assumption can be made to hold without loss of generality whenever Q,R ≻ 0 via rescaling.

The DARE and infinite-horizon optimal control. Controllability (and more generally stabilizabil-
ity) implies that there is a unique positive definite solution P∞ ≻ 0 to the discrete algebraic Riccati
equation (DARE),

P = A⊺PA +Q −A⊺PB(R +B⊺PB)−1B⊺PA, (DARE)

which characterizes the optimal cost function for the LQR problem in the infinite-horizon setting.
Our analysis uses P∞, and our algorithms use the optimal infinite-horizon state feedback controller

K∞ ∶= − (R +B⊺P∞B)−1B⊺P∞A. (A.1)
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When the state xt is directly observed, the optimal infinite-horizon controller is the time-invariant
feedback policy u = K∞x. Thus, the optimal infinite-horizon policy for RichLQR, given the exact
decoder, is π∞(y) =K∞f⋆(y). We use this controller as our benchmark. Our analysis also uses the
closely related infinite-horizon covariance matrix

Σ∞ ∶= R +B⊺P∞B.

Our algorithm relies on certainty equivalence, in which we estimate K∞ by solving the DARE with
plug-in estimates Â, B̂ of (A,B) to obtain a matrix P̂ , and take K̂ ∶= −(R + B̂⊺P̂ B̂)−1B̂⊺P̂ Â. For
this, it will be convenient to define the following operator.
Definition 1 (DARE operator). We define the DARE operator as the operator which takes in matrices
(A0,B0,R0,Q0) with R0,Q0 ⪰ 0, and returns (P,K) such that

P = A⊺
0PA0 +Q −A⊺

0PB0(R +B⊺
0PB0)−1B⊺

0PA0,

K = −(R +B⊺
0PB0)−1B⊺

0PA0.

Strong stability. We quantify stability via strong stability [4]. Intuitively, a matrix X is strongly
stable if its powers Xn decay geometrically in a quantitative sense.
Definition 2 (Strong stability). A matrix X ∈ Rdx×dx is said to be (α, γ)-strongly stable if there
exists S ∈ Rdx×dx such that ∥S∥op∥S−1∥op ≤ α and ∥S−1XS∥op ≤ γ < 1.

We frequently make use of the fact that if X is (α, γ)-strongly stable, then

∥Xn∥op = ∥S(S−1XS)nS−1∥op ≤ ∥S−1∥op∥S∥op∥S−1XS∥nop ≤ αγn.

We let (αA, γA) and (α∞, γ∞) be the strong parameters for A and Acl,∞ ∶= A +BK∞ respectively.
Under Assumption 4 and Assumption 6, we are guaranteed that γA, γ∞ < 1 (see Proposition F.1 and
Proposition F.2 for quantitative bounds). Finally, we recall from Assumption 7 that we assume the
learner knows upper bounds (α⋆, γ⋆) such that αA ∨ α∞ ≤ α⋆ and γA ∨ γ∞ ≤ γ⋆.

A.3 Additional Notation

Asymptotic notation. Lastly, we adopt standard non-asymptotic big-oh notation. For functions
f, g ∶ X → R+, we write f = O(g) if there exists some universal constant C > 0, which does not
depend on problem parameters, such that f(x) ≤ Cg(x) for all x ∈ X . Our proofs also use the
shorthand f(x) ≲ g(x) to denote f = O(g). We use Õ(⋅) so suppress logarithmic dependence on
system parameters, time horizon, and dimension. We use O⋆(⋅) to suppress polynomial factors in
α⋆, γ

−1
⋆ , (1 − γ⋆)−1,Ψ⋆, L, and σ−1

min(Cκ), and all logarithmic factors except for ln∣F ∣ and ln(1/δ).
We write f = Ω⋆(g) if f(x) ≥ Cg(x) for all x ∈ X , where C is a sufficiently large constant whose
value is polynomial in the same parameters. Lastly, we write f = Ǒ(g) if f(x) ≤ cg(x) for all x ∈ X ,
where c = poly(γ⋆(1 − γ⋆), α−1

⋆ ,Ψ
−1
⋆ , L

−1, σmin(Cκ)) is a sufficiently small constant.

General notation. For a vector x ∈ Rd, we let ∥x∥ denote the euclidean norm and ∥x∥∞ denote the
element-wise `∞ norm. We let ∥x∥A =

√
x⊺Ax for A ⪰ 0. For a matrix A, we let ∥A∥op denote the

operator norm. If A is symmetric, we let λmin(A) denote the minimum eigenvalue. For a potentially
asymmetric matrix A ∈ Rd×d, we let ρ(A) ∶= max{∣λ1(A)∣, . . . , ∣λd(A)∣} denote the spectral radius.
For a symmetric matrix M ∈ Rd, (M)+ denotes the result of thresholding all negative eigenvalues
to zero, and we let λ1(M), . . . , λd(M) denote the eigenvalues of M , sorted in decreasing order.
Similarly, for a matrix A ∈ Rd1×d2 , we let σ1(A), . . . , σd1∧d2(A) denote the singular values of A,
sorted in decreasing order, and use the shorthand σmin(A) = σd1∧d2(A). We let vec(A) ∈ Rd1d2 be
the vectorization of A. For matrices A and B, we use [A ∣ B] or [A;B] to denote their horizontal
concatenation.
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Notation Definition
Basic Definitions

(A,B) system matrices
q(⋅∣x) emissions model
f⋆ true decoder
F function class
wt process noise, which follows wt ∼ N(0,Σw)
xt system state, which has initial state x0 ∼ N(0,Σ0)
ut control input
yt observations
ct observed cost, with ct = x⊺tQxt + u⊺tRut
R,Q control cost, state cost
T horizon
JT cost functional
π∞ infinite horizon optimal policy
Ck controllability matrix ([Ak−1B ∣ . . . ∣ B])
K∞, P∞, Σ∞ infinite-horizon optimal controller, Lyapunov matrix, covariance matrix (DARE)

System Parameter Bounds
Ψ⋆ upper bound on system parameter norms (Assumption 7)
(α⋆, γ⋆) upper bound on strong stability parameter (Assumption 7)
κ controllability index upper bound (Assumption 7)
L growth condition on F (Assumption 5)
(αA, γA) strong stability parameters for A (Proposition F.2)
(α∞, γ∞) strong stability parameters for A +BK∞ (Proposition F.1)

Table 1: Summary of notation.

B Full Algorithm Description

Our algorithm is broken into three phases. In the first phase, we excite the system with Gaussian
inputs, then solve a carefully designed regression problem to recover a decoder f̂ whose performance
is near-optimal under the steady state distribution. The choice of what regression problem to solve is
rather subtle, and we show in Appendix B.1 that many naive approaches (e.g., predicting observations
from inputs) fail. Our first key contribution is to show that an approach based on predicting inputs
from observations succeeds under appropriate assumptions.

The second phase of our algorithm estimates the dynamics matrices (A,B) and certain other system
parameters using our learned decoder’s prediction f̂(yt) as a plug-in estimate for the system state
xt. We then use these estimates to synthesize a near-optimal linear controller K̂. The analysis here
is rather straightforward, albeit somewhat technical due to the misspecification error caused by the
inexact state estimates.

Key challenge: Trajectory mismatch. The third phase of our algorithm solves a major issue we
call trajectory mismatch. Suppose for simplicity that K̂ =K∞, i.e. we exactly recover the optimal
controller in the second phase (in reality, we must account for approximation error). A tempting
approach is to select ut =K∞f̂(xt), where f̂ is the decoder learned in the first phase. Unfortunately,
this decoder is only guaranteed to be accurate on the steady state distribution induced by the Gaussian
inputs we use for the first phase; there is no guarantee that this decoder will be accurate on the state
distribution induced by the policy above. Indeed, this is an instance of a common technical issue in
statistical learning: In general, given a function f̂ such that EP ∥f̂(x)− f⋆(x)∥2 ≤ ε for a distribution
P , we have no guarantee that EQ∥f̂(x) − f⋆(x)∥2 ≤ ε for a different distribution Q unless we put
strong structural assumptions on either P /Q or the function class F . Since we do not make such
assumptions, we solve this problem by learning a new decoder. This is where our work departs from
recent efforts such as [6], who—by working with nonparametric classes which incur exponential
sample complexity—learn a decoder which uniformly approximates f⋆; such an approach does not
succeed in the general setting we consider here.
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At this point, the challenge we face is how to learn a new decoder f̂ that approximates f⋆ on
trajectories induced by playing π̂(yt) = K∞f̂(yt). In particular, the foundational performance
difference lemma [17] implies that it suffices to ensure that

T

∑
t=1

Eπ̂[∥f̂(yt) − f⋆(yt)∥2] ≤ ε. (B.1)

This presents a clear chicken-and-egg problem: how do we ensure that f̂ enjoys (B.1) on its own
induced policy π̂?

Our solution: Iterative decoding. We address this issue by iteratively learning a sequence of
time-dependent decoders {f̂t}Tt=1. For each iteration 1 ≤ t ≤ T we predict xt with f̂t(yt), where f̂t
is a decoder learned at the previous iteration, and follow the induced policy π̂t(yt) = K∞f̂t(yt).
We then estimate f̂t+1 by learning to predict xt+1 under the trajectory induced by playing u1 =
π̂1(y1), . . . ,ut = π̂t(yt). The important point here is that the induced distribution for xt does not
depend on f̂t, only on f̂1, . . . , f̂t−1, thereby solving the chicken-and-egg problem.

A major technical challenge is ensuring that this iterative decoding procedure does not lead to errors
which compound exponentially in the horizon T ; this issue can easily arise if the misspecification
error for the regression problem we solve to learn f̂t depends on the quality of the previous decoders
f̂1, . . . , f̂t−1. To solve this issue, we work with another carefully designed regression problem. The
key idea is to roll in with the policies π̂1, . . . , π̂t−1, but roll out with purely Gaussian inputs for steps
τ = t, t + 1, . . . . This allows us to set up a regression problem which is well-specified and enjoys the
advantages of Gaussianity, while remaining valid under the trajectory induced by {π̂t}. The analysis
for this phase is quite technical due to the inexact estimates from the first two phases. Showing that
the indirect regression problems we solve eventually lead to a good predictor for the state requires
substantial effort.

Before presenting the full RichID algorithm, we first provide additional details on the high-level idea
behind our method and show where many naive approaches fail.

B.1 Predicting Inputs from Outputs: The Bayes Regression Function

At the core of our algorithm is a simple but indispensible identity for the Bayes predictor that arises
when we aim to predict control inputs u from observations y in the RichLQR model. As a motivating
example, let a time τ ≥ 1 be fixed, suppose we take Gaussian control inputs u1∶τ ∶= (u⊺1, . . . ,u⊺τ)⊺ ∼
N(0, Iτdu), and consider the resulting state xτ+1. Suppose that our goal is to estimate f⋆ with
expected L2 error under the marginal distribution of xτ+1. That is, we wish to ensure

E [∥f̂(yτ+1) − f⋆(yτ+1)∥2] ≤ (something small), (B.2)

where E[⋅] denotes the expectation under the Gaussian inputs above.

Attempt 1. The natural strategy to attain (B.2) is to regress yτ+1 to u1∶τ . For example, note that
linearity of the dynamics ensures that there exists a matrix M⋆ ∈ Rdx×τdu such that E[xτ+1 ∣ u1∶τ ] =
M⋆u1∶τ . Thus, one could attempt the regression

min
f∈F ,M∈Rdx×τdu

E [∥Mu1∶τ − f(yτ+1)∥2] .

Unfortunately, there are too many degrees of freedom in this minimization problem: if 0 ∈ F , then
the above is minimized with f = 0 and M = 0.

Attempt 2. A second attempt might be to hope that all f ∈ F are invertible, and try to solve a
regression problem based on reconstructing the observations:

min
f−1∶f∈F ,M∈Rdx×τdu

E [∥f−1(Mu1∶τ) − yτ+1∥2] .

However, since xτ+1 =M⋆u1∶τ + (noise), passing through the nonlinearity f−1 obviates any clear
guarantees. In particular, this setup does not satisfy the usual first-order condition for regression with
a well-specified model. A secondary issue is that even in the absence of system noise, this approach
would likely incur dependence on the observation dimension dy.
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Our approach. Our approach is to flip the input and target and regress u1∶τ to yτ+1. Specifically,
we consider the regression:

min
g=Mf ∶f∈F ,M∈Rτdu×dx

E [∥g(yτ+1) − u1∶τ∥2] . (B.3)

Let us motivate this approach and shed some light on the properties of the solution to this problem.
Leveraging the perfect decodability assumption, one can show that E[u1∶τ ∣ yτ+1] = E[u1∶τ ∣ xτ+1 =
f⋆(yτ+1)]. Moreover, since xτ+1 and u1∶τ are jointly Gaussian (due to linearity of the dynamics and
Gaussianity of the process noise), a simple calculation reveals that there exists a matrix M̃ such that
E[u1∶τ ∣ xτ+1 = x] = M̃x. Hence,

E[u1∶τ ∣ yτ+1] = M̃f⋆(yτ+1).

In particular, this implies that the unconstrained minimizer (i.e., over all measurable functions g) in
(B.3) lies in the set {Mf ∶ f ∈ F}. Hence, since conditional expectations minimize square loss, we
find:

Up to a set of measure zero, any minimizer of (B.3) must have the form g =
M̃f⋆. In other words, the population risk minimizer recovers f⋆ up to a linear
transformation.

Note that this crucially relies on Gaussianity, because while E[xτ+1 ∣ u1∶τ ] is linear in u1∶τ for
arbitrary mean-zero process noise, the same is not generally true when considering E[u1∶τ ∣ xτ+1].
But with this strong assumption, we find that (B.3) allows us to recover f⋆ up to a global linear
transformation. Of course, there are numerous remaining subtleties, including:

• Inverting M̃ to recover f⋆.

• Identifying M̃ , especially since the learner does not know the system dynamics or noise
covariance at first.

• Passing from population risk to empirical risk from finite samples.

How we address the above issues varies in different phases of the RichID-CE, and the remainder
of this section supplies these details. But the fundamental principle—that we can solve empirical
versions of (B.3) to recover linear transformations of f⋆—remains the core workhorse of RichID-CE.

Remark 1 (Oracle Efficiency). Consider the empirical version of (B.3) in which we gather n
trajectories and solve

min
g=Mf,f∈F

n

∑
i=1

∥g(y(i)
τ+1) − u

(i)
1∶τ∥

2,

where the superscript i denotes the i-th trajectory. Solving problems of this form is computationally
efficient whenever we have a regression oracle for the induced class {g =Mf ∣ f ∈ F ,M ∈ Rduτ×dx}.
For many function classes of interest, such as linear functions and neural networks, solving regression
over this class is no harder than regression over the original decoder class F . We believe this is a
reasonable and practical assumption.
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B.2 Pseudocode

Algorithm 2 RichID-CE (Full version with explicit parameter values)
1: Inputs:
ε (sub-optimality), T (horizon), F (decoder class), (dx, du) (latent dimensions), (Ψ⋆, κ,α⋆, γ⋆)
(system parameter upper-bounds), σ2 (exploration parameter), λM (as in Assumption 8).

2: Initialize:
nid = Ω⋆(λ−2

Mκ4(dx + du)16T 3 ln14(ε−1/δ) ⋅ ln∣F ∣
ε6

).

nop = Ω⋆(λ−2
Mκ3(dx + du)14T 3 ln13(ε−1/δ) ⋅ ln∣F ∣

ε6
).

κ0 = ⌈(1 − γ⋆)−1 ln (84Ψ5
⋆α

4
⋆dx(1 − γ⋆)−2 ln(103 ⋅ nid))⌉. // burn-in time

r⋆ = σmin(Cκ)−3(1 − γ⋆)−3(43∣Ψ⋆∣21/2α6
⋆). // upper-bound on (Ψ⋆∥Sid∥op∥S

−1
id ∥op)

3

b̄ = Θ⋆((dx + du) ln(ε−1/δ)). // clipping parameter for the decoders

σ2 = ε2/b̄2. // exploration parameter

3: Phases I // learn a coarse decoder (see Section 2.1)

4: Set f̂id ← GETCOARSEDECODER(nid, κ0, κ,
√

Ψ⋆).// Algorithm 3

5: Phases II // learn system’s dynamics and cost (see Section 2.2)

6: Set (Âid, B̂id, Σ̂w,id, Q̂id) ← SYSID(f̂id, nid, κ0, κ,
√

Ψ⋆).// Algorithm 4

7: Phase III // compute optimal policy (see Section 2.3 and Appendix H)

8: Set π̂ ← COMPUTEPOLICY(Âid, B̂id, Σ̂w,id, Q̂id,R,nop, κ, σ
2, T, b̄, r⋆). // Algorithm 5

9: return: π̂.

Algorithm 3 GETCOARSEDECODER: Phase I of RichID-CE (Section 2.1).
1: Inputs:

nid // sample size.

κ0 // burn-in time index.

κ // upper bound on the controllability index κ⋆.

rid // upper bound on the matrix M in the definition of Hid.

2: Set Hid ∶= {Mf(⋅) ∣ f ∈ F , M ∈ Rκdu×dx , ∥M∥op ≤ rid} .
3: Set κ1 = κ0 + κ.
4: Gather 2nid trajectories by sampling control inputs u0, . . . ,uκ1−1 ∼ N(0, Idu).
5: Phase I: // Learn coarse decoder (see Section 2.1).

6: Set ĥid = arg minh∈Hid
∑nid

i=1 ∥h(y(i)
κ1 ) − v(i)∥2, where v ∶= (u⊺κ0

, . . . ,uκ1−1)⊺.
7: Set V̂κ,id to be an orthonormal basis for top dx-eigenvectors of 1

nid
∑2nid

i=nid+1 ĥid(y(i)
κ1 )ĥid(y(i)

κ1 )⊺

8: Set f̂id(⋅) ∶= V̂ ⊺
κ,idĥid(⋅). // coarse decoder.

9: Return: Coarse decoder f̂id.
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Algorithm 4 SYSID: Phase II of RichID-CE (Section 2.2).
1: Require:
2: Cost oracle to access the cost ct at time t ≥ 1.
3: Inputs:

f̂id // coarse decoder.

nid // sample size.

κ0 // burn-in time index.

κ // upper bound on the controllability index κ⋆.

4: Set κ1 = κ0 + κ.
5: Gather nid trajectories by sampling control inputs u0, . . . ,uκ1−1 ∼ N(0, Idu).
6: Phase II: // Recover system dynamics and cost (see Section 2.2).

7: Set (Âid, B̂id) ∈ arg min(A,B)∑
3nid

i=2nid+1 ∥f̂id(y(i)
κ1+1) −Af̂id(y(i)

κ1 ) −Bu
(i)
κ1 ∥2.

8: Set Σ̂w,id = 1
nid
∑3nid

i=2nid+1(f̂id(y(i)
κ1+1) − Âidf̂id(y(i)

κ1 ) − B̂idu
(i)
κ1 )⊗2, where v⊗2 ∶= vv⊺.

9: Set Q̃id = minQ∑3nid

i=2nid+1 (c(i)
κ1 − (u(i)

κ1 )⊺Ru
(i)
κ1 − f̂id(y(i)

κ1 )⊺Qf̂id(y(i)
κ1 ))

2
.

10: Set Q̂id = ( 1
2
Q̃id + 1

2
Q̃⊺

id)+, where (⋅)+ truncates all negative eigenvalues to zero.
11: Return: System and cost matrices (Âid, B̂id, Σ̂w,id, Q̂id).

B.3 Overview for Learning the Initial State

In this section, we give an overview for how Phase III of RichID (Algorithm 5) learns a predictor
for the initial state x0; this is an edge case which is not discussed in the main body due to space
limitation, and comprises Line 19 through Line 25 in Algorithm 5. This discussion supplements
Section 2.3 of the main body, and together these sections give constitute our high-level overview of
Phase III.

If we ignore the clipping in (14), the state decoders (f̂τ)t≥2 follow the recursion

f̂t+1(y0∶t+1) = ĥt(yt+1) − Âĥt(yt) + Âf̂t(y0∶t), for t ≥ 1,

which means that all the decoding error for any t will depend on the error of the decoder f̂1 for the
state x1. To ensure that f̂1 is accurate, we need to somehow learn to decode the inital state x0, which
we recall is assumed to be distributed as N(0,Σ0). The challenge here is that the covariance matrix
Σ0 is unknown, and we need to estimate it in order to “back out” the initial state through the approach
in Appendix B.1. This is achieved by Line 19 through Line 25 of Algorithm 5, which we explain in
detail below. Briefly, the idea is that since x1 = Ax0 +Bu0 +w0, to accurately predict x1 it suffices
to have good predictors for w0 and Ax0. We can learn a predictor for w0 in the same fashion as
for all the other timesteps, and most of the work in Line 19 through Line 25 is to learn a regression
function f̂A,0 that accurately predicts Ax0.

To begin, in Line 19 we execute Gaussian control inputs ντ for 0 ≤ τ < κ. We then proceed as
follows.

Line 21. As we show in Theorem 8 (Appendix H), ĥt(yt+1) − Âĥt(yt) − B̂(K̂f̂t(y0∶t) + νt)
approximates the system’s noise wt, for t ≥ 0. In particular, since f̂0 ≡ 0 by definition (Line 11),
ĥ0(y1) − Âĥ0(y0) − B̂ν0 approximates the noise w0. Since we have x1 = Ax0 + Bu0 + w0, it
remains to get a good estimator for Ax0. To this end, we observe that the predictor ĥol,1 in Line 21 is
(up to a generalization bound) equal to

arg min
h∈Hop

Eπ̂ [∥h(y1) −w0∥2] ,

which we show—under the realizability assumption—is given by

E [w0 ∣ y1] = E [w0 ∣ x1] = Σw(σ2BB⊺ +Σw +AΣ0A
⊺)−1(Ax0 +Bν0 +w0), (B.4)

where the last equality—like the rest of our Bayes characterizations—follows by Fact G.2.
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Algorithm 5 COMPUTEPOLICY: Phase III of RichID-CE

1: Inputs: (Â, B̂, Σ̂w, Q̂,R) // estimates for the system parameters and cost matrices.

2: Parameters:
nop // proportional to the sample size.

κ // upper-bound on the controllability index κ⋆.

σ2 // exploration parameter.

b̄ // clipping parameter for the decoders.

rop // parameter to define the function class.

3: Set Hop = {Mf(⋅) ∣ f ∈ F , M ∈ Rdx×dx , ∥M∥op ≤ rop} .
4: Set ninit = nop.
5: Phase III: // Learn on-policy decoders (see Section 2.3 and Appendix B.3).

6: Set (P̂ , K̂) ∶= DARE(Â, B̂, Q̂,R) (Definition 1).
7: for k = 1, . . . , κ do
8: Set Ĉk = [Âk−1B̂ ∣ ⋯ ∣ B̂].
9: Set M̂k ∶= Ĉ⊺k(ĈkĈ

⊺
k + σ

−2∑ki=1 Â
i−1Σ̂w(Âi−1)⊺)−1.

10: Set M̂ = [M̂⊺
1 ∣ ⋯ ∣ (M̂κÂ

κ−1)⊺]⊺.
11: Define f̂0(y0) = 0 for all y0 ∈ Y .
12: for t = 0, . . . , T − 1 do
13: Collect 2nop trajectories by executing the randomized control input uτ = K̂f̂τ(y0∶τ) + ντ ,
14: for 0 ≤ τ ≤ t, and uτ = ντ , for t < τ < t + κ, where ντ ∼ N(0, σ2Idu).
15: for k = 1, . . . , κ do
16: Set ĥt,k ∈ arg minh∈Hop

∑nop

i=1 ∥φ̂t,k(h,y(i)
0∶t ,y

(i)
t+k) − ν

(i)
t∶t+k−1∥

2
,

where φ̂t,k(h,y0∶t,yt+k) ∶= M̂k (h(yt+k) − Âkh(yt) − Âk−1B̂K̂f̂t(y0∶t)).

17: Set ĥt ∈ arg minh∈Hop
∑2nop

i=nop+1 ∥M̂(h(y(i)
t+1) − Âh(y

(i)
t ) − B̂K̂f̂t(y(i)

0∶t )) − φ̂t(y(i)
0∶t+κ)∥

2
,

where φ̂t(y0∶t+κ) ∶= [φ̂t,1(ĥt,1,y0∶t,yt+1)⊺, . . . , φ̂t,κ(ĥt,κ,y0∶t,yt+κ)⊺]⊺.
18: if t = 0 then // Initial state learning phase (Appendix B.3).

19: Collect 2ninit trajectories by executing the control input uτ = ντ , for 0 ≤ τ < κ,
20: where ντ ∼ N(0, σ2Idu).

21: Set ĥol,1 ∈ arg minh∈Hop
∑ninit

i=1 ∥h(y(i)
1 ) − (ĥ0(y(i)

1 ) − Âĥ0(y(i)
0 ) − B̂ν

(i)
0 )∥

2
.

22: Set Σ̂cov ∶= 1
ninit

∑2ninit

i=ninit+1 ĥol,1(y(i)
1 )ĥol,1(y(i)

1 )⊺.

23: Set h̃ol,0 ∈ arg minh∈Hop
∑2ninit

i=ninit+1 ∥h(y(i)
0 ) − ĥol,1(y(i)

1 )∥
2
.

24: Set f̂A,0(y0) = Σ̂wΣ̂−1
covh̃ol,0(y0).

25: Set f̃1(y0∶1) = ĥ0(y1) − Âĥ0(y0) + f̂A,0(y0).
26: else
27: Set f̃t+1(y0∶t+1) = ĥt(yt+1) − Âĥt(yt) + Âf̂t(y0∶t).
28: Set f̂t+1(y0∶t+1) = f̃t+1(y0∶t+1)I{∥f̃t+1(y0∶t+1)∥ ≤ b̄}.
29: Set controller π̂t+1(y0∶t+1) = K̂f̂t+1(y0∶t+1) + νt+1, with νt+1 ∼ N(0, σ2Idu).

30: Return: Controller π̂ = (π̂t)Tt=1.
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Line 22. Now, given that ĥol,1(y1) ≈ E[w0 ∣ y1], one can recognize that the matrix Σ̂cov in Line 22
is an estimator for the matrix

Σw(σ2BB⊺ +Σw +AΣ0A
⊺)−1Σw. (B.5)

In particular, even though we cannot recover the covariance matrix Σ0, the estimator Σ̂cov gives a
means to predict Ax0, leading to an accurate decoder f̂1.

Line 23. Since ĥol,1(y1) accurately predicts E[w0 ∣ y1] (whose closed form expression we recall
is given by the RHS of (B.4)), the predictor h̃ol,0 in Line 23 can be seen to approximate

arg min
h∈Hop

Eπ̂ [∥h(y0) −Σw(σ2BB⊺ +Σw +AΣ0A
⊺)−1(Ax0 +Bν0 +w0)∥2] ,

which (under realizability) is simply

E[Σw(σ2BB⊺ +Σw +AΣ0A
⊺)−1(Ax0 +Bν0 +w0) ∣ x0] = Σw(σ2BB⊺ +Σw +AΣ0A

⊺)−1Ax0.
(B.6)

Lines 24 and 25. In light of (B.6) and the fact that Σ̂cov is an estimator of the matrix in (B.5),
we are guaranteed that Σ̂wΣ̂−1

covĥol,0(y0) accurately predicts Ax0, which motivates the updates in
Lines 24 and 25.

B.4 Extensions

Relaxing the stability assumption. We believe that our algorithm can be extended to so-called
marginally stable systems, where ρ(A) can be as large as 1 (rather than strictly less than 1). In
such systems, there exist system-dependent constants c1, c2 > 0 for which ∥An∥op ≤ c1nc2 for all n.
In general, these constants may be large, and in the worst case c2 may be as large as dx (or, more
generally, the largest Jordan block ofA); see, e.g., Simchowitz et al. [37] for discussion. Nevertheless,
if c1, c2 are treated as problem dependent constants, we can attain polynomial sample complexity. The
majority of Algorithm 1 can remain as-is, but the analysis will replace the geometric decay of A with
the polynomial growth bound above. This will increase our sample complexity by a poly(c1T c2)
factor, where T is the time horizon.

The only difficulty is that we can no longer directly identify the matrices A and B in Phase II. This
is because our current analysis uses the mixing property of A, which entails that if ρ(A) < 1, then
for t sufficiently large, under purely Gaussian inputs xt and xt+1 have similar distributions. This
ensures that predictors learned at time t are similar to those at time t + 1. However, this is no longer
true if ρ(A) = 1. To remedy this, we observe that it is still possible to recover the controllability
matrix [B;AB;A2B; . . . ;Ak−1B] from the regression problem in Phase I up to a change of basis
(see, e.g., Simchowitz et al. [38] for guarantees for learning such a matrix in the marginally stable
setting). We can then recover the matrices A and B from the controllability matrix up to orthogonal
transformation using the Ho-Kalman procedure (see Oymak and Ozay [30] or Sarkar et al. [32] for
refined guarantees).

Relaxing the controllability assumption. If the system is not controllable, then we may not be
able to recover the state exactly. Instead, we can recover the state up to the limiting-column space
of the matrices (Ck), which is always attained for k ≤ dx. We can then use this to run a weaker
controller (e.g., an observer-feedback controller) based on observations of the projection of the state
onto this subspace.

Other extensions. The assumption on the growth rate for F can be replaced with the bound
∥f(y)∥ ≤ Lmax{1, ∥f⋆(y)∥p} ∀f ∈ F for any p ≥ 1, at the expense of degrading the final sample
complexity.

B.5 Invertibility of theM0-matrix

As discussed in the main body, the matrixM⊺M is full rank whenever either A or B is full rank
and the system is controllable. Indeed, if rank(B) = dx, then M1, the first block ofM, can be
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checked to be invertible. If (A,B) are controllable, then Mκ is full rank. Thus, if in addition, if
A is invertible, then the last block ofM, MκA

κ−1, is full rank, ensuring our desired assumption
holds. We are interested to understand if there are other more transparent conditions under which our
recovery guarantees hold. Assumption 8 has the following immediate implication:
Lemma B.1. Suppose Assumption 8 holds and letMσ2 denote the value of the matrixM in (19)
for noise parameter σ2. Then, for all σ2 sufficiently small, λ1/2

min(M
⊺
σ2Mσ2) ≥ λM ⋅ σ2/2 > 0.

Proof. By continuity of the matrix inverse [31, Theorem 2.2], we have

∥M⊺
σ2Mσ2/σ4 −M⊺M∥F

σ→0→ 0. (B.7)

On the other hand, by [14, Corollary 6.3.8], we have

∣λmin(M⊺
σ2Mσ2/σ4) − λmin(M

⊺M)∣ ≤ ∥M⊺
σ2Mσ2/σ4 −M⊺M∥F.

Combining this with (I.8) implies that λ1/2
min(M

⊺
σ2Mσ2)/σ2 σ→0→ λ

1/2
min(M

⊺M) = λM, and so for all
sufficiently small σ, we have λ1/2

min(M
⊺
σ2Mσ2) ≥ λM ⋅ σ2/2.
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C A Validation Experiment

In this section we provide a basic validation experiment for RichID using an instance of the RichLQR
problem with four-dimensional latent linear dynamics and images as observations. Code for the
experiment is available at https://github.com/cereb-rl.

Dynamics and observation model. We consider a system in which the agent is a point mass
in 2D space obeying modified Newtonian dynamics. The state x = [x(p);x(v)] ∈ R4 consists of
concatenation of a 2D position vector x(p) and a 2D velocity vector x(v). The control u ∈ R2

determines the agent’s 2D-acceleration. We use an absolute frame of reference to measure the agent’s
position and velocity. Dynamics of the agent are given by

[x
(p)
t+1

x
(v)
t+1

]

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
xt+1

= [0.9I2 I2
0 0.3I2

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

[x
(p)
t

x
(v)
t

]

´¹¹¹¹¹¹¸¹¹¹¹¹¶
xt

+[0.5I2
I2

]
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

B

ut +wt, wt ∼ N(0, I4),

where In is the identity matrix with n rows and columns. These dynamics represent dampened
Newtonian motion. We observe that A is invertible and ρ(A) = 0.9. For the cost function, we choose

c(x,u) = x⊺x + λu⊺u,

which corresponds to the case where Q = I4 and R = λI2; here, λ > 0 controls the penalty for
acceleration. Lastly, we initialize the agent in a randomly chosen starting state x0 ∼ N(0, I4) (which
corresponds to Σ0 = I4).

Figure 1: Randomly sampled image corresponding
to the velocity component of the observation.

The observations y consist of two RGB im-
ages of size 40 × 40 encoding the agent’s
position and velocity, respectively. We first
restrict the position and velocity vectors to
a [−20,20]2 grid by mapping x(p)[1] to
max(−20,min(20,x(p)[1])) and so on. We
then map these restricted position and veloc-
ity vectors to a green pixel in a 40 × 40 grid.
This allows us to generate two images of size
40×40×3, one for the position and one fo the ve-
locity. We then add noise independently to each
pixel by sampling fromN(0,0.1). To obtain the
observation y, the two images are concatenated
along the channel dimension to generate a single
observation of size dy = 40 × 40 × 6, which is
2400 times larger than the state dimension. We
visualize the velocity component for an image
generated in this fashion in Figure 1.

Experimental setup and results. We evalu-
ate the performance of Phase I and Phase II of
RichID-CE in recovering the dynamics (A,B).
We set κ = 5 × dx and κ0 = 1 in Algorithm 3 and Algorithm 4. We collect 3nid episodes by taking
random actions from N(0, I2). Using the first nid episodes, we train a neural network model to
predict actions uκ0∶κ1−1 from xκ1 . For the regression model ĥid, we use a two-layer convolutional
neural network with Leaky ReLU nonlinearities. In the first layer, we apply 16 eight-by-eight kernels
with stride 4. In the second layer, we apply 16 eight-by-eight kernels with stride 2. After the last
convolution layer, we flatten the output image to project it to the required dimension κdu using
a single linear layer. We train the model using Adam optimization with learning rate 0.001 and
mini-batches of size 32 [19]. We use PyTorch 1.5 to implement this model, and initialize using the
default PyTorch initialization.7 We then perform dimensionality reduction as in Phase I to transform
ĥid into a dx-dimensional decoder f̂id. Finally, we recover Âid and B̂id by solving the regression

7http://pytorch.org/
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problem on Line 7 in Phase II. We use the linear regression toolkit in the scikit-learn library to
perform the this regression.8

Our main result for Phase II (Theorem 3) asserts that Âid and B̂id approximately recover A and B up
to a similarity transformation. While this similarity transformation is unknown to the algorithm, for
the purposes of evaluation we compute the optimal similarity transformation using knowledge of the
ground truth state. We find that using nid = 30000, the algorithm recovers the system matrices A and
B up to element-wise absolute error at most < 0.07 (after similarity transformation).

8https://scikit-learn.org/stable/
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D Lower Bound for RichLQR Without Perfect Decodability

D.1 Formal Statement of Lower Bound

In this section of the appendix we formally state and prove our sample complexity lower bound
for RichLQR without perfect decodability. The protocol for the lower bound is as follows: The
learning algorithm A accesses the system (3) through n trajectories on which it can play any (possibly
adaptively chosen) sequence of control inputs u0∶T and observe y0∶T . At the end of this process,
the algorithm outputs a decoder f̂A, and the prediction performance of the decoder (at time t = 1) is
measured under an arbitrary roll-in policy (chosen a-priori).

Theorem 5 (Lower bound for RichLQR without perfect decodability.). Let wt,εt ∼ N(0,1), let
n ≥ n0, where n0 is an absolute constant, and suppose we require that inputs are bounded so that
∣ut∣ ≤ 64 ln1/2 n. For every such n, there exists a function class F with ∣F ∣ = 2 and system with
dx = du = dy = 1 and T = 1 such that for learning algorithm A using only n trajectories, and any
roll-in policy π, we have

EA Eπ[(f̂A(y1) − f⋆(y1))
2

] ≥ Ω(1) ⋅ 1

ln3/2 n
.

Moreover, each f ∈ F is O(ln1/2 n)-Lipschitz and invertible, with f ′(y) ≥ 1 for all y ∈ R.

Theorem 5 shows that to learn a ε-suboptimal decoder under output noise for a particular function
class F with ∣F ∣ = 2, any algorithm requires an exponential number of samples. We note however
that since the Lipschitz parameter for the functions in the construction grows with n (as ln1/2 n),
the construction does not rule out a sample complexity guarantee that is polynomial in 1/n but
exponential in the Lipschitz parameter. Nonetheless, the algorithms we develop in this paper under
the perfect decodability assumption enjoy polynomial dependence on both 1/n and the Lipschitz
parameter, which the lower bound shows is impossible under unit output noise. We remark that the
constraint that ∣ut∣ ≤ 64 ln1/2 n can be weakened to ∣ut∣ ≤ C ln1/2 n for any C ≥ 64 at the cost of
weakening the final lower bound to 1

C ln3/2 n
. Finally, we remark that the lower bound only rules

out learning a ε-optimal decoder, not an ε-optimal policy; such a lower bound may require a more
sophisticated construction.

Beyond Theorem 5, an additional challenge for solving RichLQR without perfect decodability is that
the optimal controller is no longer reactive: since the problem is partially observable, the optimal
controller will in general depend on the entire history, which makes it difficult to characterize its
performance and analyze the suboptimality of data-driven algorithms. We believe that developing
more tractable models for RichLQR under weaker decodability assumptions is an important direction
for future research.

D.2 Additional Preliminaries

For an L2-integrable function f ∶ R→ R, we define the Fourier transform f̂ via

f̂(ω) = ∫ e−i2πωxf(x)dx.

For functions f, g ∶ R→ R, we let f ∗ g denote their convolution, which is given by

(f ∗ g)(x) = ∫ f(x − y)g(y)dy.

For a pair of distributions P ≪ Q with densities p and q, we define

DKL(P ∥Q) = ∫ p(x) ln(p(x)/q(x))dx

and

χ2(P ∥Q) = ∫
(p(x) − q(x))2

q(x)
dx.
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D.3 Proof of Theorem 5

Throughout this proof we use C to denote an absolute numerical constant whose value may change
from line to line.

We begin the proof by instantiating the LQR parameters. We set T = 1, du = dx = dy = 1,
wt ∼ N(0,1) and εt ∼ N(0,1). We select a = 1

2
(this choice is arbitrary) and b = 1. We assume that

x0 is always initialized to the same value, and this value is known to the learner. The precise value will
be specified shortly, but it will be chosen such that y0 reveals no information about the underlying
instance. With the parameters above, the observation y1 follows the following data-generating
process:

y1 = f−1
⋆ (x1) + ε1

x1 = u0 + 1
2
x0 +w0.

(D.1)

Since x0 is known to the learner, we reparameterize the control inputs for the sake of notational
compactness via u0 ∶= u0 − 1

2
x0, so the data-generating process simplifies to

y1 = f−1
⋆ (x1) + ε1

x1 = u0 +w0.
(D.2)

The basic observation underlying our lower bound is that the data-generating process (D.2) is an
instance of the classical error-in-variable regression problem in the Berkson error model [26, 27, 34,
35]. To emphasize the similarity to the setting, we rebind the variables as Y = y1, ε = ε1, Z = x1,
X = u0, W = w0, and m⋆ = f−1

⋆ , so that Eq. (D.2) becomes

Y =m⋆(Z) + ε
Z =X +W. (D.3)

We can interpret X (the control u0) as a true covariate known to the learner, and Z (the state x1) as
an unobserved noisy version of this covariate obtained by adding the noise W . The noisy covariate is
passed through the regression function m⋆, then the noise ε is added, leading to the target variable Y
(the observation y1).

Ultra-slow 1/ lnn-type rates appear in many variants of the error-in-variable regression problem
[10, 26, 27], as well as the closely related nonparametric deconvolution problem [9]. Our lower
bound is based on Theorem 2 of Meister [27], but with two important changes that add additional
complications to the analysis. First, we ensure that the regression functions in our construction
are invertible, so that the perfect decodability assumption holds in absence of noise, and second,
our lower bound holds even for actively chosen covariates, since these correspond to control inputs
chosen by the learner in the RichLQR problem.

Rather than constructing a decoder class F directly, it will be more convenient to construct a class of
encoders M (so that m⋆ ∈ M ), then take F = {m−1 ∣m ∈ M } to be the induced decoder class.

Let 0 < α ≤ 1, β ≥ 1, and γ > 0 be parameters of the construction. We define the following functions:

r(z) = γz,

φ(z) = e−
z2

2β2 ,

ψ(z) = cos(4πβz),
h(z) = αφ(z)ψ(z).

(D.4)

We consider two alternate regression functions: m0(z) ∶= r(z) + h(z) and m1(z) ∶= r(z) − h(z),
and take M = {m0,m1}. We define fi =m−1

i .

Lemma D.1. For m ∈ {m0,m1}, we have

m′(z) ∈ [γ − 14αβ, γ + 14αβ].

In light of this lemma, we will leave β ≥ 1 free for the time being, but choose

α = 1

28β2
, and γ = 1

β
, (D.5)
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which ensures that
0 < 1

2β
≤m′(z) ≤ 3

2β
. (D.6)

In particular, this implies that m is 3
2

-Lipschitz and invertible (since β ≥ 1).

We now specify the starting state as x0 = 1
8β

. This ensures that ψ(x0) = cos(π/2) = 0, so that
m0(x1) =m1(x0), and consequently the observation y0 is statistically independent of the underlying
instance.

Let x
(i)
0 ,u

(i)
0 , x

(i)
1 , y

(i)
1 , and so forth denote the realizations of the sytem variables in the ith

trajectory played by the learner, and let S = (y(1)
0 ,u

(1)
0 ,y

(1)
1 ,u

(1)
1 ), . . . , (y(n)

0 u
(n)
0 ,y

(n)
1 ,u

(n)
1 )

denote the observables collected throughout the entire learning process. For i ∈ {0,1}, we let PS;i

denote the law of S when mi is the true encoding function, and let Ei denote the expectation under
PS;i. We also let Py1∣u0;i(⋅ ∣ u) denote the law of y1 given u0 when m⋆ = mi and pi(y ∣ u) be the
corresponding density (we suppress dependence on x0, which takes on the constant value 1

8β
in both

instances). Lastly, we let Eπ;i denote the expectation over (y0,u0,y1,u1) when we roll in with π
and mi is the underlying encoder.

Let f̂A(⋅) be the decoder returned by A, which we assume to be σ(S)-measurable. We first observe
that since the roll-in policy has ∣ut∣ ≤ β with probability 1, Lemma D.6 implies that

max
i∈{0,1}

EiEπ;i[(f̂A(y1) − fi(y1))2] ≥ c ⋅ max
i∈{0,1}

Ei[∫
1

−1
(f̂A(y) − fi(y))2dy],

meaning that going forward we can dispense with the roll-in policy and lower bound the simpler
quantity on the right-hand side above. Now, let Pi denote the density corresponding to the law PS;i.
We can further lower bound the worst-case risk of A as

max
i∈{0,1}

Ei[∫
1

−1
(f̂A(y) − fi(y))2dy]

≥ 1

2
[E0[∫

1

−1
(f̂A(y) − f0(y))2dy] +E1[∫

1

−1
(f̂A(y) − f1(y))2dy]]

≥ 1

2
∫

1

−1
[∫

R4n
[(f̂A(y) − f0(y))2 + (f̂A(y) − f1(y))2]min{P0(S), P1(S)}dS]dy

≥ 1

4
∫

1

−1
(f0(y) − f1(y))2dy ⋅ ∫

R4n
min{P0(S), P1(S)}dS

≥ 1

4
∫

1

−1
(f0(y) − f1(y))2dy ⋅ (1 − 1

2
∥P0 − P1∥L1(R4n))

= 1

4
∫

1

−1
(f0(y) − f1(y))2dy ⋅ (1 −DTV(PS;0 ∥PS;1)).

If we choose β = 64 ln1/2 n then our key technical lemma, Lemma D.2, implies that
DTV(PS;0 ∥PS;1) = o(1). Lemma D.7 further implies that ∫

1
−1(f0(y) − f1(y))2dy ≥ 1

8
α2β, so

that when n is sufficiently large we have

max
i∈{0,1}

Ei[∫
1

−1
(f̂A(y) − fi(y))2dx] ≥ c ⋅ α2β = c ln−3/2 n.

D.4 Proofs for Supporting Lemmas

Proof of Lemma D.1. We calculate that for m ∈ {m0,m1}, we have

m′(z) = γ ± α( z

β2
e
− z2

2β2 cos(2βz) + 4πβe
− z2

2β2 sin(2βz)).

Observe that ∣cos z∣, ∣sin z∣, e−z
2

≤ 1, and

∣ z
β2
e
− z2

2β2 ∣ ≤ 1

β
sup
z

∣ze−
z2

2 ∣ ≤ 1

βe1/2 .
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It follows that

f ′(z) ∈ [γ − α( 1

βe1/2 + 4πβ), γ + α( 1

βe1/2 + 4πβ)] ⊆ [γ − 14αβ, γ + 14αβ],

where we have used that β ≥ 1.

Lemma D.2. If we choose β = 64 ln1/2 n, then for all n ≥ 3 we have

DTV(PS;0 ∥PS;1) ≤ Cn−4.

Proof of Lemma D.2. To begin, we apply Pinsker’s inequality:

D2
TV(PS;0 ∥PS;1) ≤

1

2
DKL(PS;0 ∥PS;1).

Let o(j) = (y(1)0 , u
(1)
0 , y

(2)
1 , u

(2)
1 ). We observe that the density Pi(o(1), . . . , o(n)) factorizes as

Pi(o(1), . . . , o(n)) =
n

∏
j=1

py0;i(y(j)0 )p
u
(j)
0

(u(j)0 ∣ o(1), . . . , o(t−1), y
(j)
0 )py1∣u0;i(y

(j)
1 ∣ u(j)0 )p

u
(j)
1

(u(j)1 ∣ o(1), . . . , o(t−1), y
(j)
0 , u

(j)
0 , y

(j)
1 ),

where py0;i is the density for y0 under instance i, p
u
(j)
0

and p
u
(j)
1

are the conditional densities for

u
(j)
0 and u

(j)
1 given all preceding observations, and py1∣u0;i is the conditional density for y1 given u0

under instance i. The densities p
u
(j)
0

and p
u
(j)
1

do not depend on the instance i, nor does the density

py0;i (recall that the choice of starting state x0 = 1
8β

guarantees m0(x0) = m1(x0), so y0 = ε0 in
law for both instances). We conclude that the KL divergence telescopes as

DKL(PS;0 ∥PS;1) =
n

∑
j=1

E0[DKL(Py1∣u0;0(⋅ ∣ u
(j)
0 ) ∥Py1∣u0;1(⋅ ∣ u

(j)
0 ))]

≤
n

∑
j=1

E0[χ2(Py1∣u0;0(⋅ ∣ u
(j)
0 ) ∥Py1∣u0;1(⋅ ∣ u

(j)
0 ))].

Since the algorithm satisfies ∣u(j)
0 ∣, ∣u(j)

1 ∣ ≤ β almost surely, we can apply Lemma D.3 to each
summand, which gives

DKL(PS;0 ∥PS;1) ≤ Cn−9.

Lemma D.3. If we choose β = 64 lnn, then for all n ≥ 3 and all ∣u∣ ≤ β, we have

χ2(Py1∣u0;0(⋅ ∣ u) ∥Py1∣u0;1(⋅ ∣ u)) ≤ Cn−10. (D.7)

Proof of Lemma D.3. Recall that we let pi denote the conditional density for Py1∣u0;i(⋅ ∣ u). Let
pε(ε) = e−

1
2 ε

2

denote the density of ε and pw(w) = e− 1
2w

2

denote the density of w. Observe that for
each i, we have

pi(y ∣ u) = 1√
2π
∫ pε(y −mi(u +w))pw(w)dw.

It follows that

χ2(Py1∣u0;0(⋅ ∣ u) ∥Py1∣u0;1(⋅ ∣ u))

= 1√
2π
∫ p−1

1 (y ∣ u) ⋅ ∣∫ [pε(y −m0(u +w)) − pε(y −m1(u +w))]pw(w)dw∣
2

dy.

By Lemma D.4 (with η = 1/5), we have

p−1
i (y ∣ u) ≤ 31/2 exp((1 + 1/5)(y − γu)2

2
+ 5)

≤ 31/2 exp((1 + 1/5)2

2
y2 + 5(1 + 1/5)

2
γ2u2 + 5).
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Since ∣u∣ ≤ β, γ2u2 ≤ 1, so we can further simplify to

p−1
i (y ∣ u) ≤ C ⋅ exp(3

4
y2).

Consequently, we have

χ2(Py1∣u0;0(⋅ ∣ u) ∥Py1∣u0;1(⋅ ∣ u))

≤ C ∫ e
3
4y

2

∣∫ [pε(y −m0(u +w)) − pε(y −m1(u +w))]pw(w)dw∣
2

dy.

Using the Taylor series representation for pε, we have

pε(y −mi(u +w)) =
∞
∑
k=0

1

k!
p(k)ε (y)(−mi(u +w))k,

and so

χ2(Py1∣u0;0(⋅ ∣ u) ∥Py1∣u0;1(⋅ ∣ u))

≤ C ∫ e
3
4y

2

∣
∞
∑
k=0

1

k!
p(k)ε (y)∫ [(−f0(u +w))k − (−f1(u +w))k]pw(w)dw∣

2

dy.

Applying the Cauchy-Schwarz inequality to the series, we can further upper bound by

C ∫ e
3
4y

2

(
∞
∑
k=0

2−2k

k!
(p(k)ε (y))2)(

∞
∑
k=0

22k

k!
(∫ [(m0(u +w))k − (m1(u +w))k]pw(w)dw)

2

)dy

= C(
∞
∑
k=0

2−2k

k!
∫ e

3
4y

2

(p(k)ε (y))2dy)(
∞
∑
k=0

22k

k!
(∫ [(m0(u +w))k − (m1(u +w))k]pw(w)dw)

2

).

We first bound the left term involving the density pε. Let Hk(y) = (−1)ke
y2

2
dk

dyk
e−

y2

2 denote the

probabilist’s kth Hermite polynomial, so that p(k)ε (y) = (−1)kHk(y)e−
1
2y

2

. Then we have

∫ e
3
4y

2

∣p(k)ε (y)∣
2
dy = ∫ e

3
4y

2

⋅H2
k(y)e−y

2

dy

= ∫ H2
k(y)e−

1
4y

2

dy

(i)= 2k ∫ H2
k(y/

√
2)e−

1
2 (y/

√
2)2dy

=
√

2 ⋅ 2k ∫ H2
k(y)e−

1
2y

2

dy

≤ C ⋅ 2kk!,

where (i) uses that Hk is a degree-k polynomial. Applying this inequality for each k, we have
∞
∑
k=0

2−2k

k!
∫ e

3
4y

2

(p(k)ε (y))2dy ≤ C ⋅
∞
∑
k=0

2−k ≤ C,

and so

χ2(Py1∣u0;0(⋅ ∣ u) ∥Py1∣u0;1(⋅ ∣ u)) ≤ C ⋅
∞
∑
k=0

22k

k!
(∫ [(m0(u +w))k − (m1(u +w))k]pw(w)dw)

2

.

Next, using the binomial theorem, for any x ∈ R we have

(m0(x))k − (m1(x))k = (r(x) + h(x))k − (r(x) − h(x))k

=
k

∑
j=0

(k
j
)rk−j(x)hj(x)(1 − (−1)k)

= 2 ∑
j≤k, odd

(k
j
)rk−j(x)hj(x),
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leading to the upper bound

χ2(Py1∣u0;0(⋅ ∣ u) ∥Py1∣u0;1(⋅ ∣ u))

≤ C ⋅
∞
∑
k=0

22k

k!

⎛
⎝ ∑
j≤k, odd

(k
j
)∫ rk−j(u +w)hj(u +w)pw(w)dw

⎞
⎠

2

≤ C
∞
∑
k=0

22kk

k!
∑

j≤k, odd
(k
j
)∣∫ rk−j(u +w)hj(u +w)pw(w)dw∣

2

= C
∞
∑
k=0

22kk

k!
∑

j≤k, odd
(k
j
)∣(rk−jhj ∗ pw)(u)∣

2

≤ C
∞
∑
k=0

22kk

k!
∑

j≤k, odd
(k
j
) sup
u∈R

∣(rk−jhj ∗ pw)(u)∣
2

≤ C
∞
∑
k=0

23kk

k!
max
j≤k, odd

sup
u∈R

∣(rk−jhj ∗ pw)(u)∣
2
,

where the equality holds because pw is symmetric. We now appeal to Lemma D.5 for each term in
the sum, which leads to an upper bound of

C
∞
∑
k=0

23kk

k!
max
j≤k, odd

(γk−jαjβ(k−j+1)/2 ⋅ j
√

(k − j)! ⋅ exp(−2π2(β
2

j
∧ 1)β2))

2

≤ C
∞
∑
k=0

23kk3 max
j≤k, odd

(γk−jαjβ(k−j+1)/2 ⋅ exp(−2π2(β
2

j
∧ 1)β2))

2

.

Recalling the choice α = 1
12β2 and γ = 1/β, we can upper bound

γk−jαjβ(k−j+1)/2 ≤ β−k/2

for each term above, so we have

≤ C
∞
∑
k=0

23kk3 max
j≤k, odd

β−k ⋅ exp(−4π2(β
2

j
∧ 1)β2).

Since β ≥ 64 for n ≥ 3, we have β−k ≤ 2−6k, so we can upper bound the sum above as

≤ C
∞
∑
k=0

2−2kk3 max
j≤k, odd

2−k ⋅ exp(−4π2(β
2

j
∧ 1)β2).

We now consider two cases for the term in the max above. First, if j ≤ β2, then we have
exp(−4π2(β

2

j
∧ 1)β2) ≤ exp(−4π2β2). Otherwise, we have k ≥ j ≥ β2, so 2−k ≤ 2−β

2

. Putting the

two cases together (using that exp(−4π2β2) ≤ 2−β
2

), we get the following coarse upper bound:

C2−β
2
∞
∑
k=0

2−kk3 ≤ C2−β
2

.

The choice β = 64 ln1/2 n implies that 2−β
2

≤ n−10.

Lemma D.4. Let η ≤ 1 be given. Then for each i ∈ {0,1}, we have

pi(y ∣ u) ≥ 3−1/2 exp(−((1 + η)(y − γu)2

2
+ 1

η
)).

Proof of Lemma D.4. We have

pi(y ∣ u) = 1√
2π
∫ pε(y −mi(u +w))pw(w)dw

= 1√
2π
∫ exp(−1

2
(y − r(u +w) ± h(u +w))2)pw(w)dw.
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Using the AM-GM inequality, we have that for any η > 0, this is lower bounded by

1√
2π
∫ exp(−1 + η

2
(y − r(u +w))2) exp(−1 + 1/η

2
h2(u +w))pw(w)dw.

We will restrict to η < 1. Since ∣h∣ ≤ α < 1 everywhere, we can further lower bound by

exp(− 1+1/η
2

)
√

2π
∫ exp(−1 + η

2
(y − r(u +w))2)pw(w)dw

≥ e−
1
η

√
2π
∫ exp(−1 + η

2
(y − r(u +w))2)pw(w)dw

= e−
1
η

√
2π
∫ exp(−1 + η

2
(y − r(u +w))2) exp(−1

2
w2)dw.

Define µ = y − γu, σ2 = (1 + (1 + η)γ2)−1, and µ′ = (1 + η)γσ2µ. Then by completing the square,
we have

exp(−1 + η
2

(y − r(u +w))2) exp(−1

2
w2) = exp(− (1 + η)µ2

2(1 + (1 + η)γ2)
) ⋅ exp(−(w − µ′)2

2σ2
).

It follows that

∫ exp(−1 + η
2

(y − r(u +w))2) exp(−1

2
w2)dw = exp(− (1 + η)µ2

2(1 + (1 + η)γ2)
) ⋅

√
2πσ2

≥ exp(−(1 + η)µ2

2
) ⋅

√
2π

3
.

Lemma D.5. There is a universal constant C > 0 such that for all k and j ≤ k with j odd,

sup
x∈R

∣(rk−jhj ∗ pw)(x)∣ ≤ C ⋅ γk−jαjβ(k−j+1)/2 ⋅ j
√

(k − j)! ⋅ exp(−2π2(β
2

j
∧ 1)β2) (D.8)

Proof of Lemma D.5. Let x ∈ R be fixed. Then, using the Fourier inversion formula (using that both
rk−jhj , pw, and their respective Fourier transforms are L2-integrable), we have

∣(rk−jhj ∗ pw)(x)∣ = ∣∫ ei2πxω ̂(rk−jhj)(ω)p̂w(ω)dω∣ ≤ ∫ ∣ ̂(rk−jhj)(ω)p̂w(ω)∣dω.

We proceed to compute the Fourier transform for rk−j(x)hj(x) = γk−jαjxk−jφj(x)ψj(x). We first
observe that φj(x) = exp(− j

β2 ⋅ z
2

2
). Let b1 = β2

j
. Then, using that the Fourier transform is self-dual

for gaussians (specifically, that the Fourier transform of e−cx
2

is
√
π
c
e−

π2

c ω
2

), we have

φ̂j(ω) =
√

2πb1e
−2π2b1ω

2

.

Next, we recall that for any f , the Fourier transform of xnf(x) is ( i
2π

)n dn

dωn
f̂(ω), so that

x̂k−jφj(ω) = ( i

2π
)
k−j√

2πb1 ⋅
dk−j

dωk−j
e−2π2bω2

= ( i

2π
)
k−j√

2πb1b
k−j
2 ⋅Hk−j(b2ω)e−

(b2ω)
2

2 .

where b2 ∶= 2π
√
b1. Finally, we use that

ψj(x) = (cos(4πβx))j = 1

2j
(ei4πβx + e−i4πβx)

= 1

2j

j

∑
l=0

(j
l
)ei4πβx⋅(j−l) ⋅ e−i4πβx⋅l

= 1

2j

j

∑
l=0

(j
l
)ei4πβx⋅(j−2l)
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We now use that the Fourier transform of e−icxf(x) is f̂(ω − c
2π

) to derive

̂xk−jφjψj(ω) = 1

2j
( i

2π
)
k−j√

2πb1b
k−j
2

j

∑
l=0

(j
l
)Hk−j(b2(ω − 2β(j − 2l))e−

(b2(ω−2β(j−2l))
2

2

It follows that

∫ ∣ ̂(rk−jhj)(ω)p̂w(ω)∣dω

≤ γk−jαj 1

2j
( 1

2π
)
k−j√

2πb1b
k−j
2

j

∑
l=0

(j
l
)∫ ∣Hk−j(b2(ω − 2β(j − 2l))e−

(b2(ω−2β(j−2l))
2

2 p̂w(ω)∣dω

≤ γk−jαj 1

2j
( 1

2π
)
k−j√

2πb1b
k−j
2

j

∑
l=0

(j
l
)∫ ∣Hk−j(b2(ω − 2β(j − 2l))∣e−

(b2(ω−2β(j−2l))
2

2 e−2π2ω2

dω

Now, let 0 ≤ l ≤ j be fixed. We bound

∫ ∣Hk−j(b2(ω − 2β(j − 2l))∣e−
(b2(ω−2β(j−2l))

2

2 e−2π2ω2

dω

≤ ∫
(−β,β)

∣Hk−j(b2(ω − 2β(j − 2l))∣e−
(b2(ω−2β(j−2l))

2

2 e−2π2ω2

dω

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

+ ∫
R∖(−β,β)

∣Hk−j(b2(ω − 2β(j − 2l))∣e−
(b2(ω−2β(j−2l))

2

2 e−2π2ω2

dω

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆⋆)

.

For the integral in the term (⋆), we drop the e−2π2w2

term (since it is at most one), and apply
Cauchy-Schwarz to bound by

∫
(−β,β)

∣Hk−j(b2(ω − 2β(j − 2l))∣e−
(b2(ω−2β(j−2l))

2

2 dω

≤
√
∫
(−β,β)

H2
k−j(b2(ω − 2β(j − 2l))e−

(b2(ω−2β(j−2l))
2

2 dω ⋅
√
∫
(−β,β)

e−
(b2(ω−2β(j−2l))

2

2 dω

Observe that since j is odd, j − 2l is also odd, and hence ∣j − 2l∣ ≥ 1. It follows that for ω ∈ (−β,β),
ω − 2β(j − 2l) ∉ (−β,β), and so

∫
(−β,β)

e−
(b2(ω−2β(j−2l))

2

2 dω ≤ ∫
(−β,β)

e−
b22
2 β

2

dω ≤ 2βe−
b22
2 β

2

.

Leaving the Hermite integral for a moment and moving to the second term (⋆⋆), we have

∫
R∖(−β,β)

∣Hk−j(b2(ω − 2β(j − 2l))∣e−
(b2(ω−2β(j−2l))

2

2 e−2π2ω2

dω

≤ e−2π2β2

∫
R∖(−β,β)

∣Hk−j(b2(ω − 2β(j − 2l))∣e−
(b2(ω−2β(j−2l))

2

2 dω

≤ e−2π2β2

√
∫
R∖(−β,β)

H2
k−j(b2(ω − 2β(j − 2l))e−

(b2(ω−2β(j−2l))
2

2 dω ⋅
√
∫
R∖(−β,β)

e−
(b2(ω−2β(j−2l))

2

2 dω

≤ e−2π2β2

√
∫
R∖(−β,β)

H2
k−j(b2(ω − 2β(j − 2l))e−

(b2(ω−2β(j−2l))
2

2 dω ⋅
√

2π

b2
.

Putting both cases together, we have

∫ ∣Hk−j(b2(ω − 2β(j − 2l))∣e−
(b2(ω−2β(j−2l))

2

2 e−2π2ω2

dω

≤ C ⋅ (
√
β ∨ 1/

√
b2) exp(−2π2(b21 ∧ 1)β2) ⋅

√
∫ H2

k−j(b2(ω − 2β(j − 2l))e−
(b2(ω−2β(j−2l))

2

2 dω,
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where C is a numerical constant. Using a change of variables, we have
√
∫ H2

k−j(b2(ω − 2β(j − 2l))e−
(b2(ω−2β(j−2l))

2

2 dω = 1√
b2

√
∫ H2

k−j(ω)e−
ω2

2 dω

≤
√

2π(k − j)!
b2

.

Since this bound holds uniformly for all l and ∑jl=0 (j
l
) = 2j , we have

∫ ∣ ̂(rk−jhj)(ω)p̂w(ω)∣dω

≤ C ⋅ γk−jαj( 1

2π
)
k−j√

2πb1b
k−j
2 ⋅

√
2π(k − j)!

b2
⋅ (

√
β ∨ 1/

√
b2) exp(−2π2(b21 ∧ 1)β2)

≤ C ′ ⋅ γk−jαjb(k−j)/21 ⋅ (
√
β ∨ 1/

√
b1) ⋅

√
(k − j)! ⋅ exp(−2π2(b21 ∧ 1)β2)

≤ C ′′ ⋅ γk−jαjβ(k−j+2)/2j ⋅
√

(k − j)! ⋅ exp(−2π2(b21 ∧ 1)β2).

Lemma D.6. For any non-negative function g ∶ R→ R+ and any roll-in policy π with ∣u0∣ ≤ β almost
surely,

Eπ;i[g(y1)] ≥ c ⋅ ∫
1

−1
g(y)dy for all i ∈ {0,1},

where c is an absolute numerical constant.

Proof of Lemma D.6. Observe that we have

Eπ;i[g(y1)] = Eu0;i[∫
∞

−∞
g(y)pi(y ∣ u0)dy]

≥ Eu0;i[∫
1

−1
g(y)pi(y ∣ u0)dy].

Lemma D.4 (with η = 1) implies that for all y ∈ [−1,1] and ∣u∣ ≤ β,

pi(y ∣ u) ≥ 3−1/2 exp(−((y − γu)2 + 1)) ≥ c.
It follows that

Eu0;i[∫
1

−1
g(y)pi(y ∣ u0)dy] ≥ c ⋅ ∫

1

−1
g(y)dy.

Lemma D.7. If β ≥ 1 and α and γ are chosen as in Eq. (D.5), we have

∫
1

−1
(f0(y) − f1(y))2dy ≥ 1

8
α2β.

Proof of Lemma D.7. Recall that m0 = f−1
0 and m1 = f−1

1 . Throughout the proof we will use that

1

2β
≤m′

i(z) ≤
3

2β
, and

2β

3
≤ f ′i(y) ≤ 2β.

As a first step, we have

∫
1

−1
(f0(y) − f1(y))2dy = ∫

1

−1
(f0(y) − f0(f−1

0 (f1(y))))2dy ≥ 4β2

9
∫

1

−1
(y − f−1

0 (f1(y)))2dy,

where we have used that f ′(y) ≥ 2β2

3
everywhere. Next, using a change of variables, we have

∫
1

−1
(y − f−1

0 (f1(y)))2dy = ∫
f1(1)

f1(−1)

(f−1
1 (x) − f−1

0 (x))2

f ′1(f−1
1 (x))

dx

≥ 1

2β
∫

f1(1)

f1(−1)
(f−1

1 (x) − f−1
0 (x))2dx,
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where the inequality uses that f ′1 ≤ 2β everywhere. Next, we observe that f1 =m−1
1 , and that

m1(1) ≤ γ + α < 1, and m1(−1) ≥ − γ − α > −1.

It follows that f1(1) ≥ 1 and f1(−1) ≤ − 1, and consequently

∫
f1(1)

f1(−1)
(f−1

1 (x) − f−1
0 (x))2dx ≥ ∫

1

−1
(f−1

1 (x) − f−1
0 (x))2dx

= ∫
1

−1
(m1(x) −m0(x))2dx

= 4∫
1

−1
h2(x)dx.

Finally, we appeal to Lemma D.8, which implies that

∫
1

−1
h2(x)dx ≥ α

2

2e
.

Lemma D.8. If we choose β ≥ 1, then the function h in (D.4) satisfies

∫
β

−β
h2(z)dz ≥ α

2β

2e
, and ∫

1

−1
h2(z)dz ≥ α

2

2e
. (D.9)

Proof of Lemma D.8. First, since we integrate only over the range (−β,β), e−
z2

β2 ≥ e−1, so we have

∫
β

−β
h2(z)dz = α2 ∫

β

−β
e
− z

2

β2 cos2(4πβz)dz ≥ α
2

e
∫

β

−β
cos2(4πβz)dz.

Next, we recall that for any a, the indefinite integral of cos2(ax) satisfies ∫ cos2(ax) = x
2
+

1
2a

sin(ax) cos(ax). Applying this above, we have

∫
β

−β
cos2(4πβz)dz = x

2
+ 1

8πβ
sin(4πβx) cos(4πβx)

RRRRRRRRRRR

β

−β

≥ β − 1

4πβ
.

For β > 1, this is at least β
2

.

Similarly, since β ≥ 1, we have

∫
1

−1
h2(z)dz ≥ α

2

e
∫

1

−1
cos2(4πβz)dz,

and

∫
1

−1
cos2(4πβz)dz = x

2
+ 1

8πβ
sin(4πβx) cos(4πβx)

RRRRRRRRRRR

1

−1

≥ 1 − 1

4πβ
≥ 1

2
.
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E Learning Theory Tools

In this section, we state and prove basic learning-theoretic tools used throughout the proofs for
our main results. Appendix E.1 gives the main statements and definitions for these results, and
Appendix E.2 proves the results in the order in which they appear. Our results are split into the
following categories:

• Appendix E.1.1 introduces a convention for subexponential random variables (“c-
concentrated”) used throughout our proofs and establishes key properties of random variables
satisfying this condition (Lemma E.1)

• Appendix E.1.2 gives a concentration properties for Gaussian vectors (Lemma E.2) and
establishes a useful change-of-measure lemma (Lemma E.3)

• Appendix E.1.3 gives a generic template (Lemma E.4) for computing conditional expec-
tations for random variables we call decodable Markov chains (Definition 4), which arise
when analyzing the regression problems used in Algorithm 2.

• Appendix E.1.4 presents Definition 5, which introduces the main notion of covering number
used in our analysis, and provides bounds on covering numbers for these function classes
used by Algorithm 2.

• Appendix E.1.5 gives prediction error bounds for square loss regression over a general
function classes, subject to misspecification error. Proposition E.1 provides guarantees
based on a classical notion of misspecification error (which arises in Phase I of Algo-
rithm 2), while Corollary E.2 gives guarantees under a stronger notion of function-dependent
misspecification error, which is used in the analysis of Phase III.

• Appendix E.1.6 provides guarantees for a principal component analysis (PCA) setup which,
in particular, subsumes the dimensionality reduction procedure used in Phase I of Algo-
rithm 2. It provides guarantees for estimating a covariance matrix under persistent error
(Proposition E.2), and a corollary regarding overlap between eigenspaces (Corollary E.3).

• Appendix E.1.7 considers linear regression. Proposition E.3 gives bounds for parameter
recovery under errors in variables, which is used to recover Aid and Bid in Phase II of
Algorithm 2. Proposition E.4 gives a guarantee for covariance estimation, which are used to
estimate Σw,id in Phase II.

• Finally, Appendix E.1.8 gives a parameter recovery bound for regression with measurements
which are rank-one outer products of near-Gaussian vectors. This is used to recover the cost
matrix Qid in Phase II.

E.1 Statement of Guarantees

E.1.1 Generic Concentration

Definition 3 (c-concentration). We say that a non-negative random variable z is c-concentrated if
P[z ≥ c ln(1/δ)] ≤ δ for all δ ∈ (0,1/e]. For such random variables, we define cn,δ ∶= c ln(2n/δ).

This is one of many equivalent (up to numerical constants) definitions for sub-exponential concentra-
tion (e.g., [43]). We opt for the term “c-concentrated” to make the dependence on the concentration
parameter c precise.
Lemma E.1 (Truncated concentration). Let z be a non-negative c-concentrated random variable.
Then, z is c′-concentrated for all c′ ≥ c, and αz +β is αc+β-concentrated for all α,β > 0. Moreover,
the the following bounds hold.

1. For any δ ∈ (0,1/e], we have E[zI{z ≥ c ln(1/δ)}] ≤ cδ, and in particular, Emax{c,z} ≤
2c. For any integer k ≥ 1, and E[zk] ≤ 2k!ck.

2. Let ε2 ≥ E[z], and let δ ∈ (0,1). Suppose n is large enough such that ψ(n, δ) ≤ ε2

c
, where

we define

ψ(n, δ) ∶= 2 ln(2n/δ) ln(2/δ)
n

. (E.1)
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Then with probability at least 1 − δ, z(i) ∼ z satisfy 1
n ∑i z

(i) ≤ 2ε2, where z(i) i.i.d.∼ z for
1 ≤ i ≤ n.

3. Consider the previous claim. Suppose we replace the hypothesis that z is c-concentrated
with the assumption that for a given δ ∈ (0,1), z ≤ c ln(2n/δ) almost surely. Then with
failure probability at least 1 − 2δ, 1

n ∑i z
(i) ≤ 2ε2.

E.1.2 Gaussian Concentration and Change of Measure

Our first lemma shows that norms of Gaussian vectors satisfy the c-concentration condition.
Lemma E.2. Let x ∼ N(0,Σ). Then, ∥x∥2 is c-concentrated for c = 5tr(Σ).

Next, we provide a change of measure argument, which is used to establish that Algorithm 1 accurately
estimates the system state.
Lemma E.3 (Gaussian change of measure). Let Σ1,Σ2 ≻ 0 be matrices in Rd×d. Let x1 ∼ N(0,Σ1),
x2 ∼ N(0,Σ2), and let y1 ∼ q(⋅ ∣ x1), y2 ∼ q(⋅ ∣ x1). Let ĥ, h⋆ ∶ Y → Rd be two functions such that
max{∥ĥ(y)∥, ∥h⋆(y)∥} ≤ L∥f⋆(y)∥. Suppose that

Ey1[∥ĥ(y1) − h⋆(y1)∥2] ≤ ε2, and ∥I −Σ
1/2
1 Σ−1

2 Σ
1/2
1 ∥op ≤ 1

14d ln( 80eL2(1+∥Σ1∥op)
ε2

)
,

for some ε > 0. Then the following error bound holds:

Ey2[∥ĥ(y2) − h⋆(y2)∥2] ≤ 2ε2.

E.1.3 Conditional Expectations for Decodable Markov Chains

Definition 4 (Decodable Markov chain). Let u ∈ U , x ∈ X , y ∈ Y be random variables that form a
Markov chain u→ x→ y. We say (u,x,y) is a decodable Markov chain if there exists some function
f⋆ ∶ Y → X such that x = f⋆(y) almost surely.
Lemma E.4 (Characterization of square loss minimizer). Let (u,x,y) be a decodable Markov chain.
Then, E[u ∣ y = y] = h⋆(y), where

h⋆(y) ∶= E[u ∣ x = f⋆(y)].
Moreover, for any class of functions H with h⋆ ∈ H , for any h ∈ arg minh′∈H E∥h′(y) − u∥2, we
have

h(y) = h⋆(y) almost surely in y.

E.1.4 Covering Numbers

Definition 5 (Covering numbers). Let (X ,dist) be a metric space with pseudometric dist. The
covering number N(ε,X ,dist) is defined as the minimal cardinality of any set X ′ ⊆ X such that

max
x∈X

min
x′∈X ′

dist(x,x′) ≤ ε.

We say that X ′ is a minimal ε-cover of X if it witnesses the condition above and has ∣X ′∣ =
N(ε,X ,dist).

Lemma E.5. Let M ∶= {M ∈ Rd×dx ∶ ∥M∥op ≤ b}. Then, N(bε,M , ∥ ⋅ ∥op) ≤ (1 + 2/ε)ddx .

E.1.5 Square Loss Regression

Proposition E.1 (Square loss regression with misspecification error). Let (u,y) be a pair of random
variables with u ∈ U , y ∈ Y , and let e ∈ U be an arbitrary “error” random variable. Suppose that H is
a function class that contains the function h⋆(y) ∶= E[u ∣ y = y]. Consider empirical risk minimizer

ĥn ∶= arg min
h∈H

n

∑
i=1

∥h(y(i)) + e(i) − u(i)∥2,

where (u(i),y(i),e(i)) are drawn i.i.d. from the law of (u,y,e) for 1 ≤ i ≤ n. Suppose that there
exists a constant c > 0 and function ϕ ∶ Y → R+ such that the following properties hold:
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• ∥h(y)∥2 ≤ ϕ(y) for all h ∈ H .

• The random variables ϕ(y) and ∥e − u∥2 are c-concentrated.

• For all c′ ≥ c and all ε ≤ 1, the
√
c′ε-covering number of H in the pseudometric

dc′,∞(h,h′) ∶= supy∈Y{∥h(y) − h′(y)∥ ∶ ϕ(y) ≤ c′} is bounded by a function N(ε).

Then, with probability at least 1 − 3δ
2

,

E∥ĥn(y) − h⋆(y)∥2 ≤
270cn,δ

n
ln(2N(1/33n)δ−1) + 8E∥e∥2,

where we recall that cn,δ ∶= c ln(2n/δ).

We now state two corollaries of the above regression. First, a simple corollary for structured function
classes of the form {M ⋅ f}, where M are matrices of bounded operator norm, and f ∈ F are
elements of finite class which satisfy a growth condition like Assumption 5.
Corollary E.1 (Regression with Structured Function Class). Let (u,y) be a pair of random variables
with u ∈ Rdu , y ∈ Y , and let e ∈ U be an arbitrary “error” random variable. Suppose that H is a
function class that contains the function h⋆(y) ∶= E[u ∣ y = y]. Consider empirical risk minimizer

ĥn ∶= arg min
h∈H

n

∑
i=1

∥h(y(i)) + e(i) − u(i)∥2.

where (u(i),y(i),e(i)) are drawn i.i.d. from the law of (u,y,e) for 1 ≤ i ≤ n. Suppose F ∶ Y → Rdx
is a finite class of functions satisfying f(y) ≤ Lmax{1, ∥f⋆(y)∥2} for all f ∈ F , whereL ≥ 1 without
loss of generality. In addition, suppose that H takes the form

H ∶= {h(y) =M ⋅ f(y) ∶ f ∈ F M ∈ Rdudx , ∥M∥op ≤ b}.

Lastly, assume that the random variables ϕ(y) and ∥e − u∥2 are c-concentrated, where ϕ(y)1/2 ∶=
bLmax{1, ∥f⋆(y)∥2}. Then, with probability at least 1 − 3δ

2
,

E∥ĥn(y) − h⋆(y)∥2 ≤ c(dudx + ln ∣F ∣) ⋅ logs(n, δ)
n

+ 8E∥e∥2,

where define logs(n, δ) ∶= 270 ln(2n/δ) ln(330n/δ) ≲ ln(n/δ)2.

Second, we state a regression bound tailored to the structured regression problems that arise in Phase
III of our algorithm.
Corollary E.2. Let Z = Y × Y . Let (v,z) ∈ V × Z be a pair of random variables, and let e ∈ V be a
arbitrary “error” random variable defined on the same probability space. Let H be a function class,
and let φ, φ̂∶G ×Z → Rd be measurable functions. Suppose that the set H contains a function h⋆
satisfying φ(h⋆, z) ∶= E[v ∣ z = z]. Let {(z(i),v(i),e(i))}ni=1 be i.i.d. copies of (z,v,e), and define

ĥ ∶= arg min
h∈H

n

∑
i=1

∥φ̂(h,z(i)) + e(i) − v(i)∥2.

Introduce δφ(z, h) ∶= φ̂(h,z(i)) − φ(h,z(i)). Suppose that there exists a constant c > 0 and a map
ψ∶ Z → R+ such that the following properties hold:

1. suph∈H ∥φ(h, z)∥2 + suph∈H ∥δφ(z, h)∥2 ≤ ψ(z)2.

2. For all δ ∈ (0,1/e], we have P[ψ(z)2 ∨ ∥e − v∥2 ≥ c ln δ−1] ≤ δ.

3. H takes the form H = {h(y) =M ⋅ f(y) ∶ f ∈ F M ∈ Rd1×dx , ∥M∥op ≤ b} for some
b > 0, where F ∶ Y → Rdx is a finite class and . Furthermore, there exists L ≥ 1, matrices
X1,X2 of appropriate dimension, and an arbitrary function δ0 ∶ Z → V (which does not
depend on h) such that

∀f ∈ F , ∥f(y)∥2 ≤ Lmax{1, ∥f⋆(y)∥} for all y ∈ Y
∀h ∈ H , φ̂(h, z) ∶=X1(h(y1) −X2h(y2)) + δ0(z) for all z = (y1, y2, y3).
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4. Finally, cψ ≥ 1 satisifes the following for all all z = (y1, y2, y3)
bL(∥X1∥op + ∥X1 ⋅X2∥op)(2 + ∥f⋆(y1)∥ + ∥f⋆(y2)∥) ≤ 2cψψ(z).

Then, with probability at least 1 − 3δ
2

,

E∥φ(ĥ,z) − φ(h⋆,z)∥2 ≤
12c(ln ∣F ∣ + d1dx)logs(cψn, δ)

n
+ 16E∥e∥2 + 8 max

h∈H
E∥δφ(h,z)∥2,

where again we define logs(n, δ) ∶= 270 ln(2n/δ) ln(330n/δ), so that logs(cψn, δ) ≲ ln2(cψn/δ).

E.1.6 Principal Component Analysis

Proposition E.2 (PCA with errors). Let H ⊆ (Y → Rd) be a function class, and let y ∈ Y be a
random variable. Suppose that there exists a function ϕ ∶ Y → R+ and constants c, L such that the
following properties hold:

• ∥h(y)∥2 ≤ max{c,ϕ(y)} for all h ∈ H .

• ϕ(y) is c-concentrated.

Let h⋆ ∈ H be given, and let Λ⋆ ∶= E[h⋆(y)h⋆(y)⊺]. Next, let ĥ ∈ H be given and define

Λ̂n ∶=
1

n

n

∑
i=1

ĥ(y(i))ĥ(y(i))⊺,

where y(i) i.i.d.∼ y. Then with probability 1 − δ, we have ∥Λ̂n −Λ⋆∥op ≤ εpca,n,δ , where

εpca,n,δ ∶= 3
√
c ⋅E[∥ĥ(y) − h⋆(y)∥2] + 5cn−1/2 ln(2dn/δ)3/2.

Corollary E.3 (Significant basis overlap). Consider the setting of Proposition E.2, and suppose that
Λ⋆ ∶= E[h⋆(y)h⊺⋆(y)] ∈ Rd×d has rank(Λ⋆) = dx, so that λdx(Λ⋆) > 0. Let V⋆ ∈ Rd×dx denote
be a matrix with orthonormal columns that span the column space the image of Λ⋆. Likewise, let
V̂ ∈ Rd×dx be a matrix with orthonormal columns span the eigenspace of the top dx eigenvectors of Λ̂n.
Suppose εpca,n,δ ≤ λdx(Λ⋆)

4
. Then on the good event for Proposition E.2, we have σdx(V ⊺

⋆ V̂n) ≥ 2/3.

E.1.7 Linear Regression

Proposition E.3 (Linear regression with errors in variables). Let (u,y,w,e,δ) be a collection of
random variables defined over a shared probability space, and let {(u(i),y(i)w(i),e(i),δ(i))}n

i=1
be

i.i.d. copies. Suppose the following conditions hold:

1. y =M⋆u +w + e with probability 1, where M⋆ ∈ Rdy×du .

2. w ∣ u,δ ∼ N(0,Σw) and u ∼ N(0,Σu).

3. We have E∥e∥2 ≤ ε2
e and E∥δ∥2 ≤ ε2

δ .

4. e is ce-concentrated and δ is cδ-concentrated for ce ≥ ε2
e and cδ ≥ ε2

δ .

5. ε2
δ ≤

1
16
λmin(Σu).

Let δ ≤ 1/e, and let n ∈ N satisfy

1. ψ(n, δ) ≤ min{ ε
2
e

ce

ε2δ
cδ

}, where ψ(n, δ) ∶= 2 ln(2n/δ) ln(2/δ)
n

.

2. n ≥ c1(du + ln(1/δ)), for some universal constant c1 > 0.

Then the solution to the least squares problem

M̂ = min
M

n

∑
i=1

∥M(u(i) + δ(i)) − y(i)∥2,
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satisfies the following inequality with probability at least 1 − 4δ:

∥M̂ −M⋆∥2
op ≲ λmin(Σu)−1 (∥M⋆∥2

opε
2
δ + ε2

e +
∥Σw∥op(dy + du + ln(1/δ))

n
) . (E.2)

Proposition E.4. Consider the setting of Proposition E.3, and suppose we additionally require that
n ≥ c0(dy + ln(1/δ)) for some (possibly inflated) universal constant c0. Furthermore, suppose we
have ε2

δ∥M⋆∥2
op + ε2

e ≤ 2λ+ for some λ+ ≥ λmax(Σw). Then, with probability at least 1 − 7δ, (E.2)
holds, and moreover

∥ 1

n

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2 −Σw∥
op

≲
√
λ+(ε2

δ∥M⋆∥2
op + ε2

e) +
λ2
+(dy + ln(1/δ))

n
.

E.1.8 Regression with Matrix Measurements

Proposition E.5 (Regression with matrix measurements). Let y ∈ Y be a random variable, and
let y(i) i.i.d.∼ y for 1 ≤ i ≤ n. Fix two regression functions ĝ, g⋆ ∶ Y → Rd, and suppose that
z ∶= max{∥ĝ(y)∥2, ∥g⋆(y)∥2} is c-concentrated, and that x ∶= g⋆(y) ∼ N(0,Σx). Let Q⋆ ⪰ 0 be a
fixed matrix, and consider the regression.

Q̃ ∈ arg min
M

n

∑
i=1

(g⋆(y(i))⊺Q⋆g⋆(y(i)) − ĝ(y(i))⊺Mĝ(y(i))⊺)
2
.

Set Q̂ ∶= ( 1
2
Q̃⊺ + 1

2
Q̃)+, where (⋅)+ truncates all negative eigenvalues to zero. Then, there is a

universal constant c0 > 0 such that if the following conditions hold:

E∥ĝ(y) − g⋆(y)∥2 ≤ ε2, ψ(n, δ/2) ≤ ε
2

4c
, n ≥ c0(d2 + ln(1/δ)), and ε2 ≤ λmin(Σx)2

64c ln(2n/δ)
,

then with probability at least 1 − 2δ,

∥Q̂ −Q⋆∥2
F ≤ ∥Q̃ −Q⋆∥2

F ≤ 64cε2 ln(4n/δ) ⋅
∥Q⋆∥2

op

λmin(Σx)2
.

E.2 Proofs for Technical Tools

E.2.1 Proof of Lemma E.1

First observe that if z is c-concentrated, then for δ ∈ (0,1/e], ln(1/δ) ≥ 1, so that P[αz + β ≥
(αc + β) ln(1/δ)] ≤ P[αz ≥ αc ln(1/δ)] = P[cz ≥ c ln(1/δ)]. This is at most δ by the definition of
the c-concentrated property. We now turn to the enumerated points.

Point 1. For δ ≤ 1/e, P[z ≥ c ln(1/δ)] ≤ δ. Thus, for any δ ∈ (0,1/e), and u ≥ cδ ≥ c, we have
P[z ≥ u] ≤ e−u/c. It follows that for any δ ≤ 1/e,

E[zI(z ≥ c ln(1/δ))] = ∫
∞

u=c ln(1/δ)
P[z ≥ u]du

= ∫
∞

u=c ln(1/δ)
e−u/cdu = ce−c ln(1/δ)/c = cδ.

A similar calculation reveals that

E[zk] ≤ ck ∫
∞

u=ck
P[zk ≥ u]du

≤ ck + ∫
∞

u=ck
e−

u1/k

c du

= ck + kck ∫
∞

u=1
e−uuk−1du

= ck(1 + k!).
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Point 2. Define the increments ∆i = z(i) −E[z(i)], and ∆i,δ ∶= ∆iI(z(i) ≤ cn,δ). By a union bound,
∆i = ∆i,δ for all i ∈ [n] with probability at least 1 − δ/2. Moreover, −c ≤ −E[z] ≤ ∆i,δ ≤ cn,δ, so
that by Bennett’s inequality ([25], Theorem 3), it holds that with probability at least 1 − δ/2,

1

n
∑
i

∆i,δ ≤
√

2VAR[∆i,δ] ln(2/δ)
n

+
cn,δ ln(2/δ)

3n

≤ τ

2cn,δ
VAR[∆i,δ] + (1

3
+ 1

τ
)
cn,δ ln(2/δ)

n
,

for any τ > 0. Moreover, we have VAR[∆i,δ] = E[∆2
i,δ] ≤ cn,δE∣z(i) − E[z(i)]∣ ≤ 2cn,δE∣z(i)∣ =

2cn,δE[z(i)] by non-negativity of z(i). Hence, with total probability at least 1 − δ, we have
1

n
∑
i

∆i =
1

n
∑
i

∆i ≤ τE[z(i)] + (1

3
+ 1

τ
)
cn,δ ln(2/δ)

n
.

Recalling that ∆i ≤ z(i) − E[z(i)] and taking τ = 1/2, we have that with total probability at least
1 − δ,

1

n
∑
i

z(i) ≤ 3

2
E[z(i)] + 5

6

cn,δ ln(1/δ)
n

.

By assumption, E[z(i)] ≤ ε2. Hence, for
cn,δ ln(2/δ)

n
≤ 6

5
⋅ 1

2
ε2 ≤ ε2/2,

we have that 1
n ∑i z

(i) ≤ 2ε2. In particular, since

ψ(n, δ) = 2 ln(2n/δ) ln(2/δ)
n

=
2cn,δ ln(2/δ)

cn
,

we have 1
n ∑i z

(i) ≤ 2ε2 for ψ(n, δ) ≤ ε2/c.

It is simple to verify that all the steps above go through if z ≤ cδ,n = c ln(2n/δ) almost surely and
E[z] ≤ c. Substituting in cn,δ ∶= c ln(2n/δ) concludes.

E.2.2 Proof of Lemma E.2

First, observe that E[∥x∥2] = tr(Σ). Next, from Hsu et al. [15, Proposition 1], we have that

P[∥x∥2 ≥ tr(Σ) + 2
√
t∥Σ∥F + 2t∥Σ∥op] ≤ e−t.

Setting t = ln(1/δ) ≥ 1 and bounding tr(Σ) + 2
√
t∥Σ∥F + 2t∥Σ∥op ≤ 5t ⋅ tr(Σ) = 5tr(Σ) ln(1/δ)

concludes.

E.2.3 Proof of Lemma E.3

Let Q1 denote the law of y1, Q2 the law of y2, P1 the law of x1, and P2 the law of x2. Let q(y ∣ x)
denote the density of y given x. We then have that

Ey2[∥h⋆(y2) − ĥ(y2)∥2] = ∫
y
∥h⋆(y) − ĥ(y)∥2dQ2(y)

= ∫
x,y

q(x ∣ y)∥h⋆(y) − ĥ(y)∥2dP2(x)

= ∫
x,y

q(x ∣ y)dP2(x)
dP1(x)

∥h⋆(y) − ĥ(y)∥2dP1(x).

Using the standard expression for the density for the multivariate Gaussian distribution, we have the
identity

dP2(x)
dP1(x)

= det(Σ1Σ−1
2 )1/2 ⋅ exp(1

2
x⊺(Σ−1

1 −Σ−1
2 )x)

= det(I + (Σ1/2
1 Σ−1

2 Σ1/2 − I))1/2 ⋅ exp(1

2
x⊺Σ

−1/2
1 (I −Σ

1/2
1 Σ−1

2 Σ1/2)Σ−1/2
1 x).
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Hence, if we set η = ∥(Σ1/2
1 Σ−1

2 Σ1/2 − I)∥op, we have

det(I + (Σ1/2
1 Σ−1

2 Σ1/2 − I)) =
d

∏
i=1

λi(I + (Σ1/2
1 Σ−1

2 Σ1/2 − I))

≤
d

∏
i=1

(1 + η)d ≤ exp(dη).

Similarly, we may bound

exp(1

2
x⊺Σ

−1/2
1 (I −Σ

1/2
1 Σ−1

2 Σ1/2)Σ−1/2
1 x) ≤ exp(η

2
x⊺Σ−1

1 x).

Thus,
dP2(x)
dP1(x)

≤ exp(η
2
(d + x⊺Σ−1

1 x)).

In particular, for any B > 0, as long as

x⊺Σ−1
1 x ≤ B, and η ≤ 2 ln(3/2)

d +B
, (E.3)

we have
dP2(x)
dP1(x)

≤ 3/2.

Henceforth, fix a bound parameter B and assume η ≤ 2 ln(3/2)
d+B < 1. We have

Ey2[∥h⋆(y2) − ĥ(y2)∥2] = ∫
x,y

q(x ∣ y)dP2(x)
dP1(x)

∥h⋆(y) − ĥ(y)∥2dP1(x)

≤ 3

2
∫
x,y

q(x ∣ y)∥h⋆(y) − ĥ(y)∥2dP1(x)I(x⊺Σ−1
1 x ≤ B)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Term1

+ ∫
x,y

q(x ∣ y) exp(η
2
(d + x⊺Σ−1

1 x))∥h⋆(y) − ĥ(y)∥2dP1(x)I(x⊺Σ−1
1 x > B)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Term2

.

To handle the first term, we use the assumed error bound between h⋆ and ĥ:

Term1 ∶=
3

2
∫
x,y

q(x ∣ y)∥h⋆(y) − ĥ(y)∥2dP1(x)I(x⊺Σ1x ≤ B)

≤ 3

2
∫
x,y

q(x ∣ y)∥h⋆(y) − ĥ(y)∥2dP1(x) =
3

2
Ey1∥h⋆(y1) − ĥ(y2)∥2 ≤ 3ε2

2
. (E.4)

For Term2, we use the bound ∥h⋆(y) − ĥ(y)∥2 ≤ 4Lmax{1, ∥f⋆(y)∥2} = 4L2 max{1, ∥x∥2} to
bound

∫
x,y

q(x ∣ y) exp(η
2
(d + x⊺Σ1x))∥h⋆(y) − ĥ(y)∥2dP1(x)I(x⊺Σ−1

1 x > B)

≤ 4L2e
dη
2 ∫

x
exp(η

2
x⊺Σ−1

1 x)(1 + ∥x∥2)dP1(x)I(x⊺Σ−1
1 x > B).

Let us change variables to u = Σ−1/2x, and let P0 denote the density of u, which is precisely the
density of a standard normal N(0, I) random variable. Then, using the formula the standard normal
density,

∫
x

exp(η
2
x⊺Σ−1

1 x)(1 + ∥x∥2)I(x⊺Σ−1
1 x > B)dP1(x)

= ∫
u

exp(η
2
∥u∥2) ⋅ (1 + ∥Σ1/2u∥2) ⋅ I(∥u∥2 > B)dP0(u)

= ∫
u

1

(2π)d/2
exp(−(1 − η)

2
∥u∥2) ⋅ (1 + ∥Σ1/2u∥2) ⋅ I(∥u∥2 > B)du

≤ ∫
u

1

(2π)d/2
exp(−(1 − η)

2
∥u∥2)(1 + ∥Σ1∥op∥u∥2)I(∥u∥2 > B)du.
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Again, let us rescale via z ← (1 − η)−1/2u. The determinant of the Jacobian of this transformation is
(1 − η)d/2, so that for B ≥ 1, this is equal to

(1 − η)−d/2 ∫
z

1

(2π)d/2
exp(−1

2
∥u∥2)(1 + (1 − η)∥Σ1∥op∥z∥2)I(∥z∥2 > B(1 − η)−1)dz

= (1 − η)−d/2Ez∼N(0,I)[(1 + (1 − η)∥Σ1∥op∥z∥2)I(∥z∥2 ≥ B(1 − η)−1)]
(i)
≤ eηdEz∼N(0,I)[(1 + ∥Σ1∥op∥z∥2)I(∥z∥2 ≥ B(1 − η)−1)]

≤ (1 + ∥Σ1∥op)eηdEz∼N(0,I)[∥z∥2I(∥z∥2 ≥ B(1 − η)−1)],

where in (i) we observe that (1−η)−1/η ≤ e2 for η ≤ 1/2, and where the last inequality uses thatB ≥ 1.
Now, from Lemma E.2, we have that ∥z∥2 is 5d-concentrated. Hence, for η ≤ 1/2, (1 − η)−1∥z∥2

is 10d-concentrated. Thus B = 10d ln(1/δ) gives Ez∼N(0,I)[∥z∥2I((1 − η)−1∥z∥2 ≥ B)] ≤ 10dδ by
Lemma E.1., and therefore

Term2 =∫
x,y

q(x ∣ y) exp(η
2
(2d + x⊺Σ1x))∥h⋆(y) − ĥ(y)∥2dP1(x)I(x⊺Σ−1

1 x > B)

≤ 4(1 + ∥Σ1∥op)L2eηd ⋅ eηd/2 ⋅ 10dδ = δ ⋅ (1 + ∥Σ1∥op)40L2e3dη/2.

In particular, if η ≤ 1/2d and δ = ε2

80L2∥Σ1∥ope , we have Term2 ≤ ε2

2
, and thus Term1 +Term2 ≤ 2ε2.

Gathering our conditions, we require η ≤ 1/max{2, d}, B = 10d ln( ε2

80L2(1+∥Σ1∥op)e), and—from

Eq. (E.3)—η ≤ 2 ln(3/2)
d+B . Altogether, it suffices to select

η ≤ 2 ln(3/2)
11d ln( ε2

80L2(1+∥Σ1∥op)e)
≤ 1

14d ln( ε2

80L2(1+∥Σ1∥op)e)
.

E.2.4 Proof of Lemma E.4

By the tower rule and the fact that u → x → y is a Markov chain, E[u ∣ y = y] = E[E[u ∣ x,y =
y] ∣ y = y] = E[E[u ∣ x] ∣ y = y]. Moreover, from decodability, E[E[u ∣ x] ∣ y = y] = E[E[u ∣ x =
f⋆(y)] ∣ y = y] = E[u ∣ f⋆(y) = x] = h⋆(y).

For the second point, It is well know that any unrestricted minimizer of ∥h(y) − u∥2 over all
measurable h satisfies h = h0 almost surely, where h(y) ∶= E[u ∣ y = y]. We verify above that
h⋆(y) = E[u ∣ y = y], proving the that any unrestricted minimizer h coincideds with h⋆. Since
h⋆ ∈ H , the same holds for the function class constraint in the lemma statement.

E.2.5 Proof of Lemma E.5

Our task is to bound N(bε,M , ∥⋅∥op), where we recall M ∶= {M ∈ Rddx ∶ ∥M∥op ≤ b}. By rescaling,
it suffices to bound N(ε, 1

b
M , ∥ ⋅ ∥op). We recognize M as the operator norm ball in Rd×dx and

appeal to the following standard lemma.
Lemma E.6 ([43], Lemma 5.2). Let B be the unit ball in Rd for an arbitrary norm. Then, if dist is
the metric induced by the norm, N(ε,B,dist) ≤ (1 + 2

ε
)d.

E.2.6 Proof of Proposition E.1

Before diving into the meat of the proof, we first establish some basic concentration properties and
state a number of definitions. For each realization (y,e,u), define

E ∶= {∥e − u∥2 ∨ ϕ(y) ≤ cn,δ},

where we recall that cn,δ ∶= c ln(2n/δ). Let `(h) ∶= ∥h(y) + e − u∥2, and let L(h) = E[`(h)].
Furthermore, define `δ(h) = `(h)I(E) and Lδ(h) = E[`δ(h)]. We first establish the following useful
claim.
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Claim E.1. Then on E , ∣`(h) − `(h′)∣ ≤ 4
√
cn,δ∥h(y) − h′(y)∥. Moreover, defining z = ∥e − u∥2 ∨

ϕ(y), we have that `(h) ≤ 4z. In particular, on E , `(h) ≤ 4cn,δ .

Proof of Claim E.1.

∣`(h) − `(h′)∣ = ∣∥h′(y) + e − u∥2 − ∥h(y) + e − u∥2∣
≤ 2∣⟨h(y) − h′(y),e − u⟩∣ + (∥h(y)∥ + ∥h′(y)∥)(∥h(y)∥ − ∥h′(y)∥)
≤ 4

√
cn,δ∥h(y) − h′(y)∥.

This proves the first claim. The claim holds because `(h) ≤ 2∥e − u∥2 + 2∥h(y)2∥ ≤ 2∥e − u∥2 +
2 max{ϕ(y), c} ≤ 4 max{z, c}.

Next, Let E(i) denote the event that E holds for the ith sample, and let E1∶n = ⋃i∈[n] E(i). Note that
E1∶n occurs with probability at least 1 − 2 ⋅ δ/2 = 1 − δ by the c-concentration property and a union
bound. On this event, if we define

Ln,δ(h) ∶=
n

∑
i=1

`i,δ(h), where `i,δ(h) ∶= I(E(i))∥h(y(i)) + e(i) − u(i)∥2,

we have

ĥn ∶= arg min
h∈H

Ln,δ(h).

Lastly, define the excess risk with respect to the Bayes function h⋆(y) = E[u ∣ y = y]:
Rn,δ(h) = Ln,δ(h) − Ln,δ(h⋆), Rδ(h) = Lδ(h) − Lδ(h⋆).

Finally, let H0 ⊂ H denote a finite cover for H such that, for some ε > 0 to be selected at the end of
the proof,

sup
h∈H

inf
h′∈H0

sup
y∶ϕ(y)≤cn,δ

∥h(y) − h′(y)∥ ≤ √
cn,δε, (E.5)

and let ĥ0 ∈ H0 denote the element that witnesses the covering inequality above for ĥn. Note that by
Claim E.1 and (E.5), the differences on the truncated losses between ĥn and h0 satisfy

∣Ln,δ(ĥn) − Ln,δ(ĥ0)∣ ∨ ∣Lδ(ĥn) − Lδ(ĥ0)∣ ≤ 4εcn,δ,

whenever E1∶n holds. Thus, on E1∶n, when ĥn ∈ arg minh∈H Rn,δ(h), we have

Rδ(ĥn) = Rδ(ĥn) −Rn,δ(ĥn) +Rn,δ(ĥn)
(i)
≤ Rδ(ĥn) −Rn,δ(ĥn)
≤ Rδ(ĥ0) −Rn,δ(ĥ0) + 2 max{∣Lδ(ĥ0) − Lδ(ĥn)∣, ∣Ln,δ(ĥ0) − Ln,δ(ĥn)∣}

≤ Rδ(ĥ0) −Rn,δ(ĥ0) + 8cn,δε., (E.6)

where (i) uses thatRn,δ(ĥn) is non-positive for the empirical risk minimizer.

Step 1: Bounding Rδ(n). From the bound `i,δ(h) ≤ 4cn,δ (Claim E.1), along with Bennett’s
inequality (see e.g. Theorem 3 of [25]) and a union bound over H0, we have, for all δ ∈ (0,1), with
probability at least 1 − δ/2,

Rδ(ĥ0) −Rn,δ(ĥ0) ≤
√

2n−1VAR[`i,δ(ĥ0) − `i,δ(h⋆)] ⋅ ln(2∣H0∣δ−1) + 4cn,δ
3

ln(2∣H0∣δ−1)

≤ τ

2cn,δ
VAR[`i,δ(ĥ0) − `i,δ(h⋆)] +

cn,δ

n
(4

3
+ 1

τ
) ln(2∣H0∣δ−1), (E.7)

where the last step uses AM-GM and holds for all τ > 0. Again, by Claim E.1, we have

VAR[`i,δ(ĥ0) − `i,δ(h⋆)] ≤ E [I(E) (`(ĥ0) − `(h⋆))
2
]

≤ 16cn,δE [I(E)∥ĥ0(y) − h⋆(y)∥2]

≤ 32cn,δE [I(E)∥ĥ0(y) − ĥn(y)∥2] + 32cn,δE [I(E)∥ĥn(y) − h⋆(y)∥2] .
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From Eq. (E.5), we have E [I(E)∥ĥ0(y) − ĥn(y)∥2] ≤ cn,δε2 Moreover, we can always upper bound
E [I(E)∥ĥn(y) − h⋆(y)∥2] by removing the indicator. This ultimately yields

VAR[`i,δ(ĥ0) − `i,δ(h⋆)] ≤ 32c2n,δε
2 + 32cn,δE [∥ĥn(y) − h⋆(y)∥2] .

Thus, combining the above with Eqs. (E.6) and (E.7), we have

Rδ(ĥn) ≤ 16τE [∥ĥn(y) − h⋆(y)∥2] + 16cn,δ(ε + τε2) +
cn,δ

n
(4

3
+ 1

τ
) ln(2∣H0∣δ−1). (E.8)

Step 2: RelatingRδ(h) to error against h⋆. Recall that Lδ(h) ≤ L(h) due to truncation, so that

Rδ(h) = Lδ(h) − Lδ(h⋆) ≥ Lδ(h) − L(h⋆)
≥ L(h) − L(h⋆) − ∣Lδ(h) − L(h)∣. (E.9)

We further develop

L(h) − L(h⋆) = E[∥h(y) + e − u∥2 − ∥h⋆(y) + e − u∥2]
= E[∥h(y) − u∥2 − ∥h⋆(y) − u∥2] + 2E⟨e, h(y) − h⋆(y)⟩

≥ E[∥h(y) − u∥2 − ∥h⋆(y) − u∥2] − 2E∥e∥2 − 1

2
E∥h(y) − h⋆(y)∥2,

where the last line uses Cauchy-Schwartz and AM-GM Moreover, since h⋆ = E[y ∣ u], we can see
that E[∥h(y) − u∥2 − ∥h⋆(y) − u∥2] = E∥h(y) − h⋆(y)∥2. This yields

L(h) − L(h⋆) ≥ −2E∥e∥2 + 1

2
E∥h(y) − h⋆(y)∥2.

Hence, Eq. (E.9) yields that for all h,

E∥h(y) − h⋆(y)∥2 ≤ 2Rδ(h) + 4E∥e∥2 + 2∣Lδ(h) − L(h)∣.
Finally, recalling z = ϕ(y)2 ∨ ∥e − u∥2, we have

sup
h∈H

2∣Lδ(h) − L(h)∣ = sup
h∈H

2E[I(Ec)`(h)]

≤ 8E[I(Ec)max{c,z}] (Claim E.1)

≤ 8cδ

3n
. (Lemma E.1)

Hence, the previous two displays give

E∥h(y) − h⋆(y)∥2 ≤ 2Rδ(h) + 4E∥e∥2 + 8cδ

3n
.

Thus, choosing h = ĥn and combining with Eq. (E.8), we have

E∥ĥn(y) − h⋆(y)∥2 ≤ 32τE [∥ĥn(y) − h⋆(y)∥2] + 32cn,δ(ε + τε2)

+ 2
cn,δ

n
(4

3
+ 1

τ
) + 8cδ

3n
+ 4E∥e∥2

.

Setting τ = 1
64

and using ε ≤ 1 gives

E∥ĥn(y) − h⋆(y)∥2 ≤ 1

2
E [∥ĥn(y) − h⋆(y)∥2]

+ 33cn,δε +
cn,δ

n
(8

3
+ 128) ln(2∣H0∣δ−1) + 4E∥e∥2 + 8cδ

3n

≤ 1

2
E [∥ĥn(y) − h⋆(y)∥2] + 33cn,δε +

cn,δ

n
134 ln(2∣H0∣δ−1) + 4E∥e∥2,

where in the last line we folded the 8cδ/3n term into the term with the log, bounding 8/3 + 8δ/3n ≤
16/3 ≤ 6. Rearranging the above yields

E∥ĥn(y) − h⋆(y)∥2 ≤ 66cn,δε +
268cn,δ

n
ln(2∣H0∣δ−1) + 8E∥e∥2.

Taking ε = 1/33n concludes the proof.
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E.2.7 Proof of Corollary E.1

We verify Conditions 1-3 of Proposition E.1 in succession:

1. Condition 1: By assumption 1 of the corollary, f(y) ≤ Lmax{1, ∥f⋆(y)∥2}, then h(y) ≤
bLmax{1, ∥f⋆(y)∥2} ∶= ϕ(y) for all h ∈ H .

2. Condition 2: This is satisfied by assumption 2 of the corollary, ϕ(y)1/2 and ∥e − u∥2 are
c-concentrated.

3. Condition 3: We bound the covering number. Let M ∶= {M ∈ Rdudx ∶ ∥M∥op ≤ b}. Then,
for an ε > 0 to be chosen, let N(bε,M , ∥ ⋅ ∥op) ≤ (1 + 2/ε)dudx from Lemma E.5, so we
may take a bε- cover Mε of M to have cardinality (1 + 2/ε)dudx . Define the induced cover
Hε ∶= {Mf ∶M ∈ Mε, f ∈ F}, which has ∣Hε∣ ≤ ∣F ∣(1 + 2/ε)dudx . Given h =Mf ∈ H ,
let h′ ∶M ′f , where M ′ ∈ Mε satisfies ∥M −M ′∥op ≤ bε. Then,

dc′,∞(h,h′) ∶= sup
y∈Y

{∥h(y) − h′(y)∥ ∶ ϕ(y)1/2 ≤
√
c′}

∶= sup
y∈Y

{∥(M −M ′)f(y)∥ ∶ ϕ(y)1/2 ≤
√
c′}

≤ sup
y∈Y

{bε ⋅ ∥f(y)∥ ∶ ϕ(y)1/2 ≤
√
c′} (∥M −M ′∥op ≤ bε)

≤ sup
y∈Y

{bε ⋅Lmax{1, ∥f⋆(y)∥} ∶ ϕ(y)1/2 ≤
√
c′}

(Assumption 1 of Corollary)

≤ sup
y∈Y

{bε ⋅Lmax{1, ∥f⋆(y)∥} ∶ bLmax{1, ∥f⋆(y)∥} ≤
√
c′}}

(Definition of ϕ)

= ε
√
c′.

Hence, the
√
c′ε cover of H in the metric dc′,∞(h,h′) is at most the cardinality of Hε,

which is at most ∣F ∣(1 + 2/ε)dudx . Thus, we can take lnN(ε) = ln ∣F ∣ + dudx ln(1 + 2/ε)
in Condition 3 of Proposition E.1. For ε ≤ 1, this may be upper bounded by lnN(ε) =
ln ∣F ∣ + dudx ln(5/ε).

Hence, the conclusion of Proposition E.1 entails that, with probability at least 1 − 3δ
2

,

E∥ĥn(y) − h⋆(y)∥2

≤ 270c ln(2n/δ)(ln(2/δ) + ln ∣F ∣ + dudx ln(5 ⋅ 33n))
n

+ 8E∥e∥2.

Recalling that logs(n, δ) ∶= 270 ln(2n/δ) ln(330n/δ), we simplify

270 ⋅ ln(2n/δ) ⋅ (ln(2/δ) + ln ∣F ∣ + d1dx ln(3 ⋅ 55n))
≤ 270 ln(2n/δ)(ln ∣F ∣ + d1dx ln(330n/δ)∣
≤ (ln ∣F ∣ + d1dx)270 ln(2n/δ) ln(330n/δ) ∶= (ln ∣F ∣ + d1dx)logs(n, δ) (E.10)

which yields our final bound of

E∥ĥn(y) − h⋆(y)∥2 ≤ c(dudx + ln ∣F ∣) ⋅ logs(n, δ)
n

+ 8E∥e∥2,

as needed.

E.2.8 Proof of Corollary E.2

We consider

ĥ ∶= arg min
h∈H

n

∑
i=1

∥φ̂(h,z(i)) + e(i) − v(i)∥2.
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Recall the assumption that, for some h⋆ ∈ H , φ(h⋆,z) = E[u ∣ z], and that δφ(h, z) ∶= φ(h, z) −
φ(h, z). Let us set up a correspondence with Proposition E.1.

• gh(z) ∶= φ̂(h,z) − δφ(h⋆,z). Let G denote the resulting class of functions {gh ∶ h ∈ H }.
• ẽ = δφ(h⋆,z) + e.

Then, we have

φ̂(ĥ) − δφ(h⋆,z) = gĥ(y) ∶= arg min
g∈G

n

∑
i=1

∥g(z) + ẽ(i) − v(i)∥2.

Define g⋆ ∶= gh⋆ = φ(h⋆,z) and ĝ = gĥ. We then have

E∥φ(ĥ,z) − φ(h⋆,z)∥2 = E∥ĝ(z) − g⋆(z) + δφ(ĥ,z) − δφ(h⋆,z)∥2

= 2E∥ĝ(z) − g⋆(z)∥2 + 2E∥δφ(ĥ,z) − δφ(h⋆,z)∥2

≤ 2E∥ĝ(z) − g⋆(z)∥2 + 8 max
h∈H

E∥δφ(h,z)∥2 (E.11)

It remains to bound E∥ĝ(z) − g⋆(z)∥2.

Note that g⋆ ∈ G , and moreover g⋆(z) = φ(h⋆,z), which is equal to E[u ∣ z] by assumption.
Considering the function class G = {gh ∶ h ∈ H } as the function class, g⋆ as the Bayes regressor, v
as the target, and ẽ as the residual noise, let us verify with conditions of Proposition E.1, albeit with
slightly inflated constants. We have

1. Define ϕ̃(z) = 6ψ2(z). We bound ∥gh(z)∥2 ≤ ϕ̃(z) via

∥gh(z)∥2 ≤ (∥φ(h, z)∥ + ∥δφ(h, z)∥ + ∥δφ(h⋆, z)∥)2

≤ ( sup
h∈H

∥φ(h, z)∥ + 2 sup
h∈H

∥δφ(h, z)∥)2 ≤ 2 sup
h∈H

∥φ(h, z)∥2 + 6 sup
h∈H

∥δφ(h, z)∥2

≤ 6( sup
h∈H

∥φ(h, z)∥2 + sup
h∈H

∥δφ(h, z)∥2) ≤ 6ψ(z)2 ∶= ϕ̃(z),

where the last inequality follows by the first assumption of the lemma.
2. Next, we establish the concentration property for ϕ̃(z) ∨ ∥ẽt −vt∥2 that, for c̃ = 6c, we have

P[ϕ̃(z) ∨ ∥ẽt − vt∥2 ≥ c̃ ln(1/δ)] ≤ 1/δ. (E.12)

We have that
ϕ̃(z) ∨ ∥ẽt − vt∥2 = ϕ̃(z) ∨ ∥δφ(z, h⋆) + et − vt∥2

≤ ϕ̃(z) ∨ (2∥δφ(h⋆, z)∥2 + 2∥et − vt∥2)
≤ (ϕ̃(z) ∨ 2∥δφ(h⋆, z)∥2) + 2∥et − vt∥2).

Now, by assumption, we have that 2∥δφ(h⋆, z)∥2 ≤ ϕ̃(z) = 6ψ(z)2, so we may drop the
δφ-term. Substituting in the definition of ϕ̃(z) and bounding 2 ≤ 6 gives

ϕ̃(z) ∨ ∥ẽt − vt∥2 ≤ 6 (ψ(z)2 ∨ (∥et − vt∥2)) .
Hence, the desired inequality Eq. (E.12) follows from the second condition of our corollary.

3. Lastly, it remains to verify the covering property from Proposition E.1. Let M ∶= {M ∈
Rd1dx ∶ ∥Mop∥ ≤ b}, let Mε denote a bε-cover of M in ∥ ⋅ ∥op, let Hε ∶= {M ⋅ f ∶ M ∈
Mε, f ∈ F}, and finally set Gε ∶= {gh ∶ h ∈ Hε}. Our goal will be to show that, for ε
adequately chosen, Gε is an adequate cover of G .
Let g ∈ G . Then, g = gh, where h =M ⋅ f for some f ∈ F and M ∈ M . Let h̃ε ∈ Hε be
selected by selecting Mε ∈ Mε such that ∥M −Mε∥op ≤ bε, hε ∶= Mε ⋅ f , and gε ∶= ghε .
Then, for any z, we have

g(z) − gε(z) = φ̂(h, z) + δφ(h⋆, z) − (φ̂(hε, z) + δφ(h⋆, z))
= φ̂(h, z) − φ̂(hε, z)
(i)= X1(h(y1) −X2h(y2)) + δ0(z) − (X1(hε(y1) −X2hε(y2)) + δ0(z))
=X1(h(y1) − hε(y1)) −X1X2(h(y2) − hε(y2))
=X1(M −Mε)f(y1) −X1X2(M −Mε)f(y2),
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where in (i) we use the functional form of φ̂ assumed by the lemma. Since ∥M −Mε∥op ≤ bε,
and f(y) ≤ Lmax{1, ∥f⋆∥}

g(z) − gε(z) ≤ bε(∥X1∥op∥f(y1)∥ + ∥X1X2∥op∥f(y2)∥)
≤ bLε(∥X1∥op + ∥X1 ⋅X2∥op)(max{1, ∥f⋆(y1)∥} +max{1, ∥f⋆(y2)∥})
≤ bLε(∥X1∥op + ∥X1 ⋅X2∥op)(2 ∨ ∥f⋆(y1)∥ + ∥f⋆(y2)∥).

Finally, by assumption, we have that bL(∥X1∥op+∥X1 ⋅X2∥op)(2+∥f⋆(y1)∥+∥f⋆(y2)∥) ≤
2cψψ(z). Thus, recalling ϕ̃(z) = 6ψ(z)2, we have

g(z) − gε(z) ≤ cψε
√

(2ψ(z))2 ≤ cψεϕ̃(z)1/2.

It therefore follows that, for all c′, and all ε ≤ 1, Gε/cψ is a
√
c′ε-covering number of G in

the pseudometric dc′,∞(h,h′) ∶= supz∈Z{∥g(z) − g′(z)∥ ∶ ϕ(z) ≤ c′}. Hence, we can take
N(ε) = ∣Gε∣ is applying Proposition E.1.

Hence, Proposition E.1 implies the bound

E∥ĝ − g⋆∥2 ≤
270c̃n,δ

n
ln(2∣G1/33cψn∣δ

−1) + 8E∥e∥2,

where we have c̃n,δ = c̃ ln(2n/δ) = 6c ln(2nδ). Combining the above with Eq. (E.11)

E∥φ(ĝ,z) − φ(g⋆,z)∥2 ≤ 12 ⋅ 270 ln(2n/δ)
n

ln(2∣G1/33cψn∣δ
−1) + 16E∥e∥2 + 8 max

h∈H
E∥δφ(h,z)∥2.

Finally, let us bound ∣G1/33cψn∣. From Lemma E.5, we have

ln ∣Gε∣ = ln ∣Hε∣ = ln(∣F ∣∣Mε∣) ≤ ln(∣F ∣) + d1dx ln(5/ε).

Thus, repeating the computation Eq. (E.10) in the proof of Corollary E.1,

270 ln(2n/δ) ln(2∣G1/33cψn∣δ
−1) ≤ 270 ⋅ ln(2n/δ) ⋅ (ln(2/δ) + ln ∣F ∣ + d1dx ln(3 ⋅ 55cψn))

≤ (ln ∣F ∣ + d1dx)logs(cψn, δ).

Thus,

E∥φ(ĝ,z) − φ(g⋆,z)∥2 ≤
12c(ln ∣F ∣ + d1dx)logs(cψn, δ)

n
+ 16E∥e∥2 + 8 max

h∈H
E∥δφ(h,z)∥2,

concluding the corollary.

E.2.9 Proof of Proposition E.2

Define the matrix Λ̂ = E[ĥ(y)ĥ(y)⊺]. To begin, we have

∥Λ⋆ − Λ̂n∥op ≤ ∥Λ⋆ − Λ̂∥op + ∥Λ̂ − Λ̂n∥op.

We now bound the terms on the right-hand side one by one. First,

∥Λ⋆ − Λ̂∥op

= ∥E[ĥ(y)ĥ(y)⊺ − h⋆(y)h⋆(y)⊺∥op

≤ E[∥ĥ(y)ĥ(y)⊺ − h⋆(y)h⋆(y)⊺∥op]
≤ E[(∥ĥ(y)∥ + ∥h⋆(y)∥)∥h⋆(y) − ĥ(y)∥]

≤ E[(∥ĥ(y)∥ + ∥h⋆(y)∥)2]1/2E[∥h⋆(y) − ĥ(y)∥2]
1/2
.

Moreover, (∥ĥ(y)∥ + ∥h⋆(y)∥)2 ≤ 4 max{c,ϕ(y)} by assumption, so this is at most

∥E[ĥ(y)ĥ(y)⊺ − h⋆(y)h⋆(y)⊺]∥op ≤ 2(Emax{c,ϕ(y)})1/2)E[∥h⋆(y) − ĥ(y)∥2]1/2. (E.13)

Finally, using Lemma E.1, one can bound Emax{c,ϕ(y)} ≤ 2c, so we can further bound by
3
√
cE[∥h⋆(y) − ĥ(y)∥]1/2.
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For the second term, we appeal to truncation. Let E denote the event {ϕ(y) ≤ c ln(2n/δ)}, and let
E(i) denote the analogous event for y(i). By construction E(1), . . . ,E(n) occur simultaneously with
probability at least 1 − δ/2, so that we may bound

∥Λ̂ − Λ̂n∥op (E.14)

= ∥ 1

n

n

∑
i=1

E[ĥ(y)ĥ(y)⊺] − I(E(i))ĥ(y(i))ĥ(y(i))⊺∥
op

≤ ∥E[(1 − I(E))ĥ(y)ĥ(y)⊺]∥
op

+ ∥ 1

n

n

∑
i=1

E[ĥ(y)ĥ(y)⊺I(E)] − I(E(i))ĥ(y(i))ĥ(y(i))⊺∥
op

. (E.15)

We bound the first term above by

∥E[(1 − E)ĥ(y)ĥ(y)⊺∥
op

≤ E[∥(1 − E)ĥ(y)ĥ(y)⊺∥
op

]

= E[(1 − E)∥ĥ(y)∥2]
≤ E[I(ϕ(y) > c ln(2n/δ))max{c,ϕ(y)}]

≤ E[I(ϕ(y) > c ln(2n/δ))ϕ(y)] ≤ cδ

2n
, (E.16)

where the last line uses Lemma E.1.

To conclude, let us bound the last term in Eq. (E.15). Define the symmetric matrices M(i) ∶=
E[ĥ(y)ĥ(y)⊺I(E)] − ĥ(y(i))ĥ(y(i))⊺I(E(i)). Then EM(i) = 0, we can see that ∥M(i)∥ ≤
c ln(2n/δ) almost surely (indeed, if X,Y ⪰ 0 , then ∥X − Y ∥op ≤ max{∥X∥op, ∥Y ∥op}), and
thus

(M(i))2 ⪯ (c ln(2n/δ))2I.

Hence, by Theorem 1.3 of [40],

P[∥
n

∑
i=1

M(i)∥ ≥ t] ≤ 2de−t
2/8σ2

, where σ2 ∶= n(c ln(2n/δ))2.

Rearranging, we have that

P [∥ 1

n

n

∑
i=1

M(i)∥ ≥ 2c ln(2n/δ)
√

2 ln(2d/δ)/n] ≤ δ
2
.

Simplifying 2c ln(2n/δ)
√

2 ln(2d/δ)/n ≤ 4cn−1/2 ln(2dn/δ)3/2, we have that with proba-
bilitiy 1 − δ/2, 1

n ∑
n
i=1 E[ĥ(y)ĥ(y)⊺I(E)] − I(E)(i)ĥ(y(i))ĥ(y(i))⊺] = ∥∑ni=1 M(i)∥op ≤

4cn−1/2 ln(2dn/δ)3/2. Hence, combining with Eqs. (E.13) and (E.16), we conclude that with proba-
bility 1 − δ,

∥Λ⋆ − Λ̂n∥op ≤ ∥Λ⋆ − Λ̂∥op + ∥Λ̂ − Λ̂n∥op

≤ 3
√
cE[∥ĥ(y) − h⋆(y)∥2] + 4cn−1/2 ln(2dn/δ)3/2 + δc

2n

≤ 3
√
cE[∥ĥ(y) − h⋆(y)∥2] + 5cn−1/2 ln(2dn/δ)3/2 ∶= ε2

pca,n.

E.2.10 Proof of Corollary E.3

By assumption, Λ⋆ is rank dx and λdx(Λ⋆) > 0. Let V⋆ be and eigenbasis for the top dx eigenvalues
of Λ⋆, and let V̂n be an eigenbasis for the top dx eigenvalues of Λ̂n. From the Davis-Kahan sine
theorem [5], we have that for any α ∈ (0,1),

∥(I − V⋆V ⊺
⋆ )V̂n∥op ≤ (1 − α)−1λdx(Λ⋆)−1∥Λ⋆ − Λ̂n∥op,
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whenever

∥Λ⋆ − Λ̂n∥op ≤ αλdx(Λ⋆). (E.17)

In particular, if n is sufficiently large that for

∥Λ⋆ − Λ̂n∥op ≤ εpca,n,δ ≤
1

4
λdx(Λ⋆),

then from Eq. (E.17),

∥(I − V⋆V ⊺
⋆ )V̂n∥op ≤

4εpca,n,δ

3λd(Λ⋆)−1
≤ 1

3
.

And thus,

σdx(V ⊺
⋆ V̂n) ≥ σdx(V⋆V ⊺

⋆ V̂n) ≥ σdx(V̂n) − ∥(I − V⋆V ⊺
⋆ )V̂n∥op

≥ 1 − 1/3 = 2/3,

where the previous display uses that σdx(V̂n) = 1 since V̂n has orthonormal columns, and that
∥(I − V⋆V ⊺

⋆ )V̂n∥op ≤ 1/3.

E.2.11 Proof of Proposition E.3

Let U be the matrix with {u(i)}ni=1 as rows, and let ∆,Y,W,E be defined analogously for δ, y,w,
and e respectively. Let us assume for now that (U + ∆) has full row rank; this will be justified
momentarily in Claim E.3. Then we have

M̂⊺ = (U +∆)†Y

= (U +∆)†(UM⊺
⋆ +W +E)

= (U +∆)†(UM⊺
⋆ +W +E)

=M⊺
⋆ + (U +∆)†(−∆M⊺

⋆ +W +E). (E.18)

Thus,

∥M̂ −M⋆∥op ≤
∥∆∥op∥M⋆∥op + ∥E∥op

σmin(U +∆)
+ ∥(U +∆)†W∥op. (E.19)

Handling the Gaussian Noise. We first handle the term ∥(U + ∆)†W∥op. Observe that W is
Gaussian conditioned on U and ∆. Fix a matrix U with U⊺U ≻ 0. Fix a vector v ∈ Rdy with
∥v∥ = 1, and observe that ⟨v,e(i)⟩ are ∥Σw∥op-subgaussian. Thus, for any matrix Λ ≻ 0, we have
from Abbasi-Yadkori et al. [1, Theorem 3] that conditioned on U and ∆, with probability at least
1 − δ,

∥U⊺Wv∥(Λ+U⊺U)−1 ≤

¿
ÁÁÀ2∥Σe∥op ln(det(Λ +U⊺U)1/2 det(Λ)−1/2

δ
).

Since we are taking U to be fixed (conditioned on U and ∆), we can take Λ = U⊺U . This gives, with
probability at least 1 − δ,

∥U⊺Wv∥(U⊺U)−1 ≤ 2

¿
ÁÁÀ2∥Σw∥op ln(2du/2

δ
) ≤ 2

√
∥Σw∥op(du + 2 ln(1/δ)).

It follows that

∥U †Wv∥2 ≤ σmin(U)−1∥U⊺Wv∥(U⊺U)−1 ≤ 2σmin(U)−1
√

∥Σw∥op(du + 2 ln(1/δ)).
By a standard covering argument (see, e.g., Vershynin [42, Section 4.2]), we find that with probability
at least 1 − δ,

∥U †W∥op = sup
v∈Rdy ∶∥v∥=1

∥U †Wv∥ ≲ σmin(U)−1
√

∥Σw∥op(du + dy + ln(1/δ)),

Taking U = U +∆, this implies that with probability at least 1 − δ,

∥(U +∆)†W∥op ≲ σmin(U +∆)−1
√

∥Σw∥op(du + dy + ln(1/δ)),
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Error Terms. We have

∥∆∥op∥M⋆∥op + ∥E∥op ≤ ∥M⋆∥op∥∆∥F + ∥E∥F =
⎛
⎝
∥M⋆∥op

¿
ÁÁÀ

n

∑
i=1

∥δ(i)∥2
⎞
⎠
+

¿
ÁÁÀ

n

∑
i=1

∥e(i)∥2.

Recall that 1) ψ(n, δ) ∶= 2 ln(2n/δ) ln(2/δ)
n

, 2) ∥δ(i)∥2 is cδ-concentrated and ∥e(i)∥2 are ce con-
centrated (Definition 3), and 3) E∥e(i)∥2 ≤ ε2

e and E∥δ(i)∥2 ≤ ε2
δ . Lemma E.1 thus implies that

for

ψ(n, δ) ≤ min{ε
2
e

ce
,
ε2
δ

cδ
},

the following event holds with probability at least 1 − 2δ:

Els,1 ∶= {
n

∑
i=1

∥δ(i)∥2 ≤ 2nε2
δ} ∩ {

n

∑
i=1

∥e(i)∥2 ≤ 2nε2
e}. (E.20)

Clearly, on Els,1 we have

∥∆∥op∥M⋆∥op + ∥E∥op ≲ n1/2(∥M⋆∥opεδ + εe).

Bounding the least eigenvalue. Summarizing the development so far, we have for ψ(n, δ) ≤
max{ ε

2
e

ce
,
ε2δ
cδ

}, with probability at least 1 − 3δ,

∥M̂ −M⋆∥op ≲
n1/2(∥M⋆∥opεδ + εe) +

√
∥Σw∥op(dy + du + ln(1/δ))

σmin(U +∆)
.

Finally, let us lower bound σmin(U +∆). We start with the following self-contained result.

Claim E.2. Consider matrices U,∆, and suppose ∥∆∥2
op ≤ 1

4
λmin(U⊺U). Then,

(U +∆)⊺(U +∆) ⪰ 1

4
U⊺U.

Proof. By Cauchy-Schwarz and AM-GM, we have the elementary inequality that for two vectors
v,w of the same dimension, ∥v +w∥2 = ∥v∥2 + ∥w∥2 + 2⟨v,w⟩ ≥ 1

2
∥v∥2 − ∥w∥2. This entails

(U +∆)⊺(U +∆) ⪰ 1

2
U⊺U −∆⊺∆

⪰ 1

2
U⊺U − I∥∆∥2

op

= 1

4
U⊺U + (1

4
U⊺U − ∥∆∥2

opI)

⪰ 1

4
U⊺U,

where the last line uses the that 1
4
U⊺U ⪰ 1

4
λmin(U⊺U), and the assumption ∥∆∥2

op ≤ 1
4
λmin(U⊺U).

Claim E.3. There is a universal constant c1 > 0 such that the following holds. Let U ∈ Rn×du be
a matrix with rows drawn i.i.d. from N(0,Σu) where Σu ⪰ 0, and let ∆ be a matrix of the same
dimension with ∥∆∥2

op ≤ n
8
λmin(Σu). Then, for n ≥ c1(du + ln(1/δ)), the following holds with

probability 1 − δ:

(U +∆)⊺(U +∆) ⪰ nΣu
8

⪰ nλmin(Σu)
8

I. (E.21)

Proof of Claim E.3. From Claim E.2, we have that if ∥∆∥2
op ≤ 1

4
λmin(U⊺U), we have

(U +∆)⊺(U +∆) ⪰ 1

4
U⊺U.
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If this holds, we have
1

4
U⊺U = 1

4
Σ1/2
u (Σ−1/2U⊺UΣ−1/2

u )Σ1/2
u ⪰ λmin(Σ−1/2

u U⊺UΣ−1/2
u )Σu.

Note that UΣ
−1/2
u has standard Gaussian rows, and its number of rows exceeds its number of columns.

Thus, from Theorem 5.39 of [41], we have that

P [λmin(Σ−1/2
u U⊺UΣ−1/2

u )1/2 ≥
√
n −O(

√
du +

√
ln(1/δ))] ≥ 1 − δ. (E.22)

In particular, for n ≥ c1(du + ln(1/δ)) for some universal c1, we have that with probability 1 − δ,
λmin(Σ−1/2

u U⊺UΣ
−1/2
u )1/2 ≥

√
n/2, and thus when this occurs, and when ∥∆∥2

op ≤ nλmin(Σu)
8

≤
1
4
λmin(U⊺U), we have

(U +∆)⊺(U +∆) ⪰ 1

4
U⊺U ⪰ n

8
Σu ⪰

n

8
λmin(Σu)I.

Hence, for n ≥ c1(ln(1/δ) + du), ψ(n, δ) ≤ max{ ε
2
e

ce
,
ε2δ
cδ

}, and 2ε2
δ ≤

n
8
λmin(Σu) (or equivalently,

ε2
δ ≤

n
16
λmin(Σu)), we find that with total failure probability at least 1 − 4δ,

∥M̂ −M⋆∥op ≲
n1/2(∥M⋆∥opεδ + εe) +

√
∥Σw∥op(dy + du + ln(1/δ))

σmin(U +∆)

≲
(∥M⋆∥opεδ + εe) +

√
n−1/2∥Σw∥op(dy + du + ln(1/δ))
√
λmin(Σu)

.

Hence, under these conditions, with probability 1 − 4δ,

∥M̂ −M⋆∥2
op ≲ λmin(Σu)−1 (∥M⋆∥2

opε
2
δ + ε2

e +
∥Σw∥op(dy + du + ln(1/δ))

n
) .

E.2.12 Proof of Proposition E.4

Assume that the events of the proof of Proposition E.2 above; this contributes a failure probability of
4δ.To begin, we have that

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2

=
n

∑
i=1

((M̂ −M⋆)(u(i) + δ(i)) −w(i) − e(i))⊗2

= ((U +∆)(M̂ −M⋆)⊺ +∆M⊺
⋆ −W −E)⊺ ((U +∆)(M̂ −M⋆)⊺ +∆M⊺

⋆ −W −E) .
From Eq. (E.18), and the fact that U +∆ has full rank under the high probability events of Proposi-
tion E.2, we have

M̂⊺ =M⊺
⋆ + (U +∆)†(−∆M⊺

⋆ +W +E).
This yields

(U +∆)(M̂⊺ −M⊺
⋆ ) = PU+∆(−∆M⊺

⋆ +W +E),

where PU+∆ ∶= (U +∆)(U +∆)† ∈ Rn×n is the projection onto the row space of U +∆, which
has dimension du. Thus, we find that

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2

= ((I − PU+∆)(−∆M⊺
⋆ +W +E))⊺ ((I − PU+∆)(−∆M⊺

⋆ +W +E)) .
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Rearranging, and using that I − PU+∆ is a projection operator, we have that

∥ 1

n

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2 − 1

n
W⊺(I − PU+∆)W∥

op

≤ 2∥W∥op∥E −∆M⊺
⋆ ∥op + ∥E −∆M⊺

⋆ ∥2
op.

We can now bound this quantity using the following claim.
Claim E.4. Suppose that λ+ ≥ λmax(Σw), and ε2

δ∥M⋆∥2
op + ε2

e ≤ 2λ+. Suppose the event Els,1 of
Eq. (E.20) holds, and n ≥ c′

√
dy + ln(1/δ) for c′ sufficiently large. Then,

∥ 1

n

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2 − 1

n
W⊺(I − PU+∆)W∥

op

≲

√
λ+(ε2

δ∥M⋆∥2
op + ε2

e)
n

.

Proof. On the event Els,1 of Eq. (E.20), recall that

∥E −∆M⊺
⋆ ∥op ≤ εδ∥M⋆∥op + εe.

In addition, for n ≥ c′(dy + ln(1/δ)) for some sufficiently large numerical constant c′, a suitable
analogue of Eq. (E.22) implies that with an additional probability 1 − δ,

∥W∥op ≤ λmax(Σw)1/2∥Σ−1/2
w W∥op ≤ 2

√
nλ

1/2
+ .

Hence, for ε2
δ∥M⋆∥2

op + ε2
e ≤ λ+, we have that with total probability at least 1 − 5δ (including events

from the previous proposition),

∥ 1

n

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2 − 1

n
W⊺(I − PU+∆)W∥

op

≲
√
λ+(Σw)(ε2

δ∥M⋆∥op + ε2
e).

To conclude the proof, we bound

∥ 1

n

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2 −Σw∥
op

≤ ∥ 1

n

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2 − 1

n
W⊺(I − PU+∆)W∥

op

+ ∥Σw −
1

n
W⊺(I − PU+∆)W∥

op
. (E.23)

The following claim bounds the second term.
Claim E.5. Suppose n ≥ c′′(du + ln(1/δ)), where c′′ > 0 is a suitably large numerical constant. For
any upper bound λ+ ≥ λmax(Σw), with probability 1 − 2δ,

∥Σw −
1

n
W⊺(I − PU+∆)W∥

op
≤ λ+

√
dy + ln(1/δ)

n
.

Proof. Define P cU+∆ ∶= I − PU+∆. Then we have

∥Σw −
1

n
W⊺P cU+∆W∥

op
≤ 1

n
λmax(Σw)∥nI − (WΣ−1/2

w )⊺P cU+∆(WΣ−1/2
w )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=M

∥op.

Now, observe that since P cU+∆ ∈ Rn×n is a projection matrix with rank n − du, and WΣ
−1/2
w ∈

Rn×dy , the matrix M = (WΣ
−1/2
w )⊺P cU+∆(WΣ

−1/2
w ) is identical in distribution to G⊺G, where

G ∈ R(n−du)×dy has i.i.d. unit Gaussian entries. Theorem 5.39 of [41] guarantees that with probability
at least 1 − 2δ,

√
n − du −O(

√
dy + ln(1/δ)) ≤ σmin(G) ≤ σmax(G) ≤

√
n − du +O(

√
dy + ln(1/δ)).
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This implies that for n ≥ c′′(du + dy + ln(1/δ)) for some universal constant c′′, we have that

(n − du) −O(
√
dy + ln(1/δ))

√
n − du ≤ λmin(M) ≤ λmax(M) ≤ (n − du) +O(

√
dy + ln(1/δ))

√
n − du.

Hence, on this event (and again for n ≥ c′′(du + ln(1/δ)) for c′′ suitably large),

∥nI −M∥op ≤ du +O(
√
dy + ln(1/δ))

√
n − du ≲

√
n(dy + ln(1/δ)).

as needed.

In total, combining Claims E.4 and E.5 and Eq. (E.23), we conclude that on the events of the previous
proposition, and with an additional 3δ failure probability,

∥ 1

n

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2 −Σw∥
op

≲
√
λmax(Σw)(ε2

δ∥M⋆∥2
op + ε2

e) +
λmax(Σw)2(d + ln(1/δ))

n
, (E.24)

provided that ε2
δ∥M⋆∥2

op + ε2
e ≤ λmax(Σw), and n ≥ c(dy + ln(1/δ)) for some universal constant c.

E.2.13 Proof of Proposition E.5

We observe that since Q⋆ lies in the convex PSD cone, ∥Q̂ −Q⋆∥F ≤ ∥( 1
2
Q̃⊺ + 1

2
Q̃) −Q⋆∥F by the

Pythagorean theorem. In more detail, we have the following result.
Claim E.6. Let A,B ∈ Rd×d, and let B ⪰ 0. Then ∥A+ −B∥F ≤ ∥A −B∥F .

Proof. Let A = A+ +A−, so that A+ ⪰ 0 and A− ⪯ 0. Then we have

∥A −B∥2
F − ∥A+ −B∥2

F = ∥A+ +A− −B∥2
F − ∥A+ −B∥2

F = ∥A−∥2
F + ⟨A−,A+ −B⟩.

Now, note that ⟨A−,A+ −B⟩ = ⟨−A−,B⟩ ≥ 0, since ⟨X,Y ⟩ ≥ 0 whenever X,Y ⪰ 0.

Moreover, Q⋆ = (Q⋆)⊺, so ∥( 1
2
Q̃⊺ + 1

2
Q̃) −Q⋆∥F ≤ ∥Q̃ −Q⋆∥F by the triangle inequality. Thus, we

conclude
∥Q̂ −Q⋆∥F ≤ ∥Q̃ −Q⋆∥F.

Next, let us introduce vi ∶= vec(g⋆(y(i))g⋆(y(i))⊺) ∈ Rd
2

and v̂i ∶= vec(ĝ(y(i))ĝ(y(i))⊺). Let
V ∈ Rn×d

2

denote the matrix whose rows are vi and V̂ analogouly for v̂. Then, we have that

vec(Q̂) = V̂†Vvec(Q⋆)
= V̂†V̂vec(Q⋆) + V̂†(V − V̂)vec(Q⋆)
= vec(Q⋆) + V̂†(V − V̂)vec(Q⋆),

provided that V̂ is full rank (which we ultimately verify), where we recall that V̂† = (V̂⊺V̂)−1V̂⊺ in
this case. Next, we bound

∥vec(Q̂) − vec(Q⋆)∥2 ≤ 1

σmin(V̂)2
∥(V − V̂)vec(Q⋆)∥2

2

= 1

λmin(V̂⊺V̂)

n

∑
i=1

⟨vec(g⋆(y(i))g⋆(y(i))⊺) − vec(ĝ(y(i))ĝ(y(i))⊺,vec(Q⋆)⟩
2

= 1

λmin(V̂⊺V̂)

n

∑
i=1

⟨g⋆(y(i))g⋆(y(i))⊺ − ĝ(y(i))ĝ(y(i))⊺,Q⋆⟩
2

= 1

λmin(V̂⊺V̂)

n

∑
i=1

⟨g⋆(y(i))g⋆(y(i))⊺ − ĝ(y(i))ĝ(y(i))⊺,Q⋆⟩
2

(a)
≤

∥Q⋆∥2
op

λmin(V̂⊺V̂)

n

∑
i=1

∥g⋆(y(i))g⋆(y(i))⊺ − ĝ(y(i))ĝ(y(i))⊺∥2
nuc

(b)
≤

2∥Q⋆∥2
op

λmin(V̂⊺V̂)

n

∑
i=1

∥g⋆(y(i))g⋆(y(i))⊺ − ĝ(y(i))ĝ(y(i))⊺∥2
F,
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where (a) uses Hölder’s inequality (∣⟨A,B⟩∣ ≤ ∥A∥op∥B∥nuc), and (b) uses that g⋆(y(i))g⋆(y(i))⊺−
ĝ(y(i))ĝ(y(i))⊺ has rank 2, so its nuclear norm is at most

√
2 times its Frobenius norm. Recognizing

∑ni=1 ∥g⋆(y(i))g⋆(y(i))⊺ − ĝ(y(i))ĝ(y(i))⊺∥2
F = ∥V̂ −V∥2

F, we obtain

∥vec(Q̃) − vec(Q⋆)∥2 ≤
4∥V − V̂∥2

F∥Q⋆∥2
op

λmin(V̂⊺V̂)
. (E.25)

Next, we give the following bound.

Claim E.7. Suppose that ψ(n, δ) ≤ ε2

4c
. Then, with probability 1−δ, we have the bound ∥V−V̂∥2

op ≤
∥V − V̂∥2

F ≤ 8cn,δε
2, where cn,δ = c ln(2n/δ).

Proof. To begin, observe that

∥V − V̂∥2
op ≤ ∥V − V̂∥2

F

=
n

∑
i=1

∥vec(g⋆(y(i))g⋆(y(i))⊺) − vec(ĝ(y(i))ĝ(y(i))⊺)∥2
2

≤
n

∑
i=1

∥g⋆(y(i))g⋆(y(i))⊺ − ĝ(y(i))ĝ(y(i))⊺∥2
F

≤
n

∑
i=1

((∥g⋆(y(i))∥ + ∥g⋆(y(i))∥)2∥g⋆(y(i)) − ĝ(y(i))∥2) .

Introduce the event E ∶= max{∥g⋆(y)∥2, ∥ĝ(y)∥2} ≤ cn,δ ∶= c ln(2n/δ), and let E(i) denote the
analogous event for y(i). Let E(1∶n) = ⋂ni=1 E(i). Then E(1∶n) holds with probability at least 1 − δ/2,
and on this event the above display is at most

∥V − V̂∥2
op ≤ 4cn,δ

n

∑
i=1

I(E(i))∥g⋆(y(i)) − ĝ(y(i))∥2.

Next, define the random variable δi ∶= I(E(i))∥g⋆(y(i)) − ĝ(y(i))∥2, and we observe that δi ≤
4c ln(2n/δ) with probability 1. Thus, by applying Lemma E.1 with c ← 4c, we have that for any
ε2 ≥ E[I(E(i))∥g⋆(y(i)) − ĝ(y(i))∥2], with probability at least 1 − δ/2,

n

∑
i=1

I(E(i))∥g⋆(y(i)) − ĝ(y(i))∥2 ≤ 2ε2,

as soon as ψ(n, δ) ≤ ε2

4c
. In paricular, since ∥g⋆(y(i)) − ĝ(y(i))∥2 ≥ 0, it is valid to select ε2 ≥

E[∥g⋆(y(i)) − ĝ(y(i))∥2]. Hence, for such ε2, we conclude that with total probability at least 1 − δ,

∥V − V̂∥2
op ≤ 8cn,δε

2.

Denote the event of Claim E.7 by E1. Then on E1, Eq. (E.25) implies

∥Q̃ −Q⋆∥2
F ≤ ∥Q⋆∥2

F

8cn,δε
2

λmin(V̂⊺V̂)
. (E.26)

Next, from Claim E.2, we have that

∥V̂ −V∥2
op ≤ 1

4
λmin(V⊺V) implies λmin(V̂⊺V̂) ≥ 1

4
λmin(V⊺V).

And thus, on E1, we have that

ε2 ≤ λ0

32cn,δ
≤ 1

4
λmin(V⊺V) implies λmin(V̂⊺V̂) ≥ 1

4
λmin(V⊺V). (E.27)
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Let us now lower bound λmin(V⊺V) with high probability. We observe that λmin(V⊺V) ≥ λ0 for
some λ0 > 0 if and only if

∀M ∈ Rd×d ∶
n

∑
i=1

⟨g⋆(y(i))g⋆(y(i))⊺,M⟩2 ≥ λ0∥M∥2
F,

if and only if

∀M ∈ Rd×d ∶
n

∑
i=1

⟨x(i)x(i)⊺,M⟩2 ≥ λ0∥M∥2
F, (E.28)

where x(i) ∶= g⋆(y(i)) i.i.d.∼ N(0,Σx) by assumption.

Claim E.8. Let x(i) i.i.d.∼ N(0,Σx). Then, for n ≥ c1d, the following holds with probability
1 − e−c2n:

∀M ∈ Rd×d ∶
n

∑
i=1

⟨x(i)x(i)⊺,M⟩2 ≥ 1

2
λmin(Σx)2∥M∥2

F,

where c1 is a numerical constant

Proof. Define x̃(i) ∶= Σ
−1/2
x v(i). Note that x̃(i) ∼ N(0, I). From Wainwright [43, Theorem 10.12],

we find that for any α > 0, for all n ≥ c1αd, with probability 1 − e−c2n, the following holds
simultaneously for all matrices M satisfies ∥M∥2

nu ≤ α∥M∥2
F

n

∑
i=1

⟨x̃(i)x̃(i)⊺,M⟩2 ≥ 1

2
∥M∥2

F, (E.29)

where ∥M∥nuc = ∑ni=1 σi(M) denotes the matrix nuclear norm. By Cauchy-Schwartz, ∥M∥2
nu ≤

d∥M∥2
F for all matrices M ∈ Rd×d. This means that we capture all matrices M by setting α = d, and

thus, for n ≥ c1d2, then with probability 1 − e−c2n, Eq. (E.29) holds for all M ∈ Rd×d simultaneously.
When this holds, we have that for all such M ,

n

∑
i=1

⟨x(i)x(i)⊺,M⟩2 =
n

∑
i=1

⟨x̃(i)x̃(i)⊺,Σ1/2
x MΣ1/2

x ⟩2 ≥ 1

2
∥Σ1/2

x MΣ1/2
x ∥2

F.

Moreover, we have that

∣Σ1/2
x MΣ1/2

x ∥2
F = tr(Σ1/2

x MΣxM
⊺Σ1/2

x )
≥ λmin(Σx)tr(Σ1/2

x MM⊺Σ1/2
x )

= λmin(Σx)tr(M⊺ΣxM) ≥ λmin(Σx)2tr(M⊺M) = λmin(Σx)2∥M∥2
F.

Denote the event of Claim E.8 by E2. Then, on E2, we can take λ0 = 1
2
λmin(Σx)2 in Eq. (E.28), and

thus on E1, Eq. (E.27) yields that

ε2 ≤ λmin(Σx)2

64cn,δ
≤ 1

4
λ0 implies λmin(V̂⊺V̂) ≥ λmin(Σx)2

8
.

Thus, by Eq. (E.26), we have that on E1 ∩ E2,

∥Q̃ −Q⋆∥2
F = ∥vec(Q̃) − q⋆∥2 ≤ 4 ⋅ 16cn,δε

2 ⋅
∥Q⋆∥2

op

λmin(Σx)2
,

giving us the desired inequality. Since P(E1 ∩ E2) ≥ 1 − δ − e−c2n for n ≥ c1d2, we have that if
n ≥ c(d2 + ln(1/δ)) for some universal constant c, P(E1 ∩ E2) ≥ 1 − 2δ, yielding our desired failure
probability. Recalling that cn,δ ∶= c ln(2/δ) concludes.

F Linear Control Theory

In this section we recall some basic results for the classical LQR problem in the fully observed setting
with known dynamics. The main result for this section is Theorem 7, which bounds the regret of any
policy for the RichLQR in terms of decoding errors. Proofs are deferred to the end of the section.
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F.1 Basic Technical Results

Lemma F.1. Let X be any matrix with ρ(X) < 1. Then for any Y ≻ 0, there exists a unique solution
P ≻ 0 to the Lyapunov equation

P =X⊺PX + Y. (F.1)

Moreover, X is (α, γ)-strongly stable for α = ∥P 1/2∥op∥P −1/2∥op and γ = ∥I − P −1/2Y P −1/2∥1/2
op

.

This lemma immediately implies the following strong stability guarantees for the closed-loop and
open-loop dynamics for LQR.

Proposition F.1. Acl,∞ ∶= A+BK∞ is (α∞, γ∞)-strongly stable, where α∞ ∶= ∥P 1/2
∞ ∥op∥P −1/2

∞ ∥op

and γ∞ ∶= ∥I − P −1/2
∞ QP

−1/2
∞ ∥1/2

op < 1.9

Proposition F.2. If we define αA ∶= ∥Σ1/2
A ∥op∥Σ−1/2

A ∥op and γA ∶= ∥Idx − Σ−1
A ∥1/2 < 1, then A is

(αA, γA)-strongly stable, where ΣA is the unique solution to the Lyapunov equation

Σ = AΣA⊺ + Idx . (F.2)

We also make use of the following bound on the operator norm for the infinite-horizon covariance
matrix.

Proposition F.3. We have ∥Σ∞∥op ≤ ∥R∥op + ∥B∥2
op∥P∞∥op ≤ 2Ψ3

⋆.

F.2 Value Functions

Toward proving our main regret decomposition, in this section we establish some basic technical
results regarding the value functions and Q-functions for the fully observed LQR problem. Our first
result concerns finite-horizon value functions for linear controller.

Lemma F.2. Consider the RichLQR setting (1) under Assumption 1, and consider a state feedback
controller πK(y) =Kf⋆(y), where f⋆ is the true decoder. Define

VK
t∶T (x) = EπK[

T

∑
s=t

x⊺sQxs + u⊺sRus ∣ xt = x],

QK
t∶T (x,u) = EπK[

T

∑
s=t

x⊺sQxs + u⊺sRus ∣ xt = x,ut = u].
(F.3)

Then we have

VK
t∶T (x) =

T

∑
s=t

∥(A +BK)s−tx∥2

Q+K⊺RK
+ Ft∶T (A,B,Q,R,K,Σw),

QK
t∶T (x,u) = ∥x∥2

Q + ∥u∥2
R +VK

t+1∶T (Ax +Bu) +Gt∶T (A,B,Q,R,K,Σw),
(F.4)

where Ft∶T and Gt∶T are functions that depend on the system parameters and time horizon, but not
the state or control inputs.

In light of Lemma F.2, it will be convenient to define

VK
t∶T (x) =

T

∑
s=t

∥(A +BK)s−tx∥2

Q+K⊺RK
, (F.5)

which is simply the value function in Eq. (F.4) in the absence of noise. Our next result concerns the
infinite-horizon value functions that arise in the noiseless setting.

Lemma F.3 ([3]). Consider the optimal infinite horizon controller π∞(x) = K∞x, and define
V∞(x) = ∥x∥2

P∞
. Then V∞ is the infinite-horizon cost for playing π∞ starting from x1 = x under

the noiseless dynamics
xt+1 = Axt +But.

9Proposition F.1 and Proposition F.2 are immediate consequences of Lemma F.1, proven in Appendix F.
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Moreover, if we define Q∞(x,u) = ∥x∥2
Q + ∥u∥2

R + ∥Ax +Bu∥2
P∞

, we have

π∞(x) = arg min
u∈Rdu

Q∞(x,u).

Finally, we have

P∞ =
∞
∑
k=0

((A +BK∞)⊺)k(Q +K⊺
∞RK∞)(A +BK∞)k

The following lemma shows that the infinite-horizon value functions are well-approximated by their
finite-horizon counterparts.
Lemma F.4. For all x ∈ Rdx and all t ≤ T , we have

∣VK∞

t∶T (x) −V∞(x)∣ ≤ O(α2
∞(1 − γ2

∞)−1Ψ3
⋆) ⋅ γ2(T−t+1)

∞ ∥x∥2
2

and
∣QK∞

t∶T (x,u) −Q∞(x,u)∣ ≤ O(α2
∞(1 − γ2

∞)−1Ψ5
⋆) ⋅ γ2(T−t)

∞ (∥x∥2
2 + ∥u∥2

2).

Lastly, we establish a Lipschitz property for the finite-horizon Q-functions.
Lemma F.5. For all x ∈ Rdx and u,u′ ∈ Rdu ,

∣QK∞

t∶T (x,u) −Q
K∞

t∶T (x,u′)∣ ≤ O(Ψ3
⋆) ⋅ (∥x∥2 ∨ ∥u∥2 ∨ ∥u′∥2)∥u − u

′∥2.

F.3 Perturbation Bound for the Optimal Controller

To analyze the quality of the certainty-equivalent controller used in RichID-CE, we use the following
perturbation bound.

Theorem 6 (Mania et al. [24]). Suppose we have matrices (Â, B̂, Q̂) for which there exists an
invertible transformation G such that

∥Â −GAG−1∥
op
∨ ∥B̂ −GB∥

op
∨ ∥Q̂ −G−⊺QG−1∥

op
≤ ε.

Suppose that ∥G∥op ∨ ∥G−1∥op ≤ Csim. Let K̂ be the optimal infinite-horizon controller for
(Â, B̂, Q̂,R). Then once ε ≤ cstable ⋅ γ∞ ⋅ C−15

simα
−4
∞ (1 − γ2

∞)−2Ψ−11
⋆ , where cstable is a sufficiently

small numerical constant,

∥K̂ −K∞G
−1∥

op
≤ O(C11

simα
2
∞(1 − γ2

∞)−1Ψ9
⋆) ⋅ ε, (F.6)

and we are guaranteed that A +BK̂ is (α∞, γ̄∞)-strongly stable, where γ̄∞ = (1 + γ∞)/2.

F.4 Regret Decomposition

The following theorem is the main result from this section, and shows that any policy of the form
π̂t(y1∶t) = K̂f̂t(y1∶t) (in particular, the policy returned by Phase III of RichID-CE), has low regret
whenever K̂ accurately approximates K∞ and f̂t has low prediction error on the state distribution
induced by π̂1∶t−1.

Theorem 7. Consider a randomized policy of the form π̂t(y1∶t) = K̂f̂t(y1∶t) + νt, where
E[νt ∣ y1∶t] = 0. Suppose we are guaranteed that

∥K̂ −K∞∥
op

≤ εK ≤ ∥K∞∥, and Eπ̂∥f̂t(y1∶t) − f⋆(yt)∥
2

2
≤ ε2

f for all t.

Suppose that ∥f̂t∥2
≤ b̄ almost surely, that E∥νt∥2

2 ≤ σ2
ν, and that Eπ̂∥xt∥2

2 ≤ c2x, where b̄, cx ≥ 1.
Then for any 0 ≤ τ ≤ T , we have

JT (π̂) − JT (π∞) (F.7)

≤ C1 ⋅ (ε2
f + ε2

K + σ2
ν)(T − τ)/T +C2(εf + cx ⋅ εK + σν)τ/T +C3 exp(−2 ln(1/γ∞)τ)(T − τ)/T,

where C1 ≤ O(Ψ5
⋆c

2
x), C2 ≤ O(b̄Ψ5

⋆cx(1 ∨ σν)), and C3 ≤ O(α2
∞Ψ7

⋆(c2x ∨ σ2
ν ∨ b̄2)).
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F.5 Proofs for Linear Control Theory Results

Proof of Lemma F.1. Existence of a unique solution to the Lyapunov equation is a standard result
[3]. Now, define L = P 1/2XP −1/2. Then the Lyapunov equation (F.1) is equivalent to

L⊺L + P −1/2Y P −1/2 = I.
This implies that

∥L∥2
op = ∥L⊺L∥

op
≤ ∥I − P −1/2Y P −1/2∥

op

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=γ2

< 1.

Moreover, since L = P 1/2Y P −1/2, we may take α = ∥P 1/2∥op∥P −1/2∥op.

Proof of Lemma F.2. Since we have perfect decodability, πK operates directly on the true state, and
so we may overload πK(x) =Kx. To begin, we observe that if we begin at xt = x and follow πK ,
we have

xs = (A +BK)s−tx +
s−1

∑
i=t

(A +BK)s−i−1wi.

It follows that

VK
t∶T (x) = E

⎡⎢⎢⎢⎢⎣

T

∑
s=t

∥(A +BK)s−tx +
s−1

∑
i=t

(A +BK)s−i−1wi∥
2

Q+K⊺RK

⎤⎥⎥⎥⎥⎦
.

However, since wt are zero-mean and independent, we can expand the norm and cancel the cross
terms, which allows us to write this as

VK
t∶T (x) =

T

∑
s=t

∥(A +BK)s−tx∥2

Q+K⊺RK
+ Ft∶T (A,B,Q,R,K,Σw). (F.8)

The expression for QK
t∶T immediately follows, since we have

QK
t∶T (x,u) = EπK [∥x∥2

Q + ∥u∥2
R +Vt+1∶T (Ax +Bu +wt)].

The fact that VK
t+1∶T is quadratic and wt is zero-mean again allows us to factor out the noise.

Proof of Lemma F.4. Since VK
t∶T = VK

1∶T−t+1, we focus on the case t = 1 without loss of generality.
Observe that we have

V
K∞

1∶T (x) =
T−1

∑
k=0

∥(A +BK∞)kx∥
2

Q+K⊺
∞
RK∞

= ⟨x,
T−1

∑
k=0

((A +BK∞)⊺)k(Q +K⊺
∞RK∞)(A +BK∞)kx⟩.

Using the expression for P∞ from Lemma F.3, it follows that

∣VK∞

1∶T (x) −V∞(x)∣ ≤ ∥x∥2
2 ⋅ ∥

∞
∑
k=T

((A +BK∞)⊺)k(Q +K⊺
∞RK∞)(A +BK∞)k∥

op

≤ ∥x∥2
2 ⋅ 2Ψ3

⋆

∞
∑
k=T

∥(A +BK∞)k∥
2

op
.

Now, using Proposition F.1, we are guaranteed that ∥(A +BK∞)k∥
op

≤ α∞γk∞, so we have

∞
∑
k=T

∥(A +BK∞)k∥
2

op
≤ α2

∞

∞
∑
k=T

γ2k
∞ = α2

∞γ
2T
∞ (1 − γ2

∞)−1.

This is establishes the bound on the error to V∞. The error bound for the Q-functions follows
immediately, since

∣QK∞

t∶T (x,u) −Q∞(x,u)∣ = ∣VK∞

t+1∶T (Ax +Bu) −V∞(Ax +Bu)∣.
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Proof of Lemma F.5. We first compute that for any x,x′,

∣VK∞

t+1∶T (x) −V
K∞

t+1∶T (x′)∣ ≤ 2(∥x∥2 ∨ ∥x′∥2)∥x − x
′∥2∥

T

∑
s=t

((A +BK∞)⊺)s−t(Q +K⊺
∞RK∞)(A +BK∞)s−t∥

op

≤ 2(∥x∥2 ∨ ∥x′∥2)∥x − x
′∥2∥

∞
∑
s=0

((A +BK∞)⊺)s−t(Q +K⊺
∞RK∞)(A +BK∞)s−t∥

op

= 2(∥x∥2 ∨ ∥x′∥2)∥x − x
′∥2∥P∞∥op.

As a consequence, for all x and u,u′, we have

∣QK∞

t∶T (x,u) −Q
K∞

t∶T (x,u′)∣ ≤ ∣∥u∥2
R − ∥u′∥2

R∣ + ∣VK∞

t+1∶T (Ax +Bu) −V
K∞

t+1∶T (Ax +Bu′)∣

≤ 2Ψ⋆(∥u∥2 ∨ ∥u′∥2)∥u − u
′∥2 + ∣VK∞

t+1∶T (Ax +Bu) −V
K∞

t+1∶T (Ax +Bu′)∣

≤ 2Ψ⋆(∥u∥2 ∨ ∥u′∥2)∥u − u
′∥2 + 2∥P∞∥(∥Ax +Bu∥2 ∨ ∥Ax +Bu′∥2)∥B(u − u′)∥2

≤ O(Ψ3
⋆) ⋅ (∥x∥2 ∨ ∥u∥2 ∨ ∥u′∥2)∥u − u

′∥2.

Proof of Theorem 6. We first consider the case where G is the identity matrix. We apply Proposition
2 of [24], which implies that10

∥P̂ − P∞∥
op

≤ O(α2
∞(1 − γ2

∞)−1Ψ6
⋆) ⋅ ε,

as long as ε ≤ c ⋅ (1 − γ2
∞)2α−4

∞Ψ−11
⋆ , where c is a sufficiently small numerical constant. Proposition

1 of [24] now implies that

∥K̂ −K∞∥
op

≤ O(α2
∞(1 − γ2

∞)−1Ψ9
⋆) ⋅ ε.

The strong stability result follows by observing that

∥P 1/2
∞ (A +BK̂)P −1/2

∞ ∥
op

≤ ∥P 1/2
∞ (A +BK∞)P −1/2

∞ ∥
op
+ ∥P 1/2

∞ B(K̂ −K∞)P −1/2
∞ ∥

op

≤ γ∞ + α∞Ψ⋆∥K̂ −K∞∥
op
.

In the general case, we apply the reasoning above with A′ = BAG−1, B′ = GB, and Q′ = G−TQG−1,
and R, and observe that the optimal controller for this system is K∞G

−1. The same perturbation
bound holds, but with Ψ⋆ scaled up by at most C2

sim and α∞ scaled up by at most Csim.

Proof of Theorem 7. Before beginning the proof, we collect some helpful norm bounds. We have:

Eπ̂∥xt∥2
2 ≤ c

2
x, (F.9)

Eπ̂∥π̂t(y1∶t)∥2
2 ≤ Eπ̂∥K̂f̂t(y1∶t)∥

2

2
+ σ2

ν ≤ 42Ψ2
⋆b̄

2 + σ2
ν, (F.10)

Eπ̂∥π⋆t (yt)∥
2
2 ≤ ∥K∞∥2

op Eπ̂∥xt∥
2
2 ≤ Ψ2

⋆c
2
x, (F.11)

where (F.10) follows because ∥K̂∥op ≤ 2∥K∞∥op, so that ∥K̂f̂(y1∶t)∥ ≤ 2∥K∞∥opb̄ ≤ 2Ψ⋆b̄ almost
surely.

As a first-step, using the standard performance difference lemma [17], we have

JT (π̂) − JT (π∞) = Eπ̂[
1

T

T

∑
t=1

QK∞

t∶T (xt, π̂(y1∶t)) −QK∞

t∶T (xt, π∞(yt))],

where we have used Assumption 1, which implies that the Q-functions for π∞ have the form in
Eq. (F.4).

10To apply the proposition as stated in their paper, we use that ρ(Acl,∞) ≤ γ∞ by Gelfand’s formula, and that
their parameter τ(Acl,∞, γ∞) is bounded by α∞.
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Let T0 = T − τ . We handle the timesteps before and after T0 separately. For the first case, where
t ≤ τ , we apply Lemma F.4, which implies that

Eπ̂[
T0

∑
t=1

QK∞

t∶T (xt, π̂(y1∶t)) −QK∞

t∶T (xt, π∞(yt))]

≤ Eπ̂[
T0

∑
t=1

Q∞(xt, π̂(y1∶t)) −Q∞(xt, π∞(yt))]

+O(α2
∞(1 − γ2

∞)−1Ψ5
⋆) ⋅

T0

∑
t=1

γ2(T−t)
∞ (Eπ̂∥xt∥2

2 +E∥π̂(y1∶t)∥2
2 +E∥π⋆(y1∶t)∥

2
2)

We simplify the error term above to

γ2τ
∞ (T − τ) ⋅ O(α2

∞Ψ7
⋆(c2x ∨ σ2

ν ∨ b̄2)).
To handle the summands, we observe that since π∞(yt) = arg minu∈Rdu Q∞(x, u), and since Q∞
is a strongly convex quadratic with Hessian P∞ + B⊺P∞B = Σ∞, the first-order conditions for
optimality imply that

Q∞(xt, π̂(y1∶t)) −Q∞(xt, π∞(yt)) = ∥π̂(y1∶t) − π∞(yt)∥2
Σ∞
.

Thus, since ∥Σ∞∥op ≤ 2Ψ3
⋆ (Proposition F.3), we have

Eπ̂[
T0

∑
t=1

Q∞(xt, π̂(y1∶t)) −Q∞(xt, π∞(yt))] ≤ 2Ψ3
⋆

T0

∑
t=1

Eπ̂∥π̂(y1∶t) − π⋆(yt)∥
2
2.

Now, for each t, we have

Eπ̂∥π̂(y1∶t) − π⋆(yt)∥
2
2 =Eπ̂∥K̂f̂t(y1∶t) + νt −K∞f⋆(yt)∥

2

2

≤ Eπ̂∥K̂f̂t(y1∶t) −K∞f⋆(yt)∥
2

2
+ σ2

ν

≤ 2Eπ̂∥K̂f̂t(y1∶t) − K̂f⋆(yt)∥
2

2
+ 2Eπ̂∥(K̂ −K∞)f⋆(yt)∥

2

2
+ 2σ2

ν

≤ 8Ψ2
⋆Eπ̂∥f̂t(y1∶t) − f⋆(yt)∥

2

2
+ 24c2x∥K̂ −K∞∥2

op
+ 2σ2

ν

≤ 8Ψ2
⋆ε

2
f + 24c2xε

2
K + 2σ2

ν. (F.11)
Collecting terms, this gives a coarse bound of

Eπ̂[
T0

∑
t=1

Q∞(xt, π̂(y1∶t)) −Q∞(xt, π∞(yt))] ≤ O(Ψ5
⋆c

2
x(T − τ)(ε2

f + ε2
K + σ2

ν)).

We now bound the terms after time T0. Using Lemma F.5, we have

Eπ̂
⎡⎢⎢⎢⎣

T

∑
t=T0

QK∞

t∶T (xt, π̂(y1∶t)) −QK∞

t∶T (xt, π∞(yt))
⎤⎥⎥⎥⎦

≤ O(Ψ3
⋆)Eπ̂

⎡⎢⎢⎢⎣

T

∑
t=T0

(∥xt∥2 + ∥π̂t(y1∶t)∥2 + ∥π∞(yt)∥2)∥π̂(y1∶t) − π∞(yt)∥2

⎤⎥⎥⎥⎦

≤ O(b̄Ψ4
⋆)Eπ̂

⎡⎢⎢⎢⎣

T

∑
t=T0

(∥xt∥2 + ∥νt∥2)∥π̂(y1∶t) − π∞(yt)∥2

⎤⎥⎥⎥⎦

≤ O(b̄Ψ4
⋆)

T

∑
t=T0

(
√

Eπ̂∥xt∥2
2 +

√
E∥νt∥2

2)
√

Eπ̂∥π̂(y1∶t) − π∞(yt)∥2
2

≤ O(b̄Ψ4
⋆(cx + σν))

T

∑
t=T0

√
Eπ̂∥π̂(y1∶t) − π∞(yt)∥2

2

≤ O(b̄Ψ4
⋆(cx + σν)(Ψ⋆εf + cxεK + σν) ⋅ τ)

≤ O(b̄Ψ5
⋆cx(1 ∨ σν)(εf + cxεK + σν) ⋅ τ),

where the second-to-last inequality uses Eq. (F.11).
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G Proofs for RichID Phase I and II

The section is organized as follows.

• Appendix G.1 contains preliminaries. Appendix G.1.1 establishes the relevant Gaussian
marginals and conditionals, Appendix G.1.2 specifies the burn-in parameter κ0, and Ap-
pendix G.1.3 addresses relevant properties of the function class Hid.

• Appendix G.2 provides proofs for Phase I, in particular Theorem 2 and its more granular
statement, Theorem 2a.

• Appendix G.3 provides proofs for Phase II, including Theorem 3/Theorem 3a.

G.1 Preliminaries

Recall that in the identification phase, for each t ≥ 0, we take ut ∼ N(0, Idu). We recall that the
controllability matrices are given by Ck = [Ak−1B ∣ . . . ∣ B], and define the following matrices:

Σk,id ∶= AkΣ0(Ak)⊺ +
k−1

∑
s=0

(As)(Σw +BB⊺)(As)⊺. (G.1)

Σ∞,id ∶=
∞
∑
s=0

(As)(Σw +BB⊺)(As)⊺. (G.2)

We also recall the definition of κ0 and κ1:

κ0 ∶= ⌈ 1

1 − γ⋆
ln(84Ψ5

⋆α
4
⋆dx ln(1000nid)
(1 − γ⋆)2

)⌉. (G.3)

κ1 ∶= κ0 + κ. (G.4)

Finally, we define

v ∶= (u⊺κ0
, . . . ,u⊺κ1−1)⊺ ∈ Rκdu ,

and we recall the definition of the function class used in the regression problem for Phase I:

Hid ∶= {Mf(⋅) ∣ f ∈ F , M ∈ Rκdu×dx , ∥M∥op ≤
√

Ψ⋆} , (G.5)

which corresponds to choosing rid =
√

Ψ⋆.

G.1.1 Marginals and Conditions

To compute the Bayes regression function for Phase I we use the following results, which are readily
verified.
Fact G.1 (Marginals for Phase I). Fix κ,κ0 and define. κ1 ∶= κ0 + κ. Then v,xκ1 are jointly
Gaussian are jointly gaussian and mean zero. Moreover, xκ1 ∼ N(0,Σκ1,id), v ∼ N(0, Ikdu), and
E[vx⊺k] = C

⊺
κ.

Fact G.2 (Gaussian Expectation). Let (U,X) be jointly Gaussian random variables with distribution

(U,X) ∼ N (0, [ΣUU ΣUX
ΣXU ΣXX

]) .

Then we have E[U ∣X = x] = ΣUXΣ−1
XXx.

G.1.2 Selecting the Burn-In Time

Lemma G.1. Fix an integer nid ∈ N. Then as long as κ0 satisfies Eq. (G.3), we have that for any
k, k′ ≥ κ0 (including k = ∞), the following properties hold.

1. The following bounds hold with respect to the PSD ordering:

9

10
Σ⋆ ⪯ Σk,id ⪯ 11

10
Σ⋆ ⪯

11

5
Ψ2
⋆α

2
⋆(1 − γ⋆)−1 ⋅ I.
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2. Fix ε > 0. For any h1, h2 ∈ Hid with E∥h1(yk) − h2(yk)∥2 ≤ ε2, we have

E∥h1(yk′) − h2(yk′)∥2 ≤ 2 max{ε2,Ψ⋆L
2/nid}.

3. The controllability matrices satisfy the following bounds:

1 ∧ σmin(C⊺kΣ
−1/2
k′,id) ≥ σdx(Ck)

¿
ÁÁÀ5(1 − γ⋆)

11Ψ2
⋆α

2
⋆
, (G.6)

and

1 ∧ σmin(C⊺kΣ
−1/2
k′,id) ⋅ σmin(Σ−1/2

k′,id) ≥
5(1 − γ⋆)σdx(Ck)

11Ψ2
⋆α

2
⋆

. (G.7)

4. ∥C⊺kΣ−1
k′,id∥op

≤
√

Ψ⋆, provided k ≥ k′ (but in fact, not requiring k ≥ κ0).

Proof. Our proof starts with the following claim, which shows that the covariance matrices for k and
k′ are very close under the conditions of the lemma.

Claim G.1. Fix ε ∈ (0,1/2). For all k, k′ ≥ 1
1−γ⋆ ln

6ε−1Ψ2
⋆
α2
⋆

1−γ⋆ , we have that

max{∥I −Σ
−1/2
k,id Σk′,idΣ

−1/2
k,id ∥op, ∥I −Σ

1/2
k,idΣ−1

k′,idΣ
1/2
k,id∥op} ≤ ε.

Proof of Claim G.1. Since Σk,id ⪰ Σw ⪰ Ψ−1
⋆ I by definition, we have that

∥I −Σ
−1/2
k,id Σk′,idΣ

−1/2
k,id ∥op = ∥Σ−1/2

k,id (Σk,id −Σk′,id)Σ−1/2
k,id ∥

≤ ∥Σ−1
k,id∥∥Σk′,id −Σk,id∥ ≤ Ψ⋆∥Σk′,id −Σk,id∥.

By the same token,

∥I −Σ
1/2
k,idΣ−1

k′,idΣ
1/2
k,id∥op ≤ ε

⇐⇒ (1 − ε)I ⪯ Σ
1/2
k,idΣ−1

k,idΣ
1/2
k,id ⪯ (1 + ε)I

⇐⇒ (1 − ε)Σ−1
k,id ⪯ Σ−1

k′,id ⪯ (1 + ε)Σ−1
k,id (conjugation)

⇐⇒ (1 + ε)−1Σk,id ⪯ Σk′,id ⪯ (1 − ε)−1Σk,id (inversion)

⇐⇒ (1 + ε)−1I ⪯ Σ
−1/2
k,id Σk′,idΣ

−1/2
k,id ⪯ (1 + ε)−1Σ

−1/2
k,id

⇐⇒ ∥I −Σ
−1/2
k,id Σk′,idΣ

−1/2
k,id ∥op ≤ max{1 − (1 + ε)−1, (1 − ε)−1 − 1}.

In particular, for ε ≤ 1/2, ∥I − Σ
1/2
k,idΣ−1

k′,idΣ
1/2
k,id∥op ≤ ε as long as ∥I − Σ

−1/2
k,id Σk′,idΣ

−1/2
k,id ∥op ≤ 2ε.

Combining with the above,

max{∥I −Σ
−1/2
k,id Σk′,idΣ

−1/2
k,id ∥op, ∥I −Σ

−1/2
k,id Σk′,idΣ

−1/2
k,id ∥op} ≤ ε (G.8)

if ∥Σk,id −Σk′,id∥ ≤
ε

2Ψ⋆
≤ ε ≤ 1/2.

Next, for any k, k′, using strong stability implies

∥Σk,id −Σk′,id∥op ≤ ∥Ak(Σ0)(Ak)⊺ −Ak
′

(Σ0)(Ak
′

)⊺∥op +
XXXXXXXXXXXX

max{k,k′}

∑
i=min{k,k′}+1

(Ai)Σw(Ai)⊺
XXXXXXXXXXXXop

≤ Ψ⋆α
2
⋆
⎛
⎝

2γ
2 min{k,k′}
⋆ +

max{k,k′}

∑
i=min{k,k′}+1

γ2s
⋆

⎞
⎠

≤ 3Ψ⋆α
2
⋆γ

2 min{k,k′}
⋆

1 − γ⋆
.

Hence, for a given ε > 0, we have

∥Σk,id −Σk′,id∥op ≤ ε for min{k, k′} ≥ 1

1 − γ⋆
ln

3ε−1Ψ⋆α
2
⋆

1 − γ⋆
.

The bound now follows by combining with Eq. (G.8), and shrinking ε by a factor of 2.
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Next, we require a basic operator norm bound for Σ∞,id.

Claim G.2. ∥Σ∞,id∥op ≤ 2Ψ2
⋆α

2
⋆(1 − γ⋆)−1.

Proof of Claim G.2. ∥Σ∞,id∥op = ∥∑∞
i=0(Ai)(Σw + BB⊺)(Ai)⊺∥op ≤ (∥Σw∥op +

∥B∥2
op)∑

∞
i=0 ∥Ai∥2

op. We can bound (∥Σw∥op + ∥B∥2
op) ≤ 2Ψ2

⋆ and ∥Ai∥2
op ≤ α2

⋆γ
2i
⋆ , so that

∥Σ∞,id∥op ≤ 2Ψ2
⋆α

2
⋆∑i≥0 γ

2i
⋆ ≤ Ψ2

⋆α
2
⋆(1 − γ⋆)−1.

We now proceed with the proof of the lemma. We prove points 1 through 4 in order.

1. We have that 9
10

Σ∞,id ⪯ Σk,id ⪯ 11
10

Σ∞,id if and only ∥I−Σ
−1/2
∞,idΣk,idΣ

−1/2
∞,id∥ ≤ 1/10. Hence,

the bounds hold by selecting k ←∞, k′ ← k, and invoking Claim G.1 for our choice of κ0.
Moreover, by Claim G.2, Σ∞,id ⪯ 2IΨ2

⋆α
2
⋆(1 − γ⋆)−1, yielding the last inequality.

2. For point 2, every h ∈ Hid satisfies ∥h(y)∥ ≤ L
√

Ψ⋆ max{1, ∥f⋆(y)∥}; see the def-
inition of the class Hid in Eq. (G.5). Hence, given two elements h,h′ ∈ Hid with
Eyk∼N(0,Σk,id)∥h(yk) − h′(yk)∥ ≤ ε2, Lemma E.3 ensures that

Eyk′∼N(0,Σk′,id)∥h(yk′) − h
′(yk′)∥ ≤ 2 max{ε2,Ψ⋆L

2/nid},

provided that ∥I −Σ
1/2
k,idΣ−1

k′,idΣ
1/2
k,id∥op ≤ 1

14dx ln(80enid(1 + ∥Σk,id∥op))
.

Using that Ψ⋆, α⋆ ≥ 1 and the previous bound, (1 + ∥Σk,id∥op) ≤ 22
5

Ψ2
⋆α

2
⋆(1 − γ⋆)−1, we

have that as long as

∥I −Σ
1/2
k,idΣ−1

k′,idΣ
1/2
k,id∥op ≤ 1

14dx ln(16 ⋅ 22enidΨ2
⋆α

2
⋆(1 − γ⋆)−1)

, (G.9)

we obtain the desired inequality: Eyk′∼N(0,Σk′,id)∥h(yk′) − h′(yk′)∥ ≤
2 max{ε2,Ψ⋆L

2/nid}. Finally to obtain the guarantee in Eq. (G.9), we require

min{k, k′} ≥ 1

1 − γ⋆
ln(6 ⋅ 14Ψ3

⋆α⋆dx ln(16 ⋅ 22enidΨ2
⋆α

2
⋆(1 − γ⋆)−1))

1 − γ⋆
) .

Simplifying constants, a sufficient condition is that

min{k, k′} ≥ 1

1 − γ⋆
ln(84Ψ3

⋆α
2
⋆dx ln(1000nidΨ2

⋆α
2
⋆(1 − γ⋆)−1)

1 − γ⋆
) .

Finally, since ln(xy) = ln(x) + ln(y) ≤ y ln(x) for x ≥ e and y ≥ 1, we can further simplify
to the sufficient condition

min{k, k′} ≥ 1

1 − γ⋆
ln(84Ψ5

⋆α
4
⋆dx ln(1000nid)
(1 − γ⋆)2

) ∶= κ0.

which is precisely the condition in Eq. (G.3).

3. For the third point, we start with 1

λmin(Σ−1/2
k′,id) =

√
1

λmax(Σk′,id)
≥ σdx(Ck)

¿
ÁÁÀ5(1 − γ)

11Ψ2
⋆α

2
⋆

(G.10)

To prove the first point of Eq. (G.7), we bound

σdx(C⊺kΣ
−1/2
k′,id) ≥ σdx(Ck)λmin(Σ−1/2

k′,id) ≥ σdx(Ck)

¿
ÁÁÀ5(1 − γ)

11Ψ2
⋆α

2
⋆
, (G.11)

where we use the first point of the lemma in the last step (Eq. (G.10)). To see that this lower
bound (the RHS of Eq. (G.11)) is less than 1 (acounting for the ∧1 in the LHS of Eq. (G.7)),
we observe Σk′,id ⪰ CkC⊺k for k′ ≥ k, and thus σdx(C⊺kΣ

−1/2
k′,id) ≤ 1.

Proving the second part of Eq. (G.7) follows by combining Eqs. (G.10) and (G.11).
The resultant lower bound is also less than 1, since the (RHS of Eq. (G.10)) ≤ 1, and
σdx(C⊺kΣ

−1/2
k′,id) ≤ 1 as well.
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4. Finally, ∥C⊺kΣ−1
k′,id∥op ≤ ∥C⊺k(Σ

−1/2
k′,id)∥op∥Σ−1/2

k′,id∥op. Since Σk′,id ⪰ CkC⊺k for k′ ≥ k,

∥C⊺k(Σ
−1/2
k′,id)∥op ≤ 1. Moreover, since Σk′,id ⪰ Σw ⪰ Ψ−1

⋆ I , ∥Σ−1/2
k′,id∥op ≤

√
Ψ⋆, as needed.

G.1.3 Properties of the Class Hid

Lemma G.2. Let κ0 satisfy Eq. (G.3), and define

cconc,id ∶=
12L2Ψ3

⋆α
2
⋆

1 − γ⋆
. (G.12)

Then, for all k ≥ κ0:

1. maxh∈Hid
∥h(yk)∥2 ≤ L2Ψ⋆ max{1, ∥f⋆(yk)∥2}, and both are (dx ⋅ cconc,id)-concentrated.

2. For any matrix V with ∥V ∥op ≤ 1 (e.g., any V with orthonormal columns) and any
h,h′ ∈ Hid, the random variable ∥V ⊺h(yk)∥2 is (dxcconc,id) concentrated, and ∥V ⊺h(yk)−
V ⊺h′(yk)∥2 is (4dxcconc,id)-concentrated.

Proof. Let us first reason about the concentration of ∥f⋆(yk)∥2. Under perfect decodability,
∥f⋆(yk)∥2 = ∥xk∥2, which is 5tr(Σk,id) ≤ 5dx∥Σk,id∥op-concentrated by Lemma E.2. Moreover,
from Lemma G.1, we have that 5dx∥Σk,id∥op ≤ 11Ψ2

⋆α
2
⋆(1 − γ⋆)−1.

To finish proving the first point, observe that that maxh∈Hid
∥h(y)∥2 ≤ L2Ψ⋆ max{1, ∥f⋆(y)∥2}

(Eq. (G.5)). From Lemma E.1, we recall that if a random variable z is c-concentrated, then α(z + β)
is α(c+β) concentrated for β,α > 0. Hence, maxh∈Hid

∥h(y)∥2 isL2Ψ⋆(1+11dxΨ2
⋆α

2
⋆(1−γ⋆)−1) ≤

dx ⋅ 12L2Ψ3
⋆α

2
⋆(1 − γ⋆)−1 = dxcconc,id-concentrated, as needed.

The proof of the second point is analogous. First, we note that for ∥V ∥op ≤ 1, ∥V ⊺h(yk)∥2 ≤
∥h(yk)∥2 and ∥V ⊺(h(yk) − h′(yk))∥2 ≤ 4L2Ψ⋆ max{1, ∥f⋆(y)∥2}. Combined with the concentra-
tion result for ∥f⋆(yk)∥2 above, this yields the result.

Lemma G.3. Let κ0 satisfy Eq. (G.3), let κ ∈ N, and define κ1 ∶= κ0 + κ. Then for all x ∈ Rdx and
y ∈ supp q(⋅ ∣ x) we have:

E[v ∣ yκ1 = y] = C⊺κΣ−1
κ1,idx =∶ h⋆,id(y),

and h⋆,id ∈ Hid.

Proof. Since v → xκ1 → yκ1 forms a Markov chain, and xκ1 = f⋆(yκ1) almost surely, we have that
(v,xκ1 ,yκ1) is decodable in the sense of Definition 4. Thus, by Lemma E.4, E[v ∣ yκ1 = y] = E[v ∣
xκ1 = f⋆(y)]. By Fact G.1, (v,xκ1) are jointly Gaussian and mean zero, and E[xκ1x

⊺
κ1

] = Σκ1,id

and E[vx⊺κ1
] = C⊺κ. Thus, E[v ∣ xκ1 = x] = C⊺κΣ−1

κ1,id
x (Fact G.2), giving that E[v ∣ yκ1 = y] =

C⊺κΣ−1
κ1,id

f⋆(y) = h⋆,id(y), as needed.

To see that h⋆,id ∈ Hid, we observe that h⋆,id =Mf⋆ for M = C⊺κΣ−1
κ1,id

. By Lemma G.1 part 4, we

have ∥M∥op ≤ Ψ
1/2
⋆ . Thus, from the definition of Hid in Eq. (G.5) and the fact that f⋆ ∈ F by the

realizability assumption, we conclude that h⋆,id ∈ Hid.

G.2 Proof of Decoder Recovery (Theorem 2)

We first state the full version of Theorem 2, which asserts that Phase I recovers a decoder that
accurately predicts the state under Gaussian roll-in, up to a well-conditioned similarity transformation.

Theorem 2a. For a universal constant c̄id,1 ≥ 8, define

ε2
id,h = c̄id,1

ln2(nid

δ
)(duκ + dxcconc,id)(ln ∣F ∣ + dudxκ)

nid
, (G.13)
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and assume that nid is sufficiently large such that

εid,h

√
dxcconc,id ≤ (1 − γ⋆)σdx(Cκ)2

71α2
⋆Ψ2

⋆
.

Then, with probability at least 1 − 3δ, there exists an invertible matrix Sid ∈ Rd
2
x satisfying

1 ∧ σmin(Sid) ≥ σmin,id ∶=
σmin(Cκ)(1 − γ⋆)

4Ψ2
⋆α

2
⋆

, and 1 ∨ ∥Sid∥op ≤ σmax,id ∶=
√

Ψ⋆,

such that the function f⋆,id(y) ∶= Sidf⋆(y) and the learned decoder f̂id satisfy

E∥f⋆,id(yκ1) − f̂id(yκ1)∥2 ≤ ε2
id,h.

In particular, for

nid = Ω⋆(dxduκ(ln ∣F ∣ + dudxκ)),

we have that

E∥f⋆,id(yκ1) − f̂id(yκ1)∥2 ≤ O⋆
⎛
⎝
duκ(ln ∣F ∣ + dudxκ) ln2(nid

δ
)

nid

⎞
⎠
.

Proof. The proof of this theorem follows from two propositions which we establish in the sequel.
The first, Proposition G.1, demonstrates that the learned function ĥid satisfies the following bound
with probability 1 − 3δ/2:

Eyκ1
[∥ĥid(yκ1) − h⋆,id(yκ1)∥2] ≤ ε2

id,h,

where h⋆,id(y) ∶= C⊺κΣ−1
κ1,id

f⋆(y). Now recall that the function f̂id(y) is constructed as V̂ ⊺
idh⋆,id(y),

where V̂id has orthonormal columns. Defining Sid = V̂ ⊺
idC

⊺
κΣ−1

κ1,id
, we see that V̂ ⊺

idh⋆,id(y) =
Sidf⋆(y) = f⋆,id(y). Thus, since V̂id has operator norm 1,

Eyκ1
[∥f̂id(yκ1) − f⋆,id(yκ1)∥2] = Eyκ1

[∥V̂ ⊺
id(ĥid(yκ1) − h⋆,id(yκ1))∥2]

≤ Eyκ1
[∥ĥid(yκ1) − h⋆,id(yκ1)∥2] ≤ ε2

id,h.

To conclude, the norm bounds for the matrix Sid are provided by Proposition G.2, which hold with
probability at least 1 − δ.

G.2.1 Prediction Error Guarantee for ĥid

Proposition G.1. Let (y(i)
κ1 ,v

(i))nid

i=1 be as described in Algorithm 3 and Section 2.1, and let

ĥid ∈ arg min
h∈Hid

nid

∑
i=1

∥h(y(i)
κ1

) − v(i)∥2.

Then there is a universal constant c̄id,1 ≥ 8 such that with probability at least 1 − 3
2
δ, we have

Eyκ1
[∥ĥid(yκ1) − h⋆,id(yκ1)∥2] ≤ ε2

id,h ≤ O⋆
⎛
⎝

ln2(nid

δ
)duκ(ln ∣F ∣ + dudxκ)

nid

⎞
⎠
.

We let Eid,h denote the event that this inequality holds.

Proof. From Lemma G.3, we have E[v ∣ yκ1 = y] = h⋆,id(y), so h⋆,id ∈ Hid. To prove the result,
we simply apply our general-purpose error bound for least-square regression, Corollary E.1, with
y = yκ1 , u = v, and e = 0. We verify that each precondition for the proposition holds.

• Structure of function class. F is finite, and by Assumption 5, ∥f(y)∥ ≤
Lmax{1, ∥f⋆(y)∥}. Moreover, Hid ∶= {M ⋅ f ∶ ∥M∥ ≤

√
Ψ⋆, f ∈ F}.
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• Concentration Property. By Lemma G.2, defining ϕ(y) ∶= L2Ψ⋆ max{1, ∥f⋆(y)∥2} we
see that ϕ(yκ1) is dxcconc,id-concentrated. Moreover, since v ∼ N(0, Iduκ), we have that
∥v∥2 is 5duκ-concentrated by Lemma E.2. Hence, c = 5duκ + dxcconc,id is a valid choice
for the concentration constant c in Proposition E.1.

Thus, Corollary E.1 with c ≲ duκ + dxcconc,id implies that

Eyκ1
[∥ĥid(yκ1) − h⋆,id(yκ1)∥2] ≲

ln2(nid

δ
)(duκ + dxcconc,id)(ln ∣F ∣ + dudxκ)

nid

= O⋆
⎛
⎝

ln2(nid

δ
)(duκ + dx)(ln ∣F ∣ + dudxκ)

nid

⎞
⎠

= O⋆
⎛
⎝

ln2(nid

δ
)duκ(ln ∣F ∣ + dudxκ)

nid

⎞
⎠
,

where the last simplification uses that controllability requires duκ ≥ dx.

G.2.2 Dimension Reduction

Proposition G.2. Suppose that κ0 satisfies Eq. (G.3). Let V̂id ∈ Rκdu×dx be an eigenbasis for the top
dx eigenvalues of Λ̂n, where we define

Λ̂n ∶=
1

n

n

∑
i=1

ĥid(y(i)
κ1

)ĥid(y(i)
κ1

)⊺.

Further, let Sid ∶= V̂ ⊺
idC

⊺
κΣ−1

κ1,id
∈ Rdx×dx . Then if

√
dxcconc,idεid,h ≤

(1 − γ⋆)σdx(Cκ)2

71α2
⋆Ψ2

⋆
, (G.14)

we have that with probability at least 1 − δ, an event Eid,pca occurs such that on Eid,h ∩ Eid,pca,

1 ∧ σmin(Sid) ≥ σmin,id ∶=
σmin(Cκ)(1 − γ⋆)

4Ψ2
⋆α

2
⋆

, and 1 ∨ ∥Sid∥op ≤ σmax,id ∶=
√

Ψ⋆.

Proof. Introduce Λ⋆ ∶= CκΣ−1
κ1,id
C⊺κ, and let Vid ∈ Rκdu×dx be an eigenbasis for its dx non-zero

eigenvectors. From Lemma G.3 and Fact G.1, we have

E[h⋆,id(yκ1)h⋆,id(yκ1)⊺] = CκΣ−1
κ1,idE[f⋆(yκ1)f⋆(yκ1)⊺]Σ−1

κ1,idC
⊺
κ

= CκΣ−1
κ1,idE[xκ1x

⊺
κ1

]Σ−1
κ1,idC

⊺
κ

= CκΣ−1
κ1,idΣκ1,idΣ−1

κ1,idC
⊺
κ = CκΣ−1

κ1,idC
⊺
κ ∶= Λ⋆.

We apply Proposition E.2 and Corollary E.3, with Λ̂n and Λ⋆ as above. To apply this proposition,
first observe that ∥ĥid(yκ1)∥2 is c = dxcconc,id-concentrated by Lemma G.2. Morever, on Eid,h, we
have E[∥ĥid(yκ1) − h⋆,id(yκ1)∥2 ≤ ε2

id,h. Thus, the term εpca,n,δ in Proposition E.2, specializes to

εid,pca ∶= 3
√
dxcconc,idεid,h + 5dxcconc,idn

−1/2
id ln(2κdunid/δ)3/2.

By the fact that nid ≥ κdu (it can be verified that this is required to ensure the upper bound on εid,h),
we can bound

dxcconc,idn
−1/2
id ln(2κdunid/δ)3/2 ≤

√
dxcconc,idεid,h,

where εid,h is as in Proposition G.1. Hence, we can bound

εid,pca = 3
√
dxcconc,idεid,h + 5dxcconc,idn

−1/2
id ln(2κdunid/δ)3/2 ≤ 8

√
dxcconc,idεid,h.

Thus, if we denote the event above by Eid,pca, we that have on Eid,h ∩ Eid,pca,

∥V̂ ⊺
id(Λ̂n −Λ⋆)V̂id∥op = ∥Λ̂n −Λ⋆∥op ≤ 8

√
dxcconc,idεid,h.
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From the fourth point of Lemma G.1, we have that λmin(Λ⋆) ≥ 5(1−γ⋆)σdx(Cκ)2

11α2
⋆
Ψ2
⋆

. Hence, Corollary E.3
ensures that under the Eid,h ∩ Eid,pca, we have

σmin(V̂ ⊺
idVid) ≥

2

3
, (G.15)

as long as

√
dxcconc,idεid,h ≤

(1 − γ⋆)σdx(Cκ)2

71α2
⋆Ψ2

⋆
≤ 1

4 ⋅ 8
⋅ 5(1 − γ⋆)σdx(Cκ)2

11α2
⋆Ψ2

⋆
,

which is precisely the condition Eq. (G.14) required by the theorem. To conclude, let us bound the
singular values of Sid ∶= V̂ ⊺

idC
⊺
κΣ−1

κ1,id
under the assumption that the bound above holds. Since V̂id

has orthonormal columns, have that

∥Sid∥ ≤ ∥C⊺κΣ−1
κ1,id∥ ≤

√
Ψ⋆. (Lemma G.1)

On the other hand, we can lower bound

σmin(Sid) = σmin(V̂ ⊺
idC

⊺
κΣ−1

κ1,id) ≥ σmin(V̂ ⊺
idC

⊺
κΣ

−1/2
κ1,id

)σmin(Σ−1/2
κ1,id

), (G.16)

where we have used that Σ
−1/2
κ1,id

and V̂ ⊺
idC

⊺
κΣ

−1/2
κ1,id

are square. We now prove the following claim,
which is also reused in a number of subsequent proofs.

Claim G.3. On Eid,h ∩ Eid,pca, we have

σmin(V̂ ⊺
idC

⊺
κΣ

−1/2
κ1,id

) ≥ 2

3
σdx(C⊺κΣ

−1/2
κ1,id

).

Proof of Claim G.3. Since Vid is an eigenbasis for C⊺κΣ−1
κ1,id
Cκ, we have that C⊺κΣ

−1/2
κ1,id

=
VidV

⊺
idC

⊺
κΣ

−1/2
κ1,id

, and σdx(V ⊺
idC

⊺
κΣ

−1/2
κ1,id

) = σdx(C⊺κΣ
−1/2
κ1,id

). Thus,

σmin(V̂ ⊺
idC

⊺
κΣ

−1/2
κ1,id

) = σmin(V̂ ⊺
idVidV

⊺
idC

⊺
κΣ

−1/2
κ1,id

)

≥ σmin(V̂ ⊺
idVid)σmin(V ⊺

idC
⊺
κΣ

−1/2
κ1,id

)

≥ 2

3
σmin(V ⊺

idC
⊺
κΣ

−1/2
κ1,id

), (by Eq. (G.15))

where the first inequality uses that σmin(XY ) ≥ σmin(X)σmin(Y ) for X,Y ∈ Rdx×dx . Again, since
Vid is an eigenbasis for the non-zero eigenvalues of C⊺κΣ

−1/2
κ1,id

, we have

σmin(V ⊺
idC

⊺
κΣ

−1/2
κ1,id

) = σdx(C⊺κΣ
−1/2
κ1,id

).

Combining the above claim with Eq. (G.16), we have

σmin(Sid) ≥
2

3
σmin(C⊺κΣ

−1/2
κ1,id

)σmin(Σ−1/2
κ1,id

)

≥ 5 ⋅ 2σmin(Cκ)(1 − γ⋆)
11 ⋅ 3Ψ2

⋆α
2
⋆

(Eq. (G.7) in Lemma G.1)

≥ σmin(Cκ)(1 − γ⋆)
4Ψ2

⋆α
2
⋆

,

as needed.
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G.3 Estimating Costs and Dynamics (Theorem 3)

To begin this section, we state the full version of Theorem 3, which shows that Phase II (Algo-
rithm 4) accurately recovers the system matrices, noise covariance, and state cost up to a similarity
transformation.
Theorem 3a. For a possibly inflated numerical constant c̄id,1 in Eq. (G.13), suppose εid,h satisfies

εid,h

√
ln(2nid/δ) ≤

σdx(Cκ)2(1 − γ⋆)2

80 ⋅ 12L2Ψ5
⋆α

4
⋆dx

.

Then, with probability at least 1 − 11δ over both Phase I and Phase II, the following bounds hold:

∥Q̂id −Qid∥op ≲ εid,h ⋅
α6
⋆Ψ7

⋆
√
cconc,iddx ln(nid/δ)

(1 − γ⋆)3σmin(Cκ)4
,

∥[Âid; B̂id] − [Aid;Bid]∥op ≲ εid,h ⋅
Ψ

7/2
⋆ α3

⋆
σmin(Cκ)2(1 − γ⋆)3/2 ,

∥Σ̂w,id −Σw,id∥op ≲ εid,h ⋅
Ψ

5/2
⋆ α4

⋆
σmin(Cκ)(1 − γ⋆)

.

In particular, for

nid = Ω⋆(d2
xduκ(ln ∣F ∣ + dudxκ)max{1, σmin(Cκ)−4}),

we have that

∥Q̂id −Qid∥op ∨ ∥[Âid; B̂id] − [Aid;Bid]∥op ∨ ∥Σ̂w,id −Σw,id∥op

≤ O⋆(n−1/2
id ⋅

√
dxduκ(ln ∣F ∣ + dudxκ) ln(nid/δ)4)

G.3.1 Preliminaries for Theorem 3

Before proceeding with the proof of Theorem 3, we recall some notation. First, following Ap-
pendix G.3, we let

Eid,h and Eid,pca

denote the events from Proposition G.1 and Proposition G.2, respectively. Next, we introduce some
functions used throughout the proof and prove some basic facts about them.

Definition 6. Recall that Sid ∶= V̂ ⊺
idC

⊺
κΣ−1

κ1,id
(Proposition G.2). Define functions f⋆,id, f̂id, errf,id ∶

Y → Rdx via:

f̂id ∶= V̂ ⊺
idĥid, f⋆,id ∶= Sidf⋆, errf,id ∶= f̂id − f⋆,id.

Lemma G.4. Let κ satisfy the conditions of Lemma G.1. Then, under the good event Eid,h ∩ Eid,pca,

1. E∥errf,id(yκ1)∥2 ≤ ε2
id,h.

2. For any k ≥ κ0 (in particular, for k = κ1 + 1), E∥errf,id(yk)∥2 ≤ 2ε2
id,h

3. For any k ≥ κ1 (in particular, for k ∈ {κ1, κ1 + 1}), max{∥f̂id(yk)∥, ∥f⋆,id(yk)∥2} is
dxcconc,id-concentrated, and ∥errf,id(yk)∥2 is 4dxcconc,id-concentrated.

4. We have that f⋆,id(yκ1) = Sidxκ1 is zero-mean Gaussian, with

E[f⋆,id(yκ1)f⋆,id(yκ1)⊺] = Sid(E[xκ1x
⊺
κ1

])S⊺id ⪰ I ⋅ σdx(Cκ)
2(1 − γ⋆)

10Ψ2
⋆α

2
⋆

.

Proof. For point 1, we have that f⋆,id ∶= Sidf⋆ = V̂ ⊺
idC

⊺
κΣ−1

κ1,id
f⋆ = V̂ ⊺

idh⋆,id. Hence,

E∥errf,id(yκ1)∥2 = E∥V̂ ⊺
id(ĥid − h⋆,id)∥2

(i)
≤ E∥ĥid − h⋆,id∥2

(ii)
≤ ε2

id,h,
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where inequality (i) uses that V̂id has orthonormal columns, and inequality (ii) uses the definition of
Eid,h (Proposition G.1). Points 2 and 3 follow from Lemma G.1 and Lemma G.2, respectively.

Finally, for point 4, we use that Sid = V̂ ⊺
idC

⊺
κΣ−1

κ1,id
to write

E[f⋆,id(xκ1)f⋆,id(xκ1)⊺] = SidE[xκ1x
⊺
κ1

]S⊺id
= Sid(Σκ1,id)S⊺id
= V̂ ⊺

idC
⊺
κΣ−1

κ1,idΣκ1,idΣ−1
κ1,idCκV̂id

= V̂ ⊺
idC

⊺
κΣ−1

κ1,idCκV̂id.

Hence,

λmin(SidE[xκ1
x⊺κ1

]S⊺id) ≥ σmin(V̂ ⊺
idC

⊺
κΣ

−1/2
κ1,id

)2

≥ 4

9
σmin(C⊺κΣ

−1/2
κ1,id

)2 (Claim G.3)

≥ 4

9
⋅ 5σdx(Cκ)2(1 − γ⋆)

11Ψ2
⋆α

2
⋆

(Lemma G.1)

≥ σdx(Cκ)
2(1 − γ⋆)

10Ψ2
⋆α

2
⋆

,

as needed.

G.3.2 Estimation of Aid, Bid, and Σw,id

We first show that Phase II recovers the system matrices and system noise covariance.

Proposition G.3. Define

(Âid, B̂id) ∈ arg min
(A,B)

1

nid

nid

∑
i=2nid+1

∥f̂id(y(i)
κ1+1) −Af̂id(y(i)

κ1
) −Bu(i)

κ1
∥2,

Σ̂w,id = 1

nid

nid

∑
i=2nid+1

(f̂id(y(i)
κ1+1) − Âidf̂id(y(i)

κ1
) − B̂idu(i)

κ1
)⊗2.

Further, define the matrices Aid ∶= SidAS
−1
id , Bid ∶= SidB, and Σw,id ∶= SidΣwS

⊺
id. Suppose εid,h

satisfies Eq. (G.14) (which is the preqrequisite of Eid,pca of Proposition G.2), and n ≥ c0(dx+ln(1/δ))
for some universal constant c0. Then on Eid,pca ∩ Eid,h, the following event, designated Eid,ls, holds
with probability 1 − 7δ:

∥[Âid; B̂id] − [Aid;Bid]∥op ≲
Ψ

7/2
⋆ α3

⋆
σmin(Cκ)2(1 − γ⋆)3/2 εid,h,

∥Σ̂w,id −Σw,id∥op ≲
Ψ

5/2
⋆ α4

⋆
σmin(Cκ)(1 − γ⋆)

εid,h.

Proof. We cast the regressions above as an instance of error-in-variable regression, then apply our
general guarantees for this problem (Propositions E.3 and E.4). We restate the guarantees here:

Proposition E.3 (Linear regression with errors in variables). Let (u,y,w,e,δ) be a collection of
random variables defined over a shared probability space, and let {(u(i),y(i)w(i),e(i),δ(i))}n

i=1
be

i.i.d. copies. Suppose the following conditions hold:

1. y =M⋆u +w + e with probability 1, where M⋆ ∈ Rdy×du .

2. w ∣ u,δ ∼ N(0,Σw) and u ∼ N(0,Σu).

3. We have E∥e∥2 ≤ ε2
e and E∥δ∥2 ≤ ε2

δ .

4. e is ce-concentrated and δ is cδ-concentrated for ce ≥ ε2
e and cδ ≥ ε2

δ .
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5. ε2
δ ≤

1
16
λmin(Σu).

Let δ ≤ 1/e, and let n ∈ N satisfy

1. ψ(n, δ) ≤ min{ ε
2
e

ce

ε2δ
cδ

}, where ψ(n, δ) ∶= 2 ln(2n/δ) ln(2/δ)
n

.

2. n ≥ c1(du + ln(1/δ)), for some universal constant c1 > 0.

Then the solution to the least squares problem

M̂ = min
M

n

∑
i=1

∥M(u(i) + δ(i)) − y(i)∥2,

satisfies the following inequality with probability at least 1 − 4δ:

∥M̂ −M⋆∥2
op ≲ λmin(Σu)−1 (∥M⋆∥2

opε
2
δ + ε2

e +
∥Σw∥op(dy + du + ln(1/δ))

n
) . (E.2)

Proposition E.4. Consider the setting of Proposition E.3, and suppose we additionally require that
n ≥ c0(dy + ln(1/δ)) for some (possibly inflated) universal constant c0. Furthermore, suppose we
have ε2

δ∥M⋆∥2
op + ε2

e ≤ 2λ+ for some λ+ ≥ λmax(Σw). Then, with probability at least 1 − 7δ, (E.2)
holds, and moreover

∥ 1

n

n

∑
i=1

(M̂(u(i) + δ(i)) − y(i))⊗2 −Σw∥
op

≲
√
λ+(ε2

δ∥M⋆∥2
op + ε2

e) +
λ2
+(dy + ln(1/δ))

n
.

To distinguish between our present notation and the notation of these propositions, we mark the terms
to which we apply the proposition with a tilde. Define

ỹ ∶= f̂id(y(i)
κ1+1),

ẽ ∶= errf,id(y(i)
κ1+1) = (f⋆,id − f̂id)(y(i)

κ1+1),

δ̃ ∶= [−errf,id(yκ1)⊺; 0⊺du]
⊺,

ũ ∶= [f⋆,id(yκ1)⊺;u⊺κ1
]⊺,

w̃ ∶= −Sidwκ1 ,

dỹ ∶= dx,

dũ ∶= dx + du,

M̃ ∶= [Aid;Bid].
To proceed, we verify that this correspondence satisfies the conditions of the propositions above.

Claim G.4. It holds that M̃ ũ = ỹ + ẽ + w̃ and

[Âid; B̂id] ∈ arg min
M

n

∑
i=1

∥ỹ(i) −M(ũ(i) + δ̃
(i)

)∥2.

Proof. Observe that we have the dynamics

Axκ1 +Buκ1 = xκ1+1 −wκ1

and

Af⋆(yκ1) +Buκ1 = f⋆(yκ1+1) −wκ1 .

Thus, recalling that f⋆,id(y) = Sidf⋆(y), we have

SidAS
−1
id f⋆,id(yκ1) + SidBuκ1 = f⋆,id(yκ1+1) − Sidwκ1 .

In our new notation, this implies that

[Aid;Bid]ũ = f⋆,id(yκ1+1) + w̃.

Finally, writing f⋆,id(yκ1) = ỹ + ẽ yields the first part of the claim. The second part follows from
similar manipulations.

72



Next, we check the Gaussianity and covariance properties of ũ, w̃.

Claim G.5. The following properties hold:

• w̃, ũ, and δ̃ are mutually independent.

• w̃ ∼ N(0,Σw,id), where λmax(Σw,id) ≤ 1.

• ũ ∼ N(0,Σũ), where λmin(Σũ) ≥ σdx(Cκ)2(1−γ⋆)
10Ψ2

⋆
α2
⋆

.

Proof of Claim G.5. The first point of the claim follows because w̃ is determined by wκ1 and ũ and
δ̃ are determined by yκ1 and uκ1 , respectively.

For the second claim, we have that w̃ = −Sidw. Since E[ww⊺] = Σw, E[w̃w̃⊺] = SidΣwS
⊺
id.

Recalling that Sid = V̂ ⊺
idC

⊺
κΣ−1

κ1,id
for some orthonormal V̂id, we find that

λmax(SidΣwS
⊺
id) ≤ λmax(C⊺κΣ−1

κ1,idΣwΣ−1
κ1,idCκ)

= σ2
max(C⊺κΣ−1

κ1,idΣ1/2
w ) ≤ (σmax(C⊺κΣ

−1/2
κ1,id

)σmax(Σ−1/2
κ1,id

Σ1/2
w ))

2
.

Since Σκ1,id ⪰ Σw and since Σκ1,id ⪰ CκC⊺κ, we have that σmax(C⊺κΣ
−1/2
κ1,id

), σmax(Σ−1/2
κ1,id

Σ
1/2
w ) ≤ 1,

and we conclude that λmax(SidΣwS
⊺
id) ≤ 1 as needed.

For the second-to-last claim, we have

ũ = [f⋆,id(yκ1)
uκ1

] = [Sidxκ1

uκ1

] .

Since xκ1 ⊥ uκ1 , we have that

E[ũũ⊺] = [SidE[xκ1x
⊺
κ1

]S⊺id 0
0 I

] ⪰
⎡⎢⎢⎢⎣
I ⋅ σdx(Cκ)2(1−γ⋆)

10Ψ2
⋆
α2
⋆

0

0 I

⎤⎥⎥⎥⎦
,

where the last inequality uses part 4 of Lemma G.4. One can verify that the lower bound on the upper
left block is less than 1. Thus,

λmin(E[ũũ⊺]) ≥ σdx(Cκ)
2(1 − γ⋆)

10Ψ2
⋆α

2
⋆

.

Lastly, we check the relevant concentration properties for the errors ẽ and δ̃.

Claim G.6. The following bounds hold:

• δ̃ and ẽ are both cls ∶= 4cconc,id-concentrated, and satisfy E∥δ̃∥2 ∨E∥ẽ∥2 ≤ 2ε2
id,h =∶ ε2

ls.

• For n ≥ nid, we have that εls/cls ≥ ψ(n, δ) = 2 ln(2n/δ) ln(2/δ)
n

.

• ∥M̃∥op ≤ 4Ψ
5/2
⋆
α2
⋆

σmin(Cκ)(1−γ⋆) , and thus

(1 + ∥M̃∥2
op)ε2

ls ≤
65Ψ5

⋆α
4
⋆

σmin(Cκ)2(1 − γ⋆)2
ε2

ls ≤
130Ψ5

⋆α
4
⋆

σmin(Cκ)2(1 − γ⋆)2
ε2

id,h.

• For εid,h satisfying Eq. (G.14), we have ε2
ls ≤

1
16
λmin(Σũ) and thus (1+∥M̃∥2

op)ε2
ls ≤ λ+ =∶

1
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Proof. The first claims follows from Lemma G.4.

The second claim uses that, examining the definition of εid,h in Proposition G.1, we have εid,h ≤
4ψ(nid, δ)/cconc,id, implying εls/cls ≥ ψ(nid, δ). Lastly use that n ≥ nid and that n ↦ ψ(n, δ) is
decreasing.

For the third point,

∥M̃∥op = ∥[Aid;Bid]∥op = ∥[SidAS
−1
id ;SidB]∥op ≤ 2(1 ∨ σ−1

min(Sid))(∥SidA∥op ∨ ∥SidB∥op).

Recalling Sid = V̂ ⊺
idC

⊺
κΣ−1

κ1,id
, we use that ∥V̂id∥op ≤ 1 and Σκ1,id ⪰ C⊺κ to bound

∥SidA∥op ∨ ∥SidB∥op ≤ ∥Σ
−1/2
κ1,id

A∥
op
∨ ∥Σ

−1/2
κ1,id

B∥
op
.

Since Σκ1,id ⪰ AΣwA
⊺ ⪰ AA⊺/λmin(Σw) ⪰ AA⊺Ψ−1

⋆ and Σκ1,id ⪰ BB⊺, we conclude that
∥SidA∥op ∨ ∥SidB∥op ≤ Ψ

1/2
⋆ . Lastly, using σmin(Sid) ≥ σmin,id = σmin(Cκ)(1−γ⋆)

4Ψ2
⋆
α2
⋆

from Proposi-
tion G.2, we conclude that

∥M̃∥op ≤
√

Ψ⋆
8Ψ2

⋆α
2
⋆

σmin(Cκ)(1 − γ⋆)
= 8Ψ

5/2
⋆ α2

⋆
σmin(Cκ)(1 − γ⋆)

,

as needed. The following inequality follows directly:

(∥M̃∥2
op + 1)ε2

ls ≤
65Ψ5

⋆α
4
⋆

σmin(Cκ)2(1 − γ⋆)2
ε2

ls ≤
130Ψ5

⋆α
4
⋆

σmin(Cκ)2(1 − γ⋆)2
ε2

id,h. (G.17)

For the fourth point, we examine the condition in Eq. (G.14),
√
dxcconc,idεid,h ≤ (1−γ⋆)σdx(Cκ)2

71α2
⋆
Ψ2
⋆

,
which is equivalent to

ε2
id,h ≤

(1 − γ⋆)2σdx(Cκ)2

dxcconc,id712α2
⋆Ψ2

⋆
⋅ (σdx(Cκ)2/α2

⋆Ψ2
⋆).

Using the definition of cconc,id = 12Ψ3
⋆α

2
⋆L

2/(1 − γ⋆) and that dx, L ≥ 1, this further implies that

ε2
id,h ≤

(1 − γ⋆)2σdx(Cκ)2

12 ⋅ 712α2
⋆Ψ2

⋆
⋅ (σdx(Cκ)2/α2

⋆Ψ2
⋆) ⋅

(1 − γ⋆)
Ψ3
⋆α

2
⋆
.

One can verify that (σdx(Cκ)2/α2
⋆Ψ2

⋆) ≤ 1 using the same arguments as in Lemma G.1. Thus, under
the above condition,

ε2
id,h ≤

(1 − γ⋆)2σdx(Cκ)2

12 ⋅ 712α2
⋆Ψ2

⋆
⋅ (1 − γ⋆)

Ψ3
⋆α

2
⋆
.

Recalling λmin(Σũ) ≥ σdx(Cκ)2(1−γ⋆)
10Ψ2

⋆
α2
⋆

from Claim G.5, we can directly verify that this implies

ε2
ls = 2ε2

id,h ≤
1
16
λmin(Σũ). Similarly, using the bound in Eq. (G.17) we can check that (∥M̃∥2

op +
1)ε2

ls ≤ λ+ ∶= 1.

To summarize, the claims above verify that, for εid,h satisfying Eq. (G.14), and nid ≥ c0(dũ + dỹ +
ln(1/δ)), the conditions for Propositions E.3 and E.4 hold. It follows that with probability at least
1 − 7δ,

∥[Âid; B̂id] − [Aid;Bid]∥2
op ≲ λmin(Σũ)−1 ((1 + ∥M̃∥2

op)ε2
ls +

∥Σw,id∥op(dỹ + dũ + ln(1/δ))
nid

) ,

and

∥Σ̂w,id −Σw,id∥op ≲
√
λ+(1 + ∥M̃∥2

op)ε2
ls +

λ2
+(dy + ln(1/δ))

nid
.

Finally, to conclude, we note that dỹ + dũ = 2dx + du, so that (also recalling du ≤ dx) it suffices
to ensure εid,h satisfying Eq. (G.14), and nid ≥ c0(dx + ln(1/δ)) for a larger universal constant c0.
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Moreover, we can check that (dx + ln(1/δ))/nid ≲ ε2
id,h, which together with the bound ∥Σw,id∥op ≤

λ+ = 1 means that the dominant terms above are the terms (1 + ∥M̃∥2
op)ε2

ls ≲
Ψ5
⋆
α4
⋆

σmin(Cκ)2(1−γ⋆)2 ε
2
id,h.

Thus, recalling λmin(Σũ) ≳ σdx(Cκ)2(1−γ⋆)
Ψ2
⋆
α2
⋆

from Claim G.5, we find

∥[Âid; B̂id] − M̃∥op ≲

¿
ÁÁÀ Ψ2

⋆α
2
⋆

σdx(Cκ)2(1 − γ⋆)
⋅ Ψ5

⋆α
4
⋆

σmin(Cκ)2(1 − γ⋆)2
ε2

id,h

≤ Ψ
7/2
⋆ α3

⋆
σmin(Cκ)2(1 − γ⋆)3/2 εid,h.

and

∥Σ̂w,id −Σw,id∥op ≲
Ψ

5/2
⋆ α4

⋆
σmin(Cκ)(1 − γ⋆)

εid,h.

G.3.3 Recovering the Cost Matrix Qid

We now show that Phase II successfully recovers the system cost matrixQ up to a similarity transform.

Proposition G.4 (Guarantee for Recovery of Qid). Recall the estimator

Q̂id = (1

2
Q̃id +

1

2
Q̃⊺

id)
+
,

Q̃id = min
Q

3nid

∑
i=2nid+1

(c(i)
κ1

− (u(i)
κ1

)⊺Ru(i)
κ1

− f̂id(y(i)
κ1

)⊺Qf̂id(y(i)
κ1

))
2
.

Suppose that the following conditions hold for a sufficiently large numerical constant c0:

nid ≥ c0(d2
x + ln(1/δ)), and εid,h

√
ln(2nid/δ) ≤

σdx(Cκ)2(1 − γ⋆)
8 ⋅ 10cconc,idΨ2

⋆α
2
⋆dx

.

Then with probability at least 1 − 2δ, we have

∥Q̂id −Qid∥op ≲
α6
⋆Ψ7

⋆
√
cconc,iddx ln(nid/δ)

(1 − γ⋆)3σmin(Cκ)4
⋅ εid,h.

Proof. We first rewrite the regression as a special case of Proposition E.5, which offers a generic
guarantee for matrix regression with rank-one measurements. Observe that we have

cκ1 − u⊺κ1
Ruκ1 = (f⋆(yκ1)⊺Qf⋆(yκ1) + u⊺κ1

Ruκ1
) − u⊺κ1

Ruκ1

= f⋆(yκ1)⊺Qf⋆(yκ1)
= f⋆,id(yκ1)⊺S−⊺id QS

−1
id f⋆,id(yκ1)

= f⋆,id(yκ1)⊺Qidf⋆,id(yκ1).

Thus, the above regression is equivalent to solving

Q̃id = min
Q

3nid

∑
i=2nid+1

(f⋆,id(y(i)
κ1

)⊺Qidf⋆,id(y(i)
κ1

) − f̂id(y(i)
κ1

)⊺Qf̂id(y(i)
κ1

))
2
.

We now recall the statement of Proposition E.5.

Proposition E.5 (Regression with matrix measurements). Let y ∈ Y be a random variable, and
let y(i) i.i.d.∼ y for 1 ≤ i ≤ n. Fix two regression functions ĝ, g⋆ ∶ Y → Rd, and suppose that
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z ∶= max{∥ĝ(y)∥2, ∥g⋆(y)∥2} is c-concentrated, and that x ∶= g⋆(y) ∼ N(0,Σx). Let Q⋆ ⪰ 0 be a
fixed matrix, and consider the regression.

Q̃ ∈ arg min
M

n

∑
i=1

(g⋆(y(i))⊺Q⋆g⋆(y(i)) − ĝ(y(i))⊺Mĝ(y(i))⊺)
2
.

Set Q̂ ∶= ( 1
2
Q̃⊺ + 1

2
Q̃)+, where (⋅)+ truncates all negative eigenvalues to zero. Then, there is a

universal constant c0 > 0 such that if the following conditions hold:

E∥ĝ(y) − g⋆(y)∥2 ≤ ε2, ψ(n, δ/2) ≤ ε
2

4c
, n ≥ c0(d2 + ln(1/δ)), and ε2 ≤ λmin(Σx)2

64c ln(2n/δ)
,

then with probability at least 1 − 2δ,

∥Q̂ −Q⋆∥2
F ≤ ∥Q̃ −Q⋆∥2

F ≤ 64cε2 ln(4n/δ) ⋅
∥Q⋆∥2

op

λmin(Σx)2
.

To apply the proposition, we make the following substitutions:

Q⋆ ← Qid, Q̂← Q̂id, g⋆ ← f⋆,id, ĝ ← f̂id, Σx ← E[f⋆,id(yκ1)f⋆,id(yκ1)⊺], n← nid.

We now verify that the conditions for the proposition are satisfied.

1. From Lemma G.4, max{∥f̂id(yκ1)∥2, ∥f⋆,id(yκ1)∥2} is dxcconc,id-concentrated, and
E∥f̂id(yκ1) − f⋆,id(yκ1)∥2 ≤ ε2

id,h.

2. We have that ψ(nid, δ/2) ≤
ε2id,h

dxcconc,id
by examining the definition of εid,h in Proposition G.1.

3. We have that f⋆,id(yκ1) = Sidxκ1 is zero-mean Gaussian, with

E[f⋆,id(yκ1)f⋆,id(yκ1)⊺] ⪰ I ⋅
σdx(Cκ)2(1 − γ⋆)

10Ψ2
⋆α

2
⋆

by Lemma G.4. Hence, the conditions

εid,h

√
ln(2nid/δ) ≤

σdx(Cκ)2(1 − γ⋆)
8 ⋅ 10cconc,idΨ2

⋆α
2
⋆dx

, and nid ≥ c0(d2
x + ln(1/δ)),

suffice to satisfy the third condition of the proposition.

We conclude that when the conditions above hold, with probability at least 1 − 2δ,

∥Q̂id −Qid∥op ≤ ∥Q̂id −Qid∥F

≲
α2
⋆Ψ2

⋆
√
cconc,iddx ln(nid/δ)εid,h

(1 − γ⋆)σmin(Cκ)2
∥Qid∥op.

Finally, we bound

∥Qid∥op = ∥S−1
id QidS

−1
id ∥op ≤ ∥Qid∥opσ

−2
min(Sid)

= Ψ⋆σ
−2
min(Sid)

≤ Ψ⋆ (
σmin(Cκ)(1 − γ⋆)

4Ψ2
⋆α

2
⋆

)
−2

≲ Ψ5
⋆α

4
⋆

σmin(Cκ)2(1 − γ⋆)2
.

Thus, altogether,

∥Q̂id −Qid∥op ≤ ∥Q̂id −Qid∥F

≲
α6
⋆Ψ7

⋆
√
cconc,iddx ln(nid/δ)

(1 − γ⋆)3σmin(Cκ)4
εid,h.
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G.3.4 Concluding the Proof of Theorem 3a

In total, by combining Propositions G.3 and G.4 and conditioning on the probability 1 − 4δ event
from Propositions G.1 and G.2, we have that as long as (for some universal c0),

εid,h

√
ln(2nid/δ) ≤

σdx(Cκ)2(1 − γ⋆)
8 ⋅ 10cconc,idΨ2

⋆α
2
⋆dx

,

εid,h satisifies Eq. (G.14),

and nid ≥ c0(d2
x + ln(1/δ)),

then with total failure probability at most 1 − 9δ − 4δ,

∥Q̂id −Qid∥op ≲
α6
⋆Ψ7

⋆
√
cconc,iddx ln(nid/δ)

(1 − γ⋆)3σmin(Cκ)4
εid,h,

∥[Âid; B̂id] − [Aid;Bid]∥op ≲
Ψ

7/2
⋆ α3

⋆
σmin(Cκ)2(1 − γ⋆)3/2 εid,h,

∥Σ̂w,id −Σw,id∥op ≲
Ψ

5/2
⋆ α4

⋆
σmin(Cκ)(1 − γ⋆)

εid,h.

To simplify the conditions slightly, we observe that since εid,h ≥ c̄id,1 d
2
x

nid
for some universal constant

c̄id,1 ≥ 4, by inflating this constant, we can ensure that nid ≥ c0(d2
x+ ln(1/δ)). Next let us consolidate

the conditions

εid,h

√
ln(2nid/δ) ≤

σdx(Cκ)2(1 − γ⋆)
8 ⋅ 10cconc,idΨ2

⋆α
2
⋆dx

, and εid,h satisifies Eq. (G.14).

Restating Eq. (G.14), we require that

εid,h

√
dxcconc,id ≤ (1 − γ⋆)σdx(Cκ)2

71α2
⋆Ψ2

⋆
.

Since cconc,iddx ≥ 1, it suffices to take

εid,h

√
ln(2nid/δ) ≤

σdx(Cκ)2(1 − γ⋆)
80cconc,idΨ2

⋆α
2
⋆dx

.

Recalling that cconc,id = 12L2Ψ3
⋆
α2
⋆

1−γ⋆ , the final condition,

εid,h

√
ln(2nid/δ) ≤

σdx(Cκ)2(1 − γ⋆)2

80 ⋅ 12L2Ψ5
⋆α

4
⋆dx

.

H Proofs for RichID Phase III

Section organization. This section is dedicated to the proof of Theorem 4, which is the main result
concerning Phase III of RichID-CE (cf. Section 2.3). We state a number of intermediate results,
leading up to the proof of theorem. In Appendix H.2, we present a performance bound for the state
decoders (f̂t)t≥1 as a function of the decoding error of the initial state decoderf̂1. Appendix H.3 is
dedicated to the perfomance of f̂1, as this requires extra steps to the decode the initial state x0. In
Appendix H.4, we combine these results to prove Theorem 4. Finally, Appendix I contains the proofs
of all the intermediate results.

We recall that the definition of the decoders (f̂τ) requires a clipping step (see (14)). Performing this
step allows us to use standard concentration tools to bound the decoding error for the predictors that
come out of the regression problems solved in Phase III (see Lemma H.3). The impact of clipping on
the prediction error is low: In Theorem 9 we show that the probability of ever clipping is very small,
so long as the clipping parameter b̄ is chosen appropriately.
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H.1 Preliminaries

Before proceeding to the main results, we first provide additional notation and definitions, as well as
some basic lemmas which will be used in subsequent proofs.

Additional notation. For t ≥ 0 and a policy π∶ ⋃∞τ=1Yτ → Rdu , where π(y0∶t) maps past and
current observations y0∶t to the current action ut, we let Pπ and Eπ be the probability and expectation
with respect to the system’s dynamics and policy π. We will use E to denote events which hold over
the randomness in the learning procedure, and E to denote events which hold under a given rollout
from, say, Eπ .

Throughout this section we let π̂ denote the policy returned by Algorithm 5.

Basic definitions for Phase III. To simplify presentation, we assume going forward that Sid =
Idx at the cost of increasing problem-dependent parameters such as Ψ⋆ and α⋆ by a factor of
∥Sid∥op ∨ ∥S−1

id ∥op—we make this reasoning precise in the proof of Theorem 1a. We therefore drop
the subscript id, so that the system parameters we take as a given are (Â, B̂, Q̂, Σ̂w). We will consider
the following function class

Hop ∶= {M ⋅ f(⋅) ∣ f ∈ F , M ∈ Rdx×dx , ∥M∥op ≤ Ψ3
⋆} , (H.1)

that is, we take rop = Ψ3
⋆ (note that the final value for rop when Algorithm 5 is invoked within

Algorithm 1 will be inflated to account for the similarity transformation above).

In what follows, we will construct a sequence of functions (f̂t∶ Yt+1 → Rdx) which map observations
(y0∶t) to estimates of the true states (xt = f⋆(yt)). We will denote by π̂ the randomized policy
defined by π̂(y0∶t) ∶= K̂f̂t(y0∶t) + νt, for all t ≥ 0, where νt ∼ N(0, σ2Idu) for some σ ∈ (0,1] to
be determined later. Furthermore, for t ≥ 0, we define the policy π̃t which satisfies

π̃t(y0∶τ) = { π̂(y0∶τ), if τ ≤ t;
ντ ∼ N(0, σ2Idu), otherwise. (H.2)

Additional problem parameters. Our final results for this section are stated inO⋆(⋅), but we state
many of our intermediate results with precise dependence on the problem parameters. To simplify
these statements, we use the following definitions.
Definition 7 (Aggregated problem parameters).

ΨΣ ∶= α2
A∥Σ0∥op + ∥Σ∞,id∥op + 1, (H.3)

devx ∶=
3α2

A

1 − γA
⋅Ψ2

⋆∥K̂∥2
op, (H.4)

ΨM ∶= max{1, εsys, ∥M∥op,max
k∈κ

∥Mk∥op} ,

Lop ∶= Ψ3
⋆L. (H.5)

We simplify our intermediate results to get the final O⋆(⋅)-based bound for Theorem 4 in Ap-
pendix H.4.

H.1.1 Approximation Error for Plug-In Estimators.

Recall that Phase III uses the estimates for Â, B̂, and so forth from Phase II to form plug-in estimates
for a number of important system parameters. Before proceeding, we give some guarantees on the
error of these estimates as a function of the error from Phase II.

For k ∈ [κ], recall that we define the matrices Mk ∈ Rkdu×dx andM ∈ R(κ+1)κ/2×κ by

Mk ∶= C⊺k(CkC
⊺
k + σ

−2Σw + ⋅ ⋅ ⋅ + σ−2Ak−1Σw(Ak−1)⊺)−1,

M ∶= [M⊺
1 , (M2A)⊺, . . . , (MκA

k−1)⊺]⊺ where Ck ∶= [Ak−1B ∣ . . . ∣ B] ∈ Rdx×kdu . (H.6)

We also let M̂k and M̂ be the plug-in estimators of Mk, andM respectively, obtained by replacing
A, B, and Σw in the definitions of Mk andM by the previously derived estimators Â, B̂, and Σ̂w,
respectively (see Section 2.2).
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For 0 < εsys ≤ 1 ∧ ∥Σw∥op ∧ ∥Σw∥−1
op, let Esys be the event

Esys ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
k∈[κ]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∥K̂ −K∞∥op, ∥M̂kÂ
k −MkA

k∥op,

∥M̂kÂ
kB̂ −MkA

kB∥op, ∥B̂K̂ −BK̂∥op,

∥Idx − Σ̂wΣ−1
w ∥op, ∥Σ̂−1

w −Σ−1
w ∥op,

∥Â −A∥op, ∥B̂ −B∥op, ∥M̂ −M∥op

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

≤ εsys

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⋂Estab, (H.7)

where

Estab ∶= {(A +BK̂) is (α∞, γ̄∞)-strongly stable with γ̄∞ ∶= (1 + γ∞)/2,
and Â is (αA, γ̄A)-strongly stable with γ̄A ∶= (1 + γA)/2.

} . (H.8)

Lemma H.1. Suppose that σ2 = O⋆(1) and

∥Â −A∥
op
∨ ∥B̂ −B∥

op
∨ ∥Q̂ −Q∥

op
∨ ∥Σ̂w −Σw∥op

≤ εid.

Then once εid ≤ csys ∶= poly(γ⋆(1 − γ⋆), α−1
⋆ ,Ψ

−1
⋆ ) = Ǒ(1), we have that Esys holds for

εsys ≤ O⋆(εid).

H.1.2 Conditioning for theMMatrix

Assumption 8 is central to the results in this section. In particular, we will use the following
implication of this assumption.
Lemma H.2. LetMσ2 denote the value of the matrixM in (H.6) for noise parameter σ2. Then
∥Mσ2∥op = O⋆(1) whenever σ2 = O⋆(1). Moreover, suppose Assumption 8 holds. Then there
exists σ̄ = Ǒ(λM), such that for all σ2 ≤ σ̄2, we have

λ
1/2
min(M

⊺
σ2Mσ2) ≥ λM ⋅ σ2/2 > 0, (H.9)

where λM is as in Assumption 8.

Throughout this section, we make the following assumption, which will eventually be justified by the
choice of σ in RichID-CE.
Assumption 10. σ ≤ 1 is sufficiently small such that Eq. (H.9) holds.

In particular, this assumption implies that the matrixM in (H.6) has full row rank.

H.2 Learning State Decoders for Rounds t ≥ 1

We now prove that Phase III successfully learns decoders for t ≥ 1 with high probability, up to an error
term determined by the auxiliary predictor f̂A,0 produced during the separate initial state learning
phase; the error of this predictor is handled in the next subsection. For the rest of this subsection,
we assume the iteration t ≥ 0 of Algorithm 5 is fixed, meaning we already have f̂t and our goal is to
compute f̂t+1. We introduce the following quantities.

• Let (yτ)τ≥0 be the observations induced by following the policy π̃t defined in (H.2).

• Let {(y(i)
τ ,x

(i)
τ ,ν

(i)
τ )}i∈[2n] be i.i.d. copies of (yτ ,xτ ,ντ), where (ντ) are the random

Gaussian vectors used by the policy π̃t. This is simply the data collected by the tth iteration
of the loop in Algorithm 5.

We also adopt the shorthand n = nop.

Learning the decoder at a single step. Let us recall some notation. For round t, we already have
a state decoder f̂t∶ Yt+1 → Rdx produced by the previous iteration. As the first step, for each k ∈ [κ],
with Hop as in (H.1), Algorithm 5 solves

ĥt,k ∈ arg min
h∈Hop

n

∑
i=1

∥M̂k (h(y(i)
t+k) − Â

kh(y(i)
t ) − Âk−1B̂K̂f̂t(y(i)

0∶t )) − ν
(i)
t∶t+k−1∥

2
. (H.10)
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Using the solutions of the above regressions for k ∈ [κ], the algorithm constructs the stacked vector

φ̂t(y0∶t+κ) ∶= [φ̂t,1(ĥt,1,y0∶t,yt+1)⊺, . . . , φ̂t,κ(ĥt,κ,y0∶t,yt+κ)⊺]⊺ ∈ R(1+κ)κ/2,

where
φ̂t,k(h,y0∶t,yt+k) ∶= M̂k (h(yt+k) − Âkh(yt) − Âk−1B̂K̂f̂t(y0∶t)) , k ∈ [κ]. (H.11)

Finally, the algorithm computes the intermediate estimator ĥt:

ĥt ∈ arg min
h∈Hop

2n

∑
i=n+1

∥M̂(h(y(i)
t+1) − Âh(y

(i)
t ) − B̂K̂f̂t(y(i)

0∶t )) − φ̂t(y(i)
0∶t+κ)∥

2
. (H.12)

Our first guarantee for this section shows that the function ĥt estimates the system’s noise wt up to a
linear transformation given by the matrixM.

Theorem 8. Let t ≥ 0 and b̄ > 0 be given. For h ∈ Hop and f̂t∶ Yt+1 → X , let

φt(h,y0∶t+1) ∶= M(h(yt+1) −Ah(yt) −BK̂f̂t(y0∶t)).

If the event Esys holds and ∥f̂t(y0∶t)∥ ≤ b̄ a.s., then for ĥt as in (H.12), with probability at least 1 − δ,

Eπ̂ [∥φt(ĥt,y0∶t+1) −M(wt +Bνt)∥
2
] ≤ ε2

noise(δ), (H.13)

where

ε2
noise(δ) ≲ κ(1 + ln(κ))(

cw,φ(ln ∣F ∣ + d2
x) ln2(nκ/δ)

n
+L2

opε
2
sys (dxΨΣ + devxb̄

2)) (H.14)

with

cw,φ ∶= 30κduσ
2 + 18α2

AL
2
opΨ2

M (32dxΨΣ + 3b̄2 ⋅ devx) . (H.15)

For the remainder of the subsection, we let δ ∈ (0, e−1] be fixed and define

Enoise ∶= {Eπ̂ [∥φτ(ĥτ ,y0∶τ+1) −M(wτ +Bντ)∥
2
] ≤ ε2

noise(δ), for all 0 ≤ τ ≤ t} . (H.16)

From noise estimate to state estimate. Now that we can estimate the noise at round t using ĥt, we
build a state decoder f̂t+1 for round t+1 by combining ĥt with the decoder f̂t. Recall that f̃0 ≡ f̂0 ≡ 0,
and that Algorithm 5 forms f̂t for all t ≥ 1 via

f̂t+1(⋅) ∶= f̃t+1(⋅)I{∥f̃t+1(⋅)∥ ≤ b̄}, where f̃t+1(y0∶t+1) ∶= ĥt(yt+1) + Âf̂t(y0∶t) − Âĥt(yt),
(H.17)

where b̄ > 0 is the clipping parameter. Note that we treat b̄ as a free parameter throughout this section
unless explicitly specified. The case t = 0 needs special care as it requires decoding the initial state;
we set

f̂1(⋅) ∶= f̃1(⋅)I{∥f̃1(⋅)∥ ≤ b̄}, where f̃1(y0∶1) ∶= ĥ1(y1) + f̂A,0(y0) − Âĥ0(y0), (H.18)

and f̂A,0(y0) is the estimator for Af⋆(y0) which we will construct in the next subsection.

Our goal now is to prove that the f̂t+1 is good whenever ĥ0, . . . , ĥt are good. To this end, we first
give a guarantee on the unprojected decoder f̃t+1, which shows that it has low prediction error for
trajectories in which the event

E0∶t ∶= {f̃τ(y0∶τ) = f̂τ(y0∶τ), for all 0 ≤ τ ≤ t} (H.19)

occurs.
Lemma H.3. Let t ≥ 0 be given. Let (f̃τ)τ∈[t+1] and E0∶t be defined as in (H.17), and (H.19),
respectively. If the events Esys and Enoise hold, then for εnoise as in (H.14), we have

Eπ̂ [max
0≤τ≤t

∥f̃τ+1(y0∶τ+1) − f⋆(yτ+1)∥2 ⋅ I{E0∶t}] ≤ ε2
dec,t, (H.20)

where

ε2
dec,t ∶= 3α2

A(1 − γA)−2 (ε2
sysb̄

2 + ε2
init + σmin(M)−2ε2

noiset) , and ε2
init ∶= Eπ̂[∥f̂A,0(y0) −Af⋆(y0)∥2].

(H.21)
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For the next theorem, we show that the even E0∶t occurs with overwhelming probability whenever the
clipping parameter b̄ is selected appropriately. We need the following definitions. For t ≥ 0 and η > 0,
let

zt ∶=
t

∑
τ=0

(A +BK̂)t−τ(Bντ +wτ)

denote the contribution of the process noise and Gaussian inputs to the state xt+1. The associated
covariance of this random variable when t→∞ is given by

Σz,∞ ∶=
∞
∑
τ=0

(A +BK̂)τ(σ2BB⊺ +Σw)((A +BK̂)τ)⊺. (H.22)

The sum in (H.22) converges under the event Esys, since in this case ∥(A +BK̂)t∥op ≤ α∞γ̄t∞, for
all t ≥ 0, and γ̄∞ < 1; see Eq. (H.8). Finally, we consider the following useful event:

E ′
0∶t ∶= {α2

∞∥x0∥2
2 + ∥zτ∥2 ≤ (du α

2
∞∥Σ0∥op + dx∥Σz,∞∥op) ln(2η), for all 0 ≤ τ ≤ t} .

Lastly, we define the following term which guides how we select the clipping in the definition of (f̂t)
in (H.17):

b̄∞ ∶=
6(1 − γ∞)−1α∞Ψ⋆εdec,t

√
η +

√
2(duα2

∞∥Σ0∥op + dx∥Σz,∞∥op) ln(2η)
1 − 2α∞εsys(1 − γ∞)−1

, (H.23)

where η > e is a free parameter.

We now show that if the clipping parameter b̄ in (H.17) is chosen sufficiently large, then under a given
execution of π̂, the clipping operator is never actived (i.e. E0∶t holds) with high enough probability,
provided that the clipping operator is not activated at t = 1.
Theorem 9. Let t ≥ 0, η > 0, and b̄ > 0 be given. Let εdec,t, Σz,∞, and b̄∞ be defined as in (H.21),
(H.22), and (H.23), respectively. If (I) the events Esys and Enoise hold; (II) εsys < (1 − γ∞)(2α∞)−1;
and (III) b̄ ≥ b̄∞, then

Pπ̂[E0∶t ∧ E ′
0∶t] ≥ Pπ̂[f̃1(y0∶1) = f̂1(y0∶1)] − 2(t + 1)/η.

Concluding the guarantee for the state decoders. We now put together the preceding results to
give the main guarantee for our state decoders (f̂t) for t ≥ 1.
Theorem 10. Let T ≥ 0, η > 0, and b̄ > 0 be given. Under the conditions (I), (II), and (III) of
Theorem 9, we have

Eπ̂ [max
0≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2] ≤ ε2
dec,t + (4T 1/2cx + 2b̄2) (4T

η
+ 1 − Pπ̂[{f̃0(y0) = f̂0(y0)} ∧ E ′

0]) ,

where cx ∶= 30dxΨΣ + 2b̄2 ⋅ devx.

H.3 Learning the Initial State

Theorem 10 ensures that the decoders f̂0, . . . , f̂T have low error only if the initial error ε2
init ∶=

Eπ̂[∥f̂A,0(y0) −Af⋆(y0)∥2] is small. In this subsection, we show that the extra initial state learning
procedure in Algorithm 5 ensures that this happens with high probability.

Recall that ninit ∈ N denotes the sample size used by Algorithm 5 for learning the initial state. During
the initial state learning phase (Line 19 through Line 25 of Algorithm 5), the algorithm gathers data
by following a policy we denote πol which plays random noise (ντ), where ντ ∼ N(0, σ2Idu), for
τ ≥ 0 and σ ∈ (0,1].

Let ĥol,0 ∶= ĥ0 (recall that the “ol” subscript refers to open loop), where we recall that ĥ0 is computed
on Line 17 of Algorithm 5 prior to the initial state learning phase, using the procedure analyzed
Appendix H.2. In particular, by instantiating the result of Theorem 8 with f̂0 ≡ 0, we get that under
the event Esys, for any δ ∈ (0,1/e], with probability at least 1 − δ,

Eπol
[∥ĥol,0(y1) −Aĥol,0(y0) −Bν0 −w0∥

2
] ≤ σmin(M)−2 ⋅ ε2

noise(δ). (H.24)
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We recall that the minimum singular value ofM is bounded away from zero for all sufficiently small
σ > 0 (see Lemma H.2). It follows from (H.24) that ĥol,0(y1) −Aĥol,0(y0) −Bν0 can be used as an
estimator for the noise vector w0. Using this estimator, we solve the following regression problem in
Line 21:

ĥol,1 ∈ arg min
h∈Hop

ninit

∑
i=1

∥h(y(i)
1 ) − (ĥol,0(y(i)

1 ) − Âĥol,0(y(i)
0 ) − B̂ν

(i)
0 )∥

2
, (H.25)

where {(y(i)
τ ,x

(i)
τ ,ν

(i)
τ )}1≤i≤ninit

, are the fresh i.i.d. trajectories generated by the policy πol on
Line 19.

We first show that up to a linear transformation, this regression recovers the vector Ax0 (our target),
plus a linear combination Bν0 +w0 of the system noise and injected noise for t = 0. This guarantee
is quite useful: Since we can already predict Bν0 +w0 well via Eq. (H.24), we will be able to extract
Ax0 from this representation.

Lemma H.4. Let ĥol,1 be defined as in (H.25), and let Σ1 ∶= σ2BB⊺ +AΣ0A
⊺ +Σw. If Esys holds,

then for any δ ∈ (0,1/e], with probability at least 1 − 5δ/2, we have

Eπol
[∥ĥol,1(y1) −ΣwΣ−1

1 (w0 +Bν0 +Ax0)∥2] ≤ ε2
ol,1, (H.26)

where we have

ε2
ol,1 ≲

c1(d2
x + ln ∣F ∣) ln2 ninit

δ

ninit
+ σmin(M)−2ε2

noise(δ) + ε2
sysL

2
op(1 + dx∥Σ0∥op + σ2du),

and

c1 ∶= L2
opΨ2

⋆(1 + duσ
2 + dx(∥Σ1∥op + ∥Σ0∥op)). (H.27)

To make use of this lemma, we must invert the linear transformation ΣwΣ−1
1 . In fact, the prediction

error guarantee from Lemma H.4 implies that we can estimate Σcov ∶= ΣwΣ−1
1 Σw (where Σ1 is as in

Lemma H.4) by computing

Σ̂cov ∶=
1

n

2ninit

∑
i=ninit+1

ĥol,1(y(i)
1 )ĥol,1(y(i)

1 )⊺, (H.28)

where {(y(i)
τ ,x

(i)
τ ,ν

(i)
τ )}ninit<i≤2ninit

, are fresh i.i.d. trajectories generated by the policy πol. To see
this, observe that by (H.26) implies that up to the error εol,1, (H.28) is an estimator for the covariance
matrix of the Gaussian vector ΣwΣ−1

1 (w0 +Bν0 +Ax0) which is just ΣwΣ−1
1 Σw. The following

lemma gives a guarantee for the estimated covariance Σ̂cov.
Lemma H.5. Let ccov ∶= L2

op(1 + (3dx + 2)∥σ2BB⊺ +AΣ0A
⊺ +Σw∥op) and

ε′cov ∶= 3εol,1
√
ccov + 5ccovln(2dxninit/δ)3/2n

−1/2
init . (H.29)

Suppose that ninit is large enough such that

ε′cov < σmin(Σcov)/2, where Σcov ∶= ΣwΣ−1
1 Σw ⪯ Σw, (H.30)

and Σ1 is as in Lemma H.4. Then under the event Esys, with probability at least 1 − (3κ + 4)δ,

∥Idx − Σ̂wΣ̂−1
covΣwΣ−1

1 ∥op ≤ εcov, ∥Σ̂cov∥op ≤ 2∥Σcov∥op, and σmin(Σ̂cov) ≥ σmin(Σcov)/2
(H.31)

where

εcov ∶= 2Ψ⋆(εsys +
2∥Σ−1

w ∥opε
′
cov

σmin(ΣwΣ−1
1 Σw)

). (H.32)

Lemma H.5 shows that Σ̂wΣ̂−1
cov ≈ (ΣwΣ−1

1 )−1, which is exactly what we require to invert the linear
transformation in Eq. (H.26). To finish up, we solve the regression problem (Line 23)

h̃ol,0 ∈ arg min
h∈Hop

2ninit

∑
i=ninit+1

∥h(y(i)
0 ) − ĥol,1(y(i)

1 )∥
2
. (H.33)
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Note that the argument to h in Eq. (H.33) is y0, while the argument to ĥol,1 is y1, so that the Bayes
predictor, by Eq. (B.6), is equal to h(y0) = ΣwΣ−1

1 Ax0. Motivated by this observation, the final step
is to set

f̂A,0(y0) = Σ̂wΣ̂−1
covh̃ol,0(y0).

Our main theorem for this subsection gives the desired prediction error guarantee for this predictor.

Theorem 11. Let h̃ol,0 be as in Eq. (H.33), and set f̂A,0(y0) ∶= Σ̂wΣ̂−1
covh̃ol,0(y0). If Esys holds and

Eq. (H.30) is satisfied, then for any δ ∈ (0,1/e], with probability at least 1 − (3κ + 9)δ, the following
properties hold:

1. The estimator f̂A,0 satisfies

Eπ̂ [∥f̂A,0(y0) −Af⋆(y0)∥
2
] ≲ ε2

init, (H.34)

where

ε2
init ∶= ∥Σ−1

w ∥2
op∥Σcov∥2

op (
c0(d2

x + ln ∣F ∣) ln(ninit

δ
)2

ninit
+ ε2

ol,1) + dxε
2
cov∥A∥2

op∥Σ0∥,

with εol,1 as in Lemma H.4, εcov as in Eq. (H.32), and c0 ∶= 32L2
opΨ3

⋆dx.

2. Let η > e be given, and let f̃1 and f̂1 be defined as in Line 28 of Algorithm 5. If

b̄2 ≥ b̄20 ln(2η), where b̄20 ∶= 104dxL
2
opΨ12

⋆ (1 + ∥Σ0∥op + ∥Σ1∥op). (H.35)

then we have

Pπ̂[f̃1(y0∶1) = f̂1(y0∶1)] ≥ 1 − η−1. (H.36)

H.4 Master Theorem for Phase III

By combining Theorems 10 and 11, we derive the proof of Theorem 4.

Proof of Theorem 4. Let η > e and σ2 ≤ 1 be fixed. Introduce the shorthand λ = λmin(M⊺M), and
recall from Lemma H.2 that λ = O⋆(1) whenever σ2 =≤ 1. Lastly, let us set ninit = nop.

Let us begin with some initial parameter choices. First, we set ninit = nop. Following Lemma H.1,
we assume that εid = Ǒ(1) is sufficiently small such that Esys holds and εsys ≤ 1−γ∞

8α∞
≤ O⋆(εid) =

O⋆(1). Next, following Lemma H.2, we assume that σ ≤ 1 is chosen such that σ = Ǒ(λM) and
λ = λmin(M⊺M) ≥ λ2

Mσ4/4.

Since σ2 = O⋆(1), we observe from (H.23) that

b̄2∞ ≤ O⋆(ε2
dec,T η + (du + dx) ln(η)),

and from (H.35) we have

b̄20 ln(2η) ≤ O⋆(dx ln(η)).

Let us assume for now that b̄2 = Ω⋆(dx + du); we will specify a precise choice at the end. Note that
choosing b̄ ≥ b̄∞ ∨ b̄0 ln(2η) is non-trivial, since our bound on b̄∞ depends on εdec,T , which itself
depends on b̄. Nonetheless, we will show that an appropriate choice of b̄ solves this recurrence.

Let δ ≤ 1/e be given. Define logs = (d2
x + ln∣F ∣) ln2(nop/δ) ∨ ln3(nop/δ). As a first step, we

simplify the various parameters defined in this section using the O⋆(⋅) notation. In particular, we
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have

cw,φ = O⋆(κdu + b̄2) = O⋆(κb̄2),

ε2
noise(δ) = O⋆(κ(

cw,φlogs

nop
+ εsys(dx + b̄2))) = O⋆(

κ2b̄2logs

nop
+ κb̄2ε2

sys),

cx = O⋆(dx + b̄2) = O⋆(b̄2),
c1 = O⋆(dx + du),

ε2
ol,1 = O⋆(

c1logs

nop
+ λ−1ε2

noise(δ) + ε2
sys(dx + du)) = O⋆(λ−1 ⋅ (κ

2b̄2logs

nop
+ κb̄2ε2

sys)),

ccov = O⋆(dx),

(ε′cov)2 = O⋆(ε2
ol,1dx +

d2
x ln(nop/δ)3

nop
) = O⋆(λ−1 ⋅ (κ

2dxb̄
2logs

nop
+ κdxε

2
sysb̄

2)),

ε2
cov = O⋆(ε2

sys + (ε′cov)2).

We now appeal to Theorem 11. Simplifying the upper bounds, we are guaranteed that with probability
at least 1 −O(κδ), we have

Pπ̂[f̃1(y0∶1) = f̂1(y0∶1)] ≥ 1 − η−1

and
Eπ̂ [∥f̂A,0(y0) −Af⋆(y0)∥

2
] ≲ ε2

init

where

ε2
init = O⋆(

dxlogs

nop
+ ε2

ol,1 + dxε
2
cov) = O⋆(λ−1 ⋅ (κ

2d2
xb̄

2logs

nop
+ κd2

xε
2
sysb̄

2)).

We now appeal to Theorem 8 and Theorem 10. By the union bound, and in light of Eq. (H.36), we
have that with probability at least 1 −O(κTδ),

Eπ̂[max
1≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2] ≤ O⋆(ε2
dec,T + (T 1/2cx + b̄2)T /η) (H.37)

where

ε2
dec,T = O⋆(ε2

init + λ−1Tε2
noise + ε2

sysb̄
2) = O⋆(λ−1T ⋅ (κ

2d2
xb̄

2logs

nop
+ κd2

xε
2
sysb̄

2)).

Hence, we can simplify to

Eπ̂[max
1≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2]

≤ O⋆(T 3/2b̄2η−1 + λ−1T ⋅ (κ
2d2

xb̄
2logs

nop
+ κd2

xε
2
sysb̄

2))

≤ O⋆(T 3/2b̄2η−1 + ε2
0 + λ−1Tκd2

xε
2
sysb̄

2), (H.38)

where ε2
0 ∶= λ−1T ⋅ κ

2d2xb̄
2logs

nop
.

It remains to choose η and ensure that the condition on b̄ is satisfied. We choose η = ε−2
0 . Since

ε2
dec,T ≤ O⋆(ε2

0 + λ−1Tκd2
xε

2
sysb̄

2), this implies

b̄20 ln(2η) ∨ b̄2∞ = Θ⋆(ε2
dec,T η + (du + dx) ln(η))

= O⋆(1 + ε−2
0 ⋅ λ−1Tκd2

xε
2
sysb̄

2 + (du + dx) ln(ε−2
0 )).

It follows that if ε2
sys ≤ Ǒ( ε20λ

κd2xb̄
2T

), we have

b̄20 ln(2η) ∨ b̄2∞ ≤ O⋆((du + dx) ln(ε−2
0 )) = O⋆((du + dx) ln(nop)).
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Hence, we can satisfy the constraint that b̄0 ∨ b̄∞ ≤ b̄ by choosing b̄ = Θ⋆((du + dx) ln(nop)).
Returning to the final error bound, we have

Eπ̂[max
1≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2]

≤ O⋆(b̄2T 3/2η−1 + ε2
0 + λ−1Tκd2

xε
2
sysb̄

2)

= O⋆(b̄2T 3/2ε2
0 + λ−1Tκd2

xε
2
sysb̄

2)

= O⋆(λ−1T 3κ2(dx + du)4 ln2(nop) ⋅ (
logs

nop
+ ε2

id)).

To simplify, we recall that (1) λ−1 ≤ 4λ−2
Mσ−4, and (2) logs = O⋆((d2

x + ln∣F ∣) ln3(nop/δ)). More-
over, our condition on εsys above implies that

ε2
sys ≤ Ǒ(logs/nop),

which means it suffices to take ε2
id = Ǒ(ε2

sys) = Ǒ(logs/nop) as well. Hence, for the final bound, we
can simplify to

O⋆(
λ−2
M
σ4

T 3κ2(dx + du)4 ⋅
(d2

x + ln∣F ∣) ln5(nop/δ)
nop

).

I Supporting Proofs for Appendix H

I.1 A Truncation Bound for the Iterates

Before proceeding with the main proofs in this section, we state a lemma which bounds the magnitudes
of the states under the event that f̂τ returns state estimates bounded by b̄. This bound is used by a
number of subsequent proofs.

Lemma I.1. Let b̄ > 0 and t ≥ 0. If ∥f̂τ(y0∶τ)∥ ≤ b̄ a.s. for all τ ≥ 0, then for all δ ∈ (0,1/e] and all
τ ≥ 0, we have that

Pπ̃t [∥xτ∥2 ≥ 30dxΨΣ + 2b̄2 ⋅ devx ln
2

δ
] ≤ δ, and (I.1)

Eπ̃t [∥xτ∥2] ≤ 3dxΨΣ + devxb̄
2. (I.2)

Moreover, both displays above also hold with π̃t replaced by π̂t.

Proof. Let τ ≥ 0 be fixed. By the system’s dynamics and the definition of π̃t (cf. Eq. (H.2)), we have

xτ = Aτx0 +
τ−1

∑
s=0

Aτ−s−1(BK̂f̂s(y0∶s)Is≤t +Bνs +ws). (I.3)

Thus, by Jensen’s inequality, and using strong stability of A,

∥xτ∥2 ≤ 3∥Aτx0∥2 + 3∥
τ−1

∑
s=0

Aτ−s−1(Bνs +ws)∥
2

+ 3
XXXXXXXXXXX

t∧(τ−1)

∑
s=0

Aτ−s−1BK̂f̂s(y0∶s)
XXXXXXXXXXX

2

,

≤ 3α2
A∥x0∥2 + 3 ∥ξτ∥

2 +
3α2

A

1 − γ2
A

⋅ ∥BK̂∥2
op ⋅ b̄2, (I.4)

where ξτ ∶= ∑
τ−1
s=0 A

τ−s−1(Bνs+ws) ∼ N(0,Σξ), with Σξ ⪯ Σ∞,id since σ ≤ 1 under Assumption 10
(cf. Eq. (G.2)). By Lemma I.11, the expression above implies that

Pπ̃t [∥xτ∥2 ≥ ((α2
A∥Σ0∥op + ∥Σ∞,id∥op)(9dx + 6) +

3α2
A

1 − γ2
A

⋅ ∥BK̂∥2
opb̄

2) ln(2/δ)] ≤ δ. (I.5)
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which we simplify to

Pπ̃t [∥xτ∥2 ≥ (2(α2
A∥Σ0∥op + ∥Σ∞,id∥op)(9dx + 6) +

3α2
A

1 − γ2
A

⋅ ∥BK̂∥2
opb̄

2) ln(1/δ)] ≤ δ.

Substituting in the definition of devx and ΨΣ (Eqs. (H.3) and (H.4)), with γ2
A ≤ 1 establishes (I.1).

We now show Eq. (I.2). by (I.4) and Lemma I.9, we have

Eπ̃t [∥xτ∥2] ≤ 2α2
AEπ̃t[∥x0∥2] + 3Eπ̃t[∥ξτ∥

2] +
3α2

A

1 − γ2
A

⋅ ∥BK̂∥2
opb̄

2,

≤ 3dx(∥Σ0∥op + ∥Σ∞,id∥op) +
3α2

A

1 − γ2
A

⋅ ∥BK̂∥2
opb̄

2. (I.6)

The second part of the lemma follows from (I.5) and (I.6) by the fact that π̃t and π̂ coincide up to
round t (inclusive).

I.2 Proof of Lemma H.1

Proof of Lemma H.1. The bounds on ∥Â −A∥op and ∥B̂ −B∥op immediately follow from the condi-
tions of the lemma. To show that Â is (αA, γ̄A)-strongly stable, we observe that if S is the matrix
that witnesses strong stability for A, we have

∥S−1ÂS∥op ≤ ∥S−1(Â −A)S∥op + ∥S−1AS∥op ≤ αAεid + γA.

Hence, once εid ≤ 1−γA
2αA

, we have ∥S−1ÂS∥op ≤ γ̄A.

Next, we appeal to Theorem 6, which implies that once εid ≤ c ⋅ α−4
∞ (1 − γ2

∞)2Ψ−11
⋆ for a sufficiently

small numerical constant c, we have

∥K̂ −K∞∥op ≤ O⋆(εid),

and A + BK̂ is (α∞, γ̄∞)-strongly stable for γ̄∞ = (1 + γ∞)/2. In particular, for εid sufficiently
small we have ∥K̂∥op ≤ 2∥K∞∥op, so that

∥B̂K̂ −BK̂∥op ≤ O⋆(εid).

Next, we observe that once εid ≤ Ψ−1
⋆ /2 ≤ λmin(Σw)/2, we have λmin(Σ̂w) ≥ λmin(Σw)/2, and so

we can apply Proposition I.1 to deduce that

∥Idx − Σ̂wΣ−1
w ∥op ∨ ∥Σ̂−1

w −Σ−1
w ∥op ≤ O⋆(εid).

Finally, we bound the errors for the terms involving M̂k and M̂. We first show that to do this, it
suffices to bound max1≤k≤κ∥M̂k −Mk∥op. First, as long as εid = O⋆(1), we have

∥M̂kÂ
kB̂ −MkA

kB∥op ≤ O⋆(∥M̂kÂ
k −MkA

k∥op + εid),

by triangle inequality. Next, we have

∥M̂kÂ
k −MkA

k∥op ≤ ∥Âk∥op∥M̂k −Mk∥op + ∥Mk∥op∥Âk −Ak∥op

≤ ∥Âk∥op∥M̂k −Mk∥op +O⋆(∥Âk −Ak∥op).

By Lemma I.2, once εid ≤ (1−γA)
2αA

, this is upper bounded by

O⋆(γ̄k−1
A k ⋅ (∥M̂k −Mk∥op + εid)).

Note that maxk≥1 γ̄
k−1
A k ≤ ∑∞

k=1 γ̄
k−1
A k ≤ 1/(1− γ̄A)2 = O⋆(1), so the bound bove further simplifies

to
O⋆(∥M̂k −Mk∥op + εid).
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Finally, by similar reasoning, we have

∥M̂ −M∥op ≤
κ

∑
k=1

∥M̂kÂ
k −MkA

k∥op

≤
κ

∑
k=1

O(γ̄k−1
A k(∥M̂k −Mk∥op + εid))

≤ O(max
1≤k≤κ

∥M̂k −Mk∥op + εid) ⋅
∞
∑
k=1

γ̄k−1
A k

≤ O⋆(max
1≤k≤κ

∥M̂k −Mk∥op + εid).

Finally, we appeal to Lemma I.3, which implies that max1≤k≤κ∥M̂k −Mk∥op = O⋆(εid).

I.2.1 Supporting Results

Proposition I.1. Let X,Y ∈ Rd×d be positive definite matrices with ∥X − Y ∥op ≤ ε. Then we have
∥I −XY −1∥op ≤ ∥Y −1∥ ⋅ ε and ∥X−1 − Y −1∥op ≤ ∥X−1∥op∥Y −1∥op ⋅ ε.

Proof of Proposition I.1. The result follows by the inequalities

∥X−1 − Y −1∥op ≤ ∥X−1∥op ⋅ ∥I −XY −1∥op,

and
∥I −XY −1∥ ≤ ∥Y −1∥op ⋅ ∥Y −X∥op.

Lemma I.2. Suppose ∥Â −A∥op ≤ (1−γA)
2αA

. Then for all k ≥ 1,

∥Âk −Ak∥op ≤ α2
Aγ̄

k−1
A k∥Â −A∥op,

where γ̄A = (1 + γA)/2. Furthermore, we have ∥Âk∥op ≤ 2αAγ̄
k−1
A k.

Proof of Lemma I.2. Using Lemma 5 of Mania et al. [24], we are guaranteed that11

∥Âk −Ak∥op ≤ α2
A(αA∥Â −A∥op + γA)

k−1
k∥Â −A∥op.

The condition in the lemma statement ensures that αA∥Â−A∥op + γA ≤ γ̄A, leading to the first result.
As a consequence, we also have

∥Âk∥op ≤ ∥Ak∥op + ∥Âk −Ak∥op

≤ αAγkA + α2
Aγ̄

k−1
A k∥Â −A∥op

≤ αAγkA + αA(1 − γ̄A)γ̄k−1
A k

≤ 2αAγ̄
k−1
A k.

Lemma I.3. If εid ≤ (1−γA)
2αA

∧ Ψ−1
⋆

2
and σ2 = O⋆(1), then for all 1 ≤ k ≤ κ, ∥M̂k −Mk∥op ≤ O⋆(εid).

Proof of Lemma I.3. Let k be fixed. Define

Σk =
k

∑
i=1

Ai−1Σw(A⊺)i−1, and Σ̂k =
k

∑
i=1

Âi−1Σ̂w(Â⊺)i−1,

so that we have

Mk = C⊺k(CkC
⊺
k + σ

−2Σk)−1, and M̂k = Ĉ⊺k(ĈkĈ
⊺
k + σ

−2Σ̂k)−1,

11In the notation of Mania et al. [24], we can take ρ ≤ γA and τ(A,γA) ≤ αA.
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where Ĉk ∶= [Âk−1B̂ ∣ ⋯ ∣ B̂].

As a starting point, we have by Lemma I.4 that ∥Ck − Ĉk∥op ≤ O⋆(εid) once εid ≤ (1−γA)
2αA

. As such
our task will mainly boil down to relating the error of M̂k to that of Ĉk. We will use going forward
that ∥Ck∥op ∨ ∥Ĉk∥op = O⋆(1).

For the first step, by the triangle inequality we have

∥M̂k −Mk∥op

≤ ∥Ck − Ĉk∥op∥(CkC⊺k + σ
−2Σk)−1∥

op
+ ∥Ĉk∥op∥(CkC⊺k + σ

−2Σk)−1 − (ĈkĈ⊺k + σ
−2Σ̂k)−1∥

op
.

Now, note that CkC⊺k + σ
−2Σk ⪰ σ−2Σw, so ∥(CkC⊺k + σ

−2Σk)−1∥op = O⋆(σ2). Similarly, as long
as εid ≤ Ψ−1

⋆ /2 ≤ λmin(Σw)/2, we have λmin(Σ̂w) ≥ λmin(Σw)/2 > 0, so we have ∥(ĈkĈ⊺k +
σ−2Σ̂k)−1∥op = O⋆(σ2). This leads allows us to simplify the bound above to

∥M̂k −Mk∥op ≤ O⋆(σ2εid) +O⋆(∥(CkC⊺k + σ
−2Σk)−1 − (ĈkĈ⊺k + σ

−2Σ̂k)−1∥
op

),

and moreover, by invoking Proposition I.1 with the aforementioned operator norm bounds for the
inverse matrices, we can further upper bound by

≤ O⋆(σ2εid) +O⋆(σ4∥(CkC⊺k + σ
−2Σk) − (ĈkĈ⊺k + σ

−2Σ̂k)∥op
)

≤ O⋆(σ2εid) +O⋆(σ4∥CkC⊺k − ĈkĈ
⊺
k∥op + σ2∥Σk − Σ̂k∥op),

≤ O⋆(εid + ∥Σk − Σ̂k∥op),

where the final step uses that σ2 = O⋆(1) to simplify. Finally, we bound

∥Σk − Σ̂k∥op ≤
k

∑
i=1

∥Ai−1 − Âi−1∥op∥Σw(A⊺)i−1∥op + ∥Âi−1∥op∥Σw − Σ̂w∥op∥(A⊺)i−1∥op

+ ∥Âi−1Σ̂w∥op∥Ai−1 − Âi−1∥op.

By Lemma I.2, once εid ≤ (1−γA)
2αA

, we have ∥Âi∥op ≤ O⋆(γ̄i−1
A i) and ∥Âi −Ai∥op = O⋆(γ̄i−1

A iεid).
We also have ∥Ai∥op = O⋆(γ̄i∞) and ∥Σw∥op ∨ ∥Σ̂w∥op = O⋆(1), so we can bound the sum above as

∥Σk − Σ̂k∥op ≤ O⋆(εid ⋅ (1 +
k

∑
i=2

γ̄
2(i−2)
A i2)) ≤ O⋆(εid ⋅ (1 +

∞
∑
i=2

γ̄
2(i−2)
A i2)) = O⋆(εid).

Lemma I.4. If εid ≤ (1−γA)
2αA

then for all 1 ≤ k ≤ κ, ∥Ĉk − Ck∥op ≤ O⋆(εid).

Proof of Lemma I.4. Let k be fixed. As a first step, we use the block structure to bound

∥Ĉk − Ck∥op ≤
k

∑
i=1

∥Âi−1B̂ −Ai−1B∥op

≤
k

∑
i=1

∥B̂∥op∥Âi−1 −Ai−1∥op + ∥Ai−1∥op∥B̂ −B∥op.

By Lemma I.2, once εid ≤ (1−γA)
2αA

, we have ∥Âi∥op ≤ O⋆(γ̄i−1
A i) and ∥Âi −Ai∥op = O⋆(γ̄i−1

A i ⋅ εid).
We further have ∥Ai∥op = O⋆(γ̄i∞) and ∥B∥op ∨ ∥B̂∥op = O⋆(1), since εid = O⋆(1). Plugging in
these bounds above and simplifying, we have

∥Ĉk − Ck∥op ≤ O⋆(εid(1 +
k

∑
i=2

γ̄i−2
A i)) ≤ O⋆(εid(1 +

∞
∑
i=2

γ̄i−2
A i)) = O⋆(εid).
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I.3 Proof of Lemma H.2

LetM be as in Eq. (20). For the first point, it is easy to see that ∥Mk∥ = O⋆(1) whenever σ2 = O⋆(1)
using strong stability. It follows that

∥Mσ2∥op ≤
κ

∑
k=1

∥Ak−1∥∥Mk∥ ≤ O⋆(
κ

∑
k=1

γk−1
A ) = O⋆(1).

To prove the second point, we first recall the following result.

Lemma I.5 ([31], Theorem 2.2). Let X,Y ∈ Rd×d. If X is non-singular and r ∶= ∥X−1Y ∥
op

< 1,

then X + Y is non-singular and ∥(X + Y )−1 −X−1∥
op

≤ ∥Y ∥op∥X−1∥2

op
/(1 − r).

Let k be fixed. We set X = ∑ki=1A
i−1Σw(Ai−1)⊺ and Y = σ2CkC⊺k . Since X ⪰ Σw ≻ 0, we have that

∥X−1∥op = O⋆(1) and ∥Y ∥op = O⋆(σ2). Moreover, ∥Ck∥op = O⋆(1). This implies that for any fixed
ε > 0, there exists σ̄ = Ǒ(ε) such that for all σ2 ≤ σ̄2,

ε ≥
XXXXXXXXXXXX
C⊺k (σ2CkC⊺k +

k

∑
i=1

Ai−1Σw(Ai−1)⊺)
−1

− C⊺k (
k

∑
i=1

Ai−1Σw(Ai−1)⊺)
−1XXXXXXXXXXXXop

,

=
XXXXXXXXXXXX
Mk/σ2 − C⊺k (

k

∑
i=1

Ai−1Σw(Ai−1)⊺)
−1XXXXXXXXXXXXop

. (I.7)

Define Mk = C⊺k (∑ki=1A
i−1Σw(Ai−1)⊺)

−1
. Then using the definitions ofM andM, we have that

∥M⊺
σ2Mσ2/σ4 −M⊺M∥op ≤ 2(∥Mσ2/σ2∥

op
∨ ∥M∥

op
) ⋅ ∥Mσ2/σ2 −M∥op

= O⋆(∥Mσ2/σ2 −M∥
op

)

and

∥Mσ2/σ2 −M∥
op

≤
κ

∑
k=1

∥Ak−1∥
op

∥Mk/σ2 −Mk∥op

≤ O⋆(max
1≤k≤κ

∥Mk/σ2 −Mk∥op
).

Together with (I.7), this implies that

∥M⊺
σ2Mσ2/σ4 −M⊺M∥op ≤ O⋆(ε), ∀σ2 ≤ σ̄2. (I.8)

Now, note that

∣λmin(M⊺
σ2Mσ2/σ4) − λmin(M

⊺M)∣ ≤ ∥M⊺
σ2Mσ2/σ4 −M⊺M∥op.

Combining this with (I.8) implies that, for all σ2 ≤ σ̄2,

∣λ1/2
min(M

⊺
σ2Mσ2)/σ2 − λM∣ ≤ O⋆(ε). (I.9)

Finally, by definition of the O⋆(⋅) notation, there exists ε = Ǒ(λM) such that the right-hand side of
Eq. (I.9) is at most λM/2, which yields the desired result.

I.4 Proof of Theorem 8

I.4.1 Regression Bound for φt,k

Let t ≥ 0 and k ∈ [κ] be fixed and introduce the shorthand

zt,k ∶= (y0∶t,yt+k). (I.10)
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Define the “true” φ-function

φt,k(h,zt,k) ∶=Mk (h(yt+k) −Akh(yt) −Ak−1BK̂f̂t(y0∶t)) , (I.11)
for h ∈ Hop, and its plug-in estimate analogue:

φ̂t,k(h,zt,k) ∶= M̂k (h(yt+k) − Âkh(yt) − Âk−1B̂K̂f̂t(y0∶t)) .
Finally, define their difference by

δt,k(h,zt,k) ∶= φ̂t,k(h,zt,k) − φt,k(h,zt,k).
Lemma I.6. For k ∈ [κ] define the error bound

ψt,k(zt,k)2 ∶= 6α2
AL

2
opΨ2

M (2 + ∥xt∥2
2 + ∥xt+k∥2

2 +Ψ2
⋆∥K̂∥2

opb̄
2) , (I.12)

which is well defined since xτ = f⋆(yτ) due to the decodability assumption. Further, introduce the
error constant

cw,φ ∶= 50kduσ
2 + 30α2

AL
2
opΨ2

M (62dxΨΣ + 5b̄2 ⋅ devx) . (I.13)

Then, recalling v ∶= [ν⊺t , . . . ,ν⊺t+k]
⊺, for all δ ∈ (0,1/e] and h ∈ Hop, the following results hold.

1. We have the bound
sup
h∈Hop

∥φt,k(h,zt,k)∥2 + sup
h∈Hop

∥δt,k(h,zt,k)∥2 ≤ ψt,k(zt,k)2. (I.14)

2. We have the bound
Lop(∥M̂k∥op + ∥M̂kÂ

k∥op)(2 + ∥f⋆(yt)∥2 + ∥f⋆(yt+k)∥2) ≲ ψt,k(zt,k). (I.15)

3. For all δ ∈ (0,1/e),

Pπ̃t [ψt,k(zt,k)2 + ∥δt,k(h,zt,k) − v∥2 ≥ 5

3
cw,φ ln(1/δ)] ≤ δ. (I.16)

4. We have

Eπ̃t[ sup
h∈Hop

∥δt,k(h,zt,k)∥2] ≤ 24L2
opε

2
sys (dxΨΣ + devxb̄

2) . (I.17)

Proof. For notational convenience, we will drop the subscripts t, k in the expressions of
φt,k, φ̂t,k, ψt,k, δt,k, and zt,k. Let h ∈ Hop be fixed throughout.

1. Proof of Eq. (I.14) By Jensen’s inequality and Cauchy-Schwarz, we have

∥φ(h,z)∥2 ≤ 3∥Mk∥2
op (∥h(yt+k)∥2 + α2

Aγ
2k
A ∥h(yt)∥2 + α2

Aγ
2k−2
A ∥BK̂∥2

opb̄
2) ,

(i)
≤ 3∥Mk∥2

op (L2
op ⋅ (1 + α2

A + ∥xt+k∥2 + α2
A∥xt∥2) + α2

A∥BK̂∥2
opb̄

2) ,
(ii)
≤ 3Ψ2

Mα
2
AL

2
op (2 + ∥xt+k∥2 + ∥xt∥2 +Ψ2

⋆∥K̂∥2
opb̄

2) , (I.18)

where inequality (i) follows by the definition of the function class Hop, and (ii) uses that
αA, Lop ≥ 1, ∥Mk∥op ≤ ΨM , and ∥B∥ ≤ Ψ⋆. Similarily, we also have

∥δ(h,z)∥2 ≤ 3L2
op∥M̂k −Mk∥2

op(1 + ∥xt+k∥2) + 3L2
op∥M̂kÂ

k −MkA
k∥2

op(1 + ∥xt∥2)
+ 3∥M̂kÂ

k−1B̂ −MkA
k−1B∥2

op∥K̂∥2
opb̄

2,

≤ 3L2
opε

2
sys(1 + ∥xt+k∥2) + 3L2

opε
2
sys(1 + ∥xt∥2) + 3ε2

sys∥K̂∥2
opb̄

2,

≤ 3L2
opε

2
sys (2 + ∥xt+k∥2 + ∥xt∥2 + ∥K̂∥2

opb̄
2) , (I.19)

where the second-to-last inequality follows since we have assumed that the event Esys holds,
and the last uses L2

op ≥ 1. Combining (I.18) and (I.19), with αA,Ψ⋆ ≥ 1 and ΨM ≥ εsys,

sup
h∈Hop

∥φ(h,z)∥2 + sup
h∈Hop

∥δ(h,z)∥2 ≤ 6α2
AL

2
opΨ2

M (2 + ∥xt∥2
2 + ∥xt+k∥2

2 +Ψ2
⋆∥K̂∥2

opb̄
2) =∶ ψ(z)2,

where we use the simplification αA ≥ 1, and the definitions of ΨM and Ψ⋆, followed by
Lop ≥ 1. This shows (I.14).
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2. Proof of Eq. (I.15) Using the bounds ∥M̂kÂ
k −MkA

k∥op, ∥M̂k −Mk∥op ≤ εsys ≤ 1, and
∥Mk∥op ≤ ΨM , ∥Ak∥op ≤ αA, we have

Lop(∥M̂k∥op + ∥M̂kÂ
k∥op)(2 + ∥f⋆(yt)∥2 + ∥f⋆(yt+k)∥2)

= Lop(∥M̂k∥op + ∥M̂kÂ
k∥op)(2 + ∥xt∥2 + ∥xt+k∥2)

= Lop(2εsys + ∥Mk∥op + ∥MkA
k∥op)(2 + ∥xt∥2 + ∥xt+k∥2)

≤ Lop(2εsys +ΨM(1 + αA))(2 + ∥xt∥2 + ∥xt+k∥2).

Since εsys ≤ 1 ≤ ΨM , and αA ≥ 1, the bound follows.

3. Proof of Eq. (I.16) By Lemmas I.1 and I.11 we have, for all δ ∈ (0,1/e], and any τ ≤ t + k,

Pπ̃t[∥v∥2 ≥ σ2 ⋅ (3kdu + 2) ln δ−1] ≤ δ, and Pπ̃t [∥xτ∥2 ≥ 15dxΨΣ + b̄2 ⋅ devx ln
2

δ
] ≤ δ,

and so by a union bound, with probability at least 1 − δ,

(ln
5

δ
)
−1

⋅ (ψ(z)2 ∨ ∥δ(h⋆,z) − v∥2)

≤ (ln
5

δ
)
−1

⋅ (2ψ(z)2 + 2∥v∥2)

≤ (2σ2 ⋅ (3kdu + 2))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤10kduσ2

+6α2
AL

2
opΨ2

M (2 + 30dxΨΣ + 2b̄2 ⋅ devx +Ψ2
⋆∥K̂∥2

opb̄
2) .

Finally, since devx ≥ Ψ2
⋆∥K̂∥2

op by definition (see Eq. (H.4)), and ΨΣ ≥ 1, the above is at
most

(ln
5

δ
)
−1

⋅ (ψ(z)2 ∨ ∥δ(f⋆,z) − v∥2) ≤ 10kduσ
2 + 6α2

AL
2
opΨ2

M (32dxΨΣ + 3b̄2 ⋅ devx) ∶= cw,φ/5.

Finally, for δ ≤ 1/e, we have that (ln 5
δ
) ≤ 5 ln(1/δ). This bound follows by the fact that

ln(5/δ) = ln(5) + ln(1/δ) ≤ (ln 5 + 1) ln(1/δ) ≤ 5 ln(1/δ), for all δ ∈ (0,1/e].

4. Proof of Eq. (I.17). We bound

Eπ̃t [ sup
h∈Hop

∥δ(h,z)∥2] = Eπ̃t [ sup
h∈Hop

∥δt,k(h,y0∶t,yt+k)∥2] ,

≤ 3L2
opε

2
sys (2 + ∥K̂∥2

opb̄
2 +Eπ̃t [∥xt+k∥2 + ∥xt∥2]) , (I.20)

where we use Eq. (I.19) in the last step. From Lemma I.1, we have

3L2
opε

2
sys (2 + ∥K̂∥2

opb̄
2 +Eπ̃t [∥xt+k∥2 + ∥xt∥2]) ≤ 3L2

opε
2
sys (2 + ∥K̂∥2

opb̄
2 + 6dxΨΣ + 2devxb̄

2) ,

Using the above two displays together with devx ≥ ∥K̂∥2
op and ΨΣ ≥ 1 yields

Eπ̃t [ sup
h∈Hop

∥δ(h,z)∥2] ≤ 3L2
opε

2
sys (8dxΨΣ + 3devxb̄

2) ≤ 24L2
opε

2
sys (dxΨΣ + devxb̄

2) .

Lemma I.7. Let t ≥ 0, k ∈ [κ]. For ĥt,k and φt,k as in (H.10) and (I.11), respectively, we have with
probability at least 1 − 3δ/2,

Eπ̃t [∥φt,k(ĥt,k,y0∶t,yt+k) −Mk(Ak−1wt + ⋅ ⋅ ⋅ +wt+k−1 +Ak−1Bνt + ⋅ ⋅ ⋅ +Bνt+k−1)∥
2
] ≤ ε2

w(δ),

where ε2
w(δ) = cεw (

cw,φ(ln ∣F ∣ + d2
x) ln2(n/δ)

n
+L2

opε
2
sys (dxΨΣ + devxb̄

2)) , (I.21)

and where cεw is a sufficiently large constant, chosen to be at least 100 without loss of generality, and
cw,φ is defined in Eq. (I.13).
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We denote the event of Lemma I.7 by Eφ;t,k(δ).

Proof. We will apply Corollary E.2. We verify that the conditions of the corollary hold one by one.

1. Substitutions. We apply Corollary E.2 with e = 0, z ∶= (y0∶t,yt+k), v = [ν⊺t , . . . ,ν⊺t+k]
⊺,

φ = φt,k, ψ = ψt,k,δφ = δt,k, and c = cw,φ, where φt,k, ψt,k,δt,k, and cw,φ are as in
Lemma I.6. Moreover, we let cψ be the constant implicit in Eq. (I.15). The dimension
parameters are dx, d1 ← dx.

2. Realizability. By our assumption on the function class Hop, there exists f⋆ ∈ Hop such that
f⋆(y) = x, for all y ∈ supp q(⋅ ∣ x). Therefore, by the system’s dynamics and the definition
of the policy π̃t, we have almost surely

φ(h⋆,z) =Mk(f⋆(yt+k) −Akf⋆(yt) −Ak−1BK̂f̂t(y0∶t)),
=Mk(Ak−1wt + ⋅ ⋅ ⋅ +wt+k−1 +Ak−1Bνt + ⋅ ⋅ ⋅ +Bνt+k−1),
= Eπ̃t[v ∣ Ak−1wt + ⋅ ⋅ ⋅ +wt+k−1 +Ak−1Bνt + ⋅ ⋅ ⋅ +Bνt+k−1], (by Fact G.2)

= Eπ̃t [v ∣ ∑
k
j=1(Aj−1wt+k−j +Aj−1Bνt+k−j)

y0∶t
] , (I.22)

= Eπ̃t [v ∣ A
kf⋆(yt) +Ak−1BK̂f̂t(y0∶t) +∑kj=1(Aj−1wt+k−j +Aj−1Bνt+k−j)

y0∶t
] ,

(I.23)
= Eπ̃t[v ∣ y0∶t, f⋆(yt+k)], (I.24)
= Eπ̃t[v ∣ y0∶t,yt+k], (I.25)

where (I.22) follows by the fact that (ντ)τ≥t and (wτ)τ≥t are independent of y0∶t, (I.23) fol-
lows by the conditioning on y0∶t (which determines the term Akf⋆(yt)+Ak−1BK̂f̂t(y0∶t)),
and (I.24) uses the system’s dynamics. Finally, (I.25) uses the realizability assumption.
Thus, (I.25) ensures the realizability assumption in Corollary E.2 is satisfied.

3. Conditions 1 & 2. Lemma I.6 ensures that conditions 1 and 2 of Corollary E.2 are satisfied.

4. Condition 3. By the structure of Hop, condition 3 is satisfied with L as in Assumption 5
and bL = Lop. Examining φ̂t,k, we can take X1 = M̂k, and X2 = Âk.

5. Condition 4. By Eq. (I.15), this holds for some cψ ≲ 1.

Recall the notation logs(n, δ) ≲ ln2(n/δ) defined in Corollary E.2. With the substitutions above,
Corollary E.2 implies that with probability at least 1 − 3δ

2
:

E∥φt,k(ĥ,z) − φt,k(f⋆,z)∥2 ≤
12cw,φ(ln ∣F ∣ + dx ⋅ dx)logs(cψn, δ)

n
+ 16E∥e∥2 + 8 max

h∈H
E∥δt,k(h,z)∥2

=
12cw,φ(ln ∣F ∣ + d2

x)logs(cψn, δ)
n

+ 8 max
h∈H

E∥δt,k(h,z)∥2,

≲
cw,φ(ln ∣F ∣ + d2

x) ln2(n/δ)
n

+L2
opε

2
sys (dxΨΣ + devxb̄

2) .
(by Eq. (I.17))

I.4.2 Regression Bound for φ

Let t ≥ 0 be fixed. Recall the various functions defined at the start of Appendix I.4.1. In addition,
consider the following functions for k ∈ [κ], h ∈ Hop:

φ̂t(h,y0∶t+1) ∶= M̂ (h(yt+1) − Âh(yt) − B̂K̂f̂t(y0∶t)) ,

φt(h,y0∶t+1) ∶= M(h(yt+1) −Ah(yt) −BK̂f̂t(y0∶t)) ,

δt(h,y0∶t+1) ∶= φ̂t(h,y0∶t+1) − φt(h,y0∶t+1).
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Further, for (ĥt,k)k∈κ as in Eq. (H.10), define

φ̂t(y0∶t+κ) ∶= [φ̂t,1(ĥt,1,y0∶t,yt+1)⊺, . . . , φ̂t,κ(ĥt,κ,y0∶t,yt+κ)⊺]⊺,
φt(y0∶t+κ) ∶= [φt,1(ĥt,1,y0∶t,yt+1)⊺, . . . , φt,κ(ĥt,κ,y0∶t,yt+κ)⊺]⊺,
φ⋆
t (y0∶t+κ) ∶= [φt,1(f⋆,y0∶t,yt+1)⊺, . . . , φt,κ(f⋆,y0∶t,yt+κ)⊺]⊺.

Here, the first term uses estimated dynamics and estimates ĥ of f⋆; the second term uses true dynamics
and estimates ĥ; the third term uses true dynamics and the ground truth f⋆.

Lemma I.8. Let v ∶= φ⋆
t (y0∶t+κ), e ∶= φ⋆

t (y0∶t+κ) − φ̂t(y0∶t+κ). Recall the function ψt,1 defined in
Eq. (I.12). Then the following properties hold.

1. We have the bound

sup
h∈Hop

∥φt(h,y0∶t+1)∥2 + sup
h∈Hop

∥δt(h,y0∶t+1)∥2 ≤ ψt,1(y0∶t+1)2. (I.26)

2. We have the bound

Lop(∥M̂∥op + ∥M̂Â∥op)(2 + ∥f⋆(yt)∥2 + ∥f⋆(yt+1)∥2) ≲ ψt,1(y0∶t+1). (I.27)

3. For any δ ∈ (0,1/e], we have

Pπ̃t[ψt,1(y0∶t+1)2 ∨ ∥v − e∥2 ≤ 2κcw,φ(1 + ln(κ)) ln(1/δ)] ≤ δ. (I.28)

4. For any δ ∈ (0,1/e], on the event ⋂κk=1 Eφ;t,k(δ) (cf. Lemma I.7), we have that

Eπ̃t∥e∥2 ≤ 3κεw(δ)2. (I.29)

5. For any δ > 0, we have the following bound (independent of δ):

sup
h∈Hop

E∥δt(h,y0∶t+1)∥2 ≤ εw(δ)2. (I.30)

Proof of Lemma I.8. In what follows, let us suppress dependence on y and zt,k when clear from
context, where zt,k is as in (I.10).

1. Bounding suph∈Hop
∥φt(h,y0∶t+1)∥ + suph∈Hop

∥δt(h,y0∶t+1)∥ ≤ ψt,1(y0∶t+1)2.

The bound in (I.26) actually follows from the same argument as in the proof of Lemma I.6
with k = 1 and (M̂k,Mk) replaced by (M̂,M) (using that ΨM also bounds ∥M∥op, and
εsys upper bounds ∥M− M̂∥op) under Esys.

2. Establishing Eq. (I.27). This is also analogous to the proof of Eq. (I.15) in Lemma I.6.

3a. Bounding ∥v − e∥2. We bound

∥v − e∥2 = ∥φ̂(y0∶t+k)∥
2
=

κ

∑
k=1

∥φ̂t,k(ĥt,k,y0∶t,yt+k)∥
2
≤

κ

∑
k=1

ψt,k(zt,k)2,

where we use Eq. (I.14).

3b. Establishing Eq. (I.28). We have

ψt,1(y0∶t+1)2 ∨ ∥v − e∥2 ≤ ψt,1(y0∶t+1)2 ∨
κ

∑
k=1

ψt,k(zt,k)2,

=
κ

∑
k=1

ψt,k(zt,k)2,

=
κ

∑
k=1

6α2
AL

2
opΨ2

M (2 + ∥xt∥2
2 + ∥xt+k∥2

2 +Ψ2
⋆∥K̂∥2

opb̄
2) .
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Now, with probability 1 − (κ + 1)δ, we have that all ∥xt+i∥2 for i ∈ {0,1, . . . , κ} simultane-
ously satisfy

∥xt+i∥2 ≤ 30dxΨΣ + 2b̄2 ⋅ devx ln
2

δ

by Lemma I.1. Hence, with probability 1 − (κ + 1)δ, we have

ψt,1(y0∶t+1)2 ∨ ∥v − e∥2

≤
κ

∑
k=1

ψt,k(zt,k)2

= κ6α2
AL

2
opΨ2

M (2 + 60dxΨΣ + 4b̄2 ⋅ devx ln
2

δ
+Ψ2

⋆∥K̂∥2
opb̄

2)

≤ κ6α2
AL

2
opΨ2

M (62dxΨΣ + 5b̄2 ⋅ devx) ln
2

δ
≤ 1

2
κcw,φ ln

2

δ
.

where in the last line, we absorb various parameters into larger ones. Finally, replacing δ by
δ/(κ+1) gives (1/2)⋅ln(2(κ+1)/δ) = (1/2)⋅ln(2/δ)+ln(2(κ+1)) ≤ 2(1+ln(κ)) ln(1/δ)
for δ ∈ (0,1/e]. This gives that,

P [ψt,1(y0∶t+1)2 ∨ ∥v − e∥2 ≥ 2κcw,φ(1 + ln(κ)) ln(1/δ)] ≤ δ.

4. Establishing Eq. (I.29). First, we bound

∥φt(y0∶t+κ) −φ⋆
t (y0∶t+κ)∥2

2 =
κ

∑
k=1

∥φt,k(ĥt,k) − φt,k(h⋆)∥2.

From Lemma I.7, we have on the event ⋂κk=1 Eφ;t,k(δ) (recall the definition of the event
Eφ;t,k(δ) from Lemma I.7) that

Eπ̃k∥φt(y0∶t+κ) − φ̂t(y0∶t+κ)∥2 ≤
κ

∑
k=1

εw(δ)2 = κεw(δ)2. (I.31)

Second, we note that

∥φt(y0∶t+κ) −φ⋆
t (y0∶t+κ)∥2

2 =
κ

∑
k=1

∥φt,k(ĥt,k) − φt,k(ĥt,k)∥2,

=
κ

∑
k=1

∥δt,1(ĥt,k)∥2,

so that by Eq. (I.17),

Eπ̃k∥φt(y0∶t+κ) −φ⋆
t (y0∶t+κ)∥2

2 ≤ 24κL2
opε

2
sys (dxΨΣ + devxb̄

2) .

Hence, on Esys ∩⋂κk=1 Eφ;t,k(δ), it holds that

E∥e∥2 ≤ 2Eπ̃k∥φt(y0∶t+κ) −φ⋆
t (y0∶t+κ)∥2 + 2Eπ̃k∥φt(y0∶t+κ) − φ̂t(y0∶t+κ)∥2

≤ 2κεw(δ)2 + 48κL2
opε

2
sys (dxΨΣ + devxb̄

2) ≤ 3κεw(δ)2,

where the last line uses the definition of εw(δ)2 from Lemma I.7.

5. Establishing Eq. (I.30). By using an analogous proof to that of Eq. (I.17) (in particular,
exploiting that εsys bounds the error of both M̂ and M̂k), we can show that

Eπ̃t [ sup
h∈Hop

∥δt(h,y0∶t+1)∥2] ≤ 24L2
opε

2
sys (dxΨΣ + devxb̄

2) .

The right-hand-side is crudely bounded by εw(δ)2 for any δ ∈ (0,1).
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I.4.3 Proof of Theorem 8

Again, we appeal to Corollary E.2. We verify one by one that the conditions require to apply the
corollary hold.

1. Substitutions. We appeal to the corollary with e = φ⋆
t (y0∶t+κ) − φ̂t(y0∶t+κ), z ∶= y0∶t+1,

v = φ⋆
t (y0∶t+κ), φ = φt, ψ = ψt,δφ = δt, and c = κ(lnκ + 1)cw,φ, where φt, ψt,δt, and

cw,φ are as in Lemma I.8. We also take d1, dx ← dx.

2. Realizability.
By our assumption on the function class Hop, there exists f⋆ ∈ Hop such that f⋆(y) = x for
all y ∈ supp q(⋅ ∣ x). Therefore, by the system’s dynamics and the definition of the policy
π̃t, we have

φ(f⋆,z) =M(wt +Bνt),

=
⎡⎢⎢⎢⎢⎣

M1(wt +Bνt)
⋮

MκA
κ−1(wt +Bνt)

⎤⎥⎥⎥⎥⎦
,

= Eπ̃t
⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

M1(wt +Bνt)
⋮

Mκ(∑κj=1A
j−1wt+κ−j +Aj−1Bνt+κ−j)

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRR
wt +Bνt

⎤⎥⎥⎥⎥⎦
,

= Eπ̃t
⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

M1(wt +Bνt)
⋮

Mκ(∑κj=1A
j−1wt+κ−j +Aj−1Bνt+κ−j)

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRR

wt +Bνt,
y0∶t

⎤⎥⎥⎥⎥⎦
, (I.32)

= Eπ̃t
⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

M1(wt +Bνt)
⋮

Mκ(∑κj=1A
j−1wt+κ−j +Aj−1Bνt+κ−1)

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRR
y0∶t,xt+1

⎤⎥⎥⎥⎥⎦
, (I.33)

= Eπ̃t
⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

φ⋆t,1(y0∶t,yt+1)
⋮

φ⋆t,κ(y0∶t,yt+κ)

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRR
y0∶t,yt+1

⎤⎥⎥⎥⎥⎦
, (I.34)

where: (I.32) follows by the fact that (ντ)τ≥t and (wτ)τ≥t are independent of y0∶t; (I.33)
follows by the fact that wt +Bνt can recovered from xt+1 given y0∶t and vice-versa; and
finally, (I.34) follows from the system’s dynamics and the definition of π̃t. Thus, (I.34)
ensures that the realizability assumption in Corollary E.2 is satisfied.

3. Conditions 1& 2. Lemma I.8 ensures that conditions 1 and 2 of Corollary E.2 are satisfied.

4. Condition 3. By the structure of Hop, condition 3 is satisfied with L as in Assumption 5
and bL = Lop. Examining φ̂t(h,y0∶t+1) ∶= M̂ (h(yt+1) − Âh(yt) − B̂K̂f̂t(y0∶t)), we can
take X1 = M̂, and X2 = Â. The term MB̂K̂f̂t(y0∶t) does not depend on h, and thus
corresponds to δ0.

5. Condition 4. By Eq. (I.27), this holds for some cψ ≲ 1.

Recall logs(n, δ) ≲ ln2(n/δ), defined in Corollary E.2. Corollary E.2 implies that with probability
at least 1 − 3

2
δ,

E∥φt(ĥ,z) − φt(f⋆,z)∥2 ≤
12κ(lnκ + 1)cw,φ(ln ∣F ∣ + dx ⋅ dx)logs(cψn, δ)

n
+ 16E∥e∥2 + 8 max

h∈Hop

E∥δt(h,z)∥2

≲
cw,φκ(lnκ + 1)(ln ∣F ∣ + d2

x) ln2(n/δ)
n

+E∥e∥2 + max
h∈Hop

E∥δt(h,z)∥2.

Substituting in the bounds in Eqs. (I.29) and (I.30), which hold on the events ⋂κk=1 Eφ;t,k(δ) (i.e., the
intersection of the events from Lemma I.7), followed by the definition of εw given in Eq. (I.21), the
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expression above is bounded as

E∥φt(ĥ,z) − φt(f⋆,z)∥2

≲
cw,φκ(lnκ + 1)(ln ∣F ∣ + d2

x) ln2(n/δ)
n

+ κεw(δ)2

≲ κ(1 + ln(κ))εw(δ)2

≲ κ(1 + ln(κ))(
cw,φ(ln ∣F ∣ + d2

x) ln2(n/δ)
n

+L2
opε

2
sys (dxΨΣ + devxb̄

2)) .

Finally, let us account for the total failure probability. By Lemma I.7, we have P[⋂κk=1 Eφ;t,k(δ)] ≥
1 − 3κ

2
δ, and the above display holds with another probability 1 − 3

2
δ. Hence, our failure probability

is at most 3(κ+1)δ
2

. Rescaling δ ← 2δ
3(κ+1) , and noting that ln(c1/δ) ≲ c1 ln(1/δ) for constants c1, we

find that with probability 1 − δ,

E∥φt(ĥ,z) − φt(f⋆,z)∥2 ≲ κ(1 + ln(κ))(
cw,φ(ln ∣F ∣ + d2

x) ln2(nκ/δ)
n

+L2
opε

2
sys (dxΨΣ + devxb̄

2)) .

≲ ε2
noise(δ).

I.5 Proof of Lemma H.3

Proof of Lemma H.3. Let t ≥ 0 be fixed. To begin, consider a fixed 0 ≤ τ ≤ t, and let (ĥτ) and (φτ)
be as in Lemma I.8. For notational convenience, we define φ̃τ ∶= φτ −MBντ . From the definitions
of f̃τ+1 and φτ , we have

f̃τ+1(y0∶τ+1) ∶= Âf̂τ(y0∶τ) + ĥτ(yτ+1) − Âĥτ(yτ),
= Âf̂τ(y0∶τ) +BK̂f̂τ(y0∶τ) +Bντ + ((ĥτ(yτ+1) −Aĥτ(yτ) −BK̂f̂τ(y0∶τ)) −Bντ),
= Âf̂τ(y0∶τ) +BK̂f̂τ(y0∶τ) +Bντ +M†φ̃τ(ĥτ ,y0∶τ+1),

where we have used thatM has full row rank by Assumption 10. This implies that

f̃τ+1(y0∶τ+1) − f⋆(yτ+1) = (Â −A)f̂τ(y0∶τ) +A(f̂τ(y0∶τ) − f⋆(y0∶τ)) + (M†φ̃τ(ĥτ ,y0∶τ+1) −wτ).

Under the event E0∶t, we have in particular that f̂s = f̃s, for all 0 ≤ s ≤ τ . Thus, by induction we have

f̃τ+1(y0∶τ+1) − f⋆(yτ+1) =
τ

∑
s=0

Aτ−s ((Â −A)f̃s(y0∶s) + (M†φ̃s(ĥs,y0∶s+1) −ws))

+Aτ−1(f̂A,0(y0) −Af⋆(y0)),

with f̂0 ≡ f̃0 ≡ 0. As a result, we have, for ε0 ∶= ∥f̂A,0(y0) −Af⋆(y0)∥ and εsys as in (H.7),

∥f̃τ+1(y0∶τ+1) − f⋆(yτ)∥ (I.35)

≤ ∥
τ

∑
s=0

Aτ−s(Â −A)f̃s(y0∶s)∥ + ∥
τ

∑
s=0

Aτ−s(M†φ̃s(ĥs,y0∶s+1) −ws)∥ + αAγτ−1
A ε0,

≤ αAεsysb̄(1 − γA)−1 + αAγτ−1
A ε0 +

τ

∑
s=0

∥Aτ−s∥op∥(M
†φ̃s(ĥs,y0∶s+1) −ws)∥,

≤ αAεsysb̄(1 − γA)−1 + αAγτ−1
A ε0 + αA

τ

∑
s=0

γτ−sA ∥(M†φ̃s(ĥs,y0∶s+1) −ws)∥,

≤ αAεsysb̄(1 − γA)−1 + αAγτ−1
A ε0 + αA∥M†∥

op

τ

∑
s=0

γτ−sA ∥φ̃s(ĥs,y0∶s+1) −Mws∥,

≤ αAεsysb̄(1 − γA)−1 + αAγτ−1
A ε0 + αA∥M†∥

op

¿
ÁÁÀ

τ

∑
s=0

γ
2(τ−s)
A

τ

∑
s=0

∥φ̃s(ĥs,y0∶s+1) −Mws∥
2
,

(I.36)
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Taking the square on both sides of (I.36), then applying the expectation Eπ̂ , we get

Eπ̂ [max
0≤τ≤t

∥f̃τ+1(y0∶τ+1) − f⋆(yτ)∥2 ⋅ I{E0∶t}] (I.37)

≤ 3α2
Aε

2
sysb̄

2(1 − γA)−2 + 3α2
Aε

2
init + 3α2

A(1 − γ2
A)−1σmin(M)−2

t

∑
s=0

Eπ̂ [∥φ̃s(ĥs,y0∶s+1) −Mws∥2] ,

≤ 3α2
Aε

2
sysb̄

2(1 − γA)−2 + 3α2
Aε

2
init + 3α2

A(1 − γ2
A)−1σmin(M)−2ε2

noiset, (I.38)

where the last inequality follows by the fact that under the event Enoise, we have

Eπ̂ [∥φ̃s(ĥs,y0∶s+1) −Mws∥2] ≤ ε2
noise, for all 0 ≤ s ≤ t.

Finally, we simplify Eq. (I.38) to

3α2
A(1 − γA)−2 (ε2

sysb̄
2 + ε2

init + σmin(M)−2ε2
noiset) .

I.6 Proof of Theorem 9

Proof of Theorem 9. Define E ′′
0∶t ∶= E0∶t ∧ E ′

0∶t and let pt ∶= Pπ̂[E ′′
0∶t]. We will recursively prove a

lower bound on pt+1 in terms of pt. From Lemma H.3 and Markov’s inequality, for all τ ∈ [t + 1],

Pπ̂ [ max
τ∈[t+1]

∥f̃τ(y0∶τ) − f⋆(yτ)∥ ≥ εdec,t
√
η∣E ′′

0∶t] (I.39)

= Pπ̂ [ max
τ∈[t+1]

∥f̃τ(y0∶τ) − f⋆(yτ)∥2 ≥ ηε2
dec,t∣E ′′

0∶t]

≤ 1

ηε2
dec,t

Eπ̂ [ max
τ∈[t+1]

∥f̃τ(y0∶τ) − f⋆(yτ)∥2∣E ′′
0∶t]

= 1

ηptε2
dec,t

Eπ̂ [ max
τ∈[t+1]

∥f̃τ(y0∶τ) − f⋆(yτ)∥2 ⋅ I{E ′′
0∶t}]

≤ 1

ηptε2
dec,t

Eπ̂ [ max
τ∈[t+1]

∥f̃τ(y0∶τ) − f⋆(yτ)∥2 ⋅ I{E0∶t}] ,

≤ p−1
t η

−1. (I.40)

On the other hand, we also have that under the event E0∶t, since no clipping occurs, the dynamics
satisfy

xt+1 = (A +BK̂)xt +Bνt + δt +wt, where δt ∶= B̂K̂f̃t(y0∶t) −BK̂f⋆(yt).

Thus, by induction we obtain,

xt+1 = (A +BK̂)tx0 +
t

∑
τ=0

(A +BK̂)t−τ(Bνt + δt +wt),

By Jensen’s inequality, we have for γ̄∞ as in (H.8),

∥xt+1∥ = α∞γ̄t∞∥x0∥ + α∞
t

∑
τ=0

γ̄t−τ∞ ∥δτ∥2 + ∥
t

∑
τ=0

(A +BK̂)t−τ(Bντ +wτ)∥ ,

= α∞γ̄t∞∥x0∥ + α∞
t

∑
τ=0

γ̄t−τ∞ ∥δτ∥2 + ∥zt∥, (I.41)

where zt ∶= ∑tτ=0(A +BK̂)t−τ(Bντ +wτ). In this case, we have zt ∼ N(0,Σz), where

Σz ∶=
t

∑
τ=0

(A +BK̂)t−τ(σ2BB⊺ +Σw)((A +BK̂)t−τ)⊺ ⪯ Σz,∞, (I.42)
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with Σz,∞ is as in (H.22). Under the event E ′
0∶t, (and since γ̄∞ < 1) we have

bη ∶=
√

2(du∥Σ0∥opα2
∞ + dx∥Σz,∞∥op) ln(2η) ≥

√
2α̂2

∞∥x0∥2 + 2∥zt∥2,

≥ α∞γ̄t∞∥x0∥ + ∥zt∥. (I.43)

On the other hand, by Hölder’s inequality, we have

α∞
t

∑
τ=0

γ̄t−τ∞ ∥δτ∥ ≤
α∞

1 − γ̄∞
max
0≤τ≤t

∥δτ∥,

≤ α∞
1 − γ̄∞

(εsysb̄ + max
0≤τ≤t

∥BK̂(f̃τ(y0∶τ) − f⋆(yτ))∥) ,

≤ α∞
1 − γ̄∞

(εsysb̄ + 2Ψ⋆ max
0≤τ≤t

∥f̃τ(y0∶τ) − f⋆(yτ)∥) ,

where we have used that under Esys, ∥BK̂∥op ≤ ∥A∥op + ∥A +BK̂∥op ≤ Ψ⋆ + α∞γ̄∞ ≤ 2Ψ⋆. From
(I.40), it follows that

Pπ̂ [α∞
t

∑
τ=0

γ̄t−τ∞ ∥δτ∥ ≥
α∞(εsysb̄ + 2Ψ⋆εdec,t

√
η)

1 − γ̄∞
∣ E ′′

0∶t] ≤ p−1
t η

−1. (I.44)

Thus, by (I.41), (I.40), (I.43), and (I.44), we have

Pπ̂[E ∣ E ′′
0∶t] ≤ η−1p−1

t ,

where

E ∶= {∥xt+1∥ ≥ (1 − γ̄∞)−1α∞(εsysb̄ + 2Ψ⋆εdec,t
√
η) + bη,

or ∥f̃t+1(y0∶t+1)∥ ≥ ∥xt+1∥ + εdec,t
√
η

} .

This implies that

Pπ̂ [∥f̃t+1(yt+1)∥ ≥
α∞εsysb̄ + (2Ψ⋆α∞ + 1 − γ̄∞)εdec,t

√
η

1 − γ̄∞
+ bη ∣ E ′′

0∶t] ≤ η−1p−1
t . (I.45)

which we simplify to

Pπ̂ [∥f̃t+1(yt+1)∥ ≥
α∞εsysb̄ + 3Ψ⋆α∞εdec,t

√
η

1 − γ̄∞
+ bη ∣ E ′′

0∶t] ≤ η−1p−1
t . (I.46)

On the other hand, by Lemma I.11, we have

Pπ̂ [α2
∞∥x0∥2 + ∥zt+1∥2 ≥ bη2−1/2] ≤ η−1. (I.47)

Thus, for
b̄ ≥ (1 − γ̄∞)−1(α∞εsysb̄ + 3Ψ⋆α∞εdec,t

√
η) + bη, (I.48)

we have with (I.47), (I.46), and a union bound,

Pπ̂ [{∥f̃t+1(yt+1)∥ ≥ b̄} ∨{α2
∞∥x0∥2 + ∥zt+1∥2 ≥ bη2−1/2} ∣ E ′′

0∶t] ≤ 2η−1p−1
t .

This implies that

Pπ̂[Et+1 ∧ E ′
t+1 ∣ E ′′

0∶t] ≥ 1 − 2η−1p−1
t . (I.49)

Therefore, we have

Pπ̂[E ′′
0∶t+1] = pt ⋅ Pπ̂[Et+1 ∧ E ′

t+1 ∣ E ′′
0∶t] ≥ pt − 2η−1 = Pπ̂[E ′′

0∶t] − 2η−1.

Now by induction on t we get, for all τ ≥ 1,

Pπ̂[E ′′
0∶τ ] ≥ Pπ̂[E0∶1 ∧ E0∶1′] − 2τ/η. (I.50)

For the base case, by (I.47) and a union bound, it follows that

Pπ̂[¬E ′
0∶1] ≤ 2η−1, (I.51)

and therefore, by (I.50), we get
Pπ̂[E ′′

0∶τ ] ≥ Pπ̂[E0∶1] − 2(τ + 1)/η.

Finally, as f̃0 ≡ 0, we have Pπ̂[E0∶1] = Pπ̂[E1], which completes the proof. To get the stated value for
b̄∞, we rearrange Eq. (I.48) and recall that γ̄∞ = 1

2
(1 + γ∞).
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I.7 Proof of Theorem 10

Proof. Let E ′′
0∶T ∶= E0∶T ∧ E ′

0∶T . By Lemma H.3, under the events Esys and Enoise, we have

Eπ̂ [max
0≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2 ⋅ I{E0∶T }] ≤ ε2
dec,T . (I.52)

It follows that for all 0 ≤ t ≤ T , we have

Eπ̂ [max
0≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2] ≤ Eπ̂ [max
0≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2 ⋅ I{E ′′
0∶T }]

+Eπ̂ [max
0≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2 ⋅ I{¬E ′′
0∶T }] ,

≤ Eπ̂ [max
0≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2 ⋅ I{E0∶T }]

+Eπ̂ [(2b̄ + 2 max
0≤t≤T

∥xt∥2) ⋅ I{¬E ′′
0∶T }] ,

≤ ε2
dec,T + 2(1 − Pπ̂[E ′′

0∶T ])
⎛
⎝
b̄ +

√
Eπ̂ [max

0≤t≤T
∥xt∥4]

⎞
⎠
, (I.53)

where the last inequality follows by Cauchy Schwarz and Eq. (I.52). Now by Lemma I.1, we have
that the random variable ∥xt∥2 is cx-concentrated for all 0 ≤ t ≤ T with

cx ∶= 30dxΨΣ + 2b̄2 ⋅ devx.

Therefore, by Lemma E.1, we have Eπ̂ [∥xt∥4] ≤ 4c2x. Using this, we get that

Eπ̂ [max
0≤t≤T

∥xt∥4] ≤ (T + 1) max
0≤t≤T

Eπ̂ [∥xt∥4] ≤ 8Tc2x.

Combining this with (I.53), and Theorem 9, we have

Eπ̂ [max
0≤t≤T

∥f̂t(y0∶t) − f⋆(yt)∥2] ≤ ε2
dec,t + (4T 1/2cx + 2b̄2)(1 − Pπ̂[E ′′

0∶T ]).

≤ ε2
dec,t + (4T 1/2cx + 2b̄2)( 2(T+1)

η
+ 1 − Pπ̂[{f̃0(y0) = f̂0(y0)} ∧ E ′

0]).

I.8 Proof of Lemma H.4

For the proof of Lemma H.4, we introduce the following functions and random vectors:

ϕ(y1) ∶= L2
op(1 ∨ ∥x1∥2),

u ∶= w0,

e ∶= w0 − (ĥol,0(y(i)
1 ) − Âĥol,0(y(i)

0 ) − B̂ν0).

Let us abbreviate n ≡ ninit. Recall that we are analyzing the regression

ĥol,1 ∈ arg min
h∈Hop

n

∑
i=1

∥h(y(i)
1 ) − (ĥol,0(y(i)

1 ) − Âĥol,0(y(i)
0 ) − B̂ν

(i)
0 )∥

2
,

where {(y(i)
τ ,x

(i)
τ ,ν

(i)
τ )}1≤i≤n are fresh i.i.d. trajectories generated by the policy πol.

Proof of Lemma H.4. Our strategy will be to invoke Corollary E.1 with ϕ,u, and e as above. We
start by verifying the technical conditions of the corollary.

1. We directly verify from the structure of Hop we may take b = Ψ3
⋆ and L as in Assumption 5.

Hence, bL = Lop, and thus ϕ(y1) satisifes the requisite conditions of the ϕ function. In
addition, we may take du, dx ← dx.
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2. Concentration Property. Next, we bound the concentration parameter c. Recall that all
h ∈ Hop have ∥h(yt)∥ ≤ Lop max{1, ∥xt∥}. Hence, under the event Esys, we have by
Jensen’s inequality, Cauchy-Schwarz, and the fact that ĥol,0 ∈ Hop,

ϕ(y1) ∨ ∥e − u∥2 ≤ ϕ(y1) + 5L2
op(1 + ∥x1∥2) + 5L2

op(∥A∥2
op + ε2

sys)(1 + ∥x0∥2)
+ 5(∥B∥2

op + ε2
sys)∥ν0∥2,

≤ 6L2
op(1 + ∥x1∥2) + 5L2

op(∥A∥2
op + ε2

sys)(1 + ∥x0∥2)
+ 5(∥B∥2

op + ε2
sys)∥ν0∥2,

= 6L2
op + 5L2

op(∥A∥2
op + ε2

sys) + 5(∥B∥2
op + ε2

sys)∥ν0∥2 (I.54)

+ 6L2
op∥x1∥2 + 5L2

op(∥A∥2
op + ε2

sys)∥x0∥2.

Let us simplify the above. Assume ε2
sys ≤ Ψ2

⋆ (where Ψ⋆ ≥ max{1, ∥A∥op, ∥B∥op}). This
lets us simplify the above by

ϕ(y1) ∨ ∥e − u∥2 ≤ L2
opΨ2

⋆(6 + 10 + 10∥ν0∥2 + 6∥x1∥2 + 10∥x0∥2)
≤ 16L2

opΨ2
⋆(1 + ∥ν0∥2 + ∥x1∥2 + ∥x0∥2). (I.55)

Since x0 ∼ N(0,Σ0), ν0 ∼ N(0, σ2Idu), and x1 ∼ N(0, σ2BB⊺ + AΣ0A
⊺ + Σw), we

have by Lemma I.11 and the fact that ln 3 + 1 ≤ 3, the following holds: For all δ ∈ (0,1/e],

Pπol
[ϕ(y1) ∨ ∥e − u∥2 ≥ c1 ln δ−1] ≤ δ, (I.56)

where

c1 ∶= 48L2
opΨ2

⋆(1 + 5duσ
2 + 5dx(∥Σ1∥op + ∥Σ0∥op)), (I.57)

Σ1 ∶= σ2BB⊺ +AΣ0A
⊺ +Σw. (I.58)

3. Bounding the error e. On the other hand, by Jensen’s inequality and Cauchy-Schwarz, we
can bound the error e by

∥e∥2 ≤ 2∥w0 − ĥol,0(y(i)
1 ) −Aĥol,0(y(i)

0 ) −Bν0∥2 + 4ε2
sysL

2
op (1 + ∥x0∥2 + ∥ν0∥2) .

Therefore, by Lemma I.9 and (H.24), we have with probablity at least 1 − δ over the
trajectories used to form ĥol,0,

Eπol
[∥e∥2] ≤ 2σmin(M)−2ε2

noise(δ) + 4ε2
sysL

2
op(1 + dx∥Σ0∥op + σ2du). (I.59)

4. Realizability. We have

Eπol
[u ∣ y1] = Eπol

[w0 ∣ x1],
= Eπol

[w0 ∣ Ax0 +Bν0 +w0],
= Σw(Σw + σ2BB⊺ +AΣ0A

⊺)−1x1 =∶ h⋆(y1), (I.60)

where the last inequality follows by Fact G.2. Therefore, by the definition of Hop in (H.1)
and the fact that ∥Σw(Σw + σ2BB⊺ + AΣ0A

⊺)−1∥op ≤ 1 ≤ Ψ3
⋆, we are guaranteed the

existence of h ∈ Hop such that h(x1) = E[u ∣ y1].

Applying Corollary E.1 with c← c1, du, dx ← dx, and the above bound on Eπol
[∥e∥2], we obtain for

n← ninit that with probability 1 − 3δ
2
− δ = 1 − 5δ/2 (the second δ factor comes from the event used

to bound Eπol
[∥e∥2]),

E∥ĥol,1(y) − h⋆(y)∥2 ≲
c1(d2

x + ln ∣F ∣) ln2 ninit

δ

ninit
+ σmin(M)−2ε2

noise(δ) + ε2
sysL

2
op(1 + dx∥Σ0∥op + σ2du),

as needed. Moreover, because the above bound suppresses constants, we can replace c1 in Eq. (I.57)
by c1 ← L2

opΨ2
⋆(1 + duσ

2 + dx(∥Σ1∥op + ∥Σ0∥op)) . Substituting in the definition of h⋆ concludes
the proof.
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I.9 Proof of Lemma H.5

Proof. Since ĥol,1 ∈ Hop, we have ∥ĥol,1(y1)∥ ≤ Lop(1 ∨ ∥x1∥), where x1 ∼ N(0,Σ1) and
Σ1 ∶= σ2BB⊺ +AΣ0A

⊺ +Σw. Therefore, by Lemma I.11, we have, for all δ ∈ (0,1/e],

Pπol
[∥ĥol,1∥2 ≥ L2

op(1 + (3dx + 2)∥σ2BB⊺ +AΣ0A
⊺ +Σw∥op) ln δ−1] ≤ δ. (I.61)

Combining this with the fact that ∥ĥol,1(y1)∥ ≤ Lop(1∨∥x1∥) implies thatϕ(y1) ∶= L2
op(1∨∥x1∥2) is

c-concentrated with c = L2
op(1+(3dx+2)∥σ2BB⊺+AΣ0A

⊺+Σw∥op). Thus, applying Proposition E.2
with

(ϕ(y1), ĥ(y1), h⋆(y1)) = (L2
op(1 ∨ ∥x1∥2), ĥol,1(y1),ΣwΣ−1

1 x1)

and invoking Lemma H.4, we get for all δ ∈ (0,1/e], with probability at least 1 − (3κ + 4)δ,

∥Σ̂cov −ΣwΣ−1
1 Σw∥op ≤ ε′cov, (I.62)

for ε′cov as in the lemma statement. By the triangle inequality, whenever the condition (H.30) that
ε′cov < σmin(Σcov)/2 ≤ ∥Σcov∥op holds, this implies that

∥Σ̂cov∥op ≤ 2∥ΣwΣ−1
1 Σw∥op, and σmin(Σ̂cov) ≥ σmin(Σcov)/2 (I.63)

which shows the second inequality in (H.31). Furthermore, whenever (I.62) holds, Lemma I.12 and
the condition Eq. (H.30) imply that

∥Σ−1
w − Σ̂−1

covΣwΣ−1
1 ∥op ≤

2∥Σ−1
w ∥opε

′
cov

σmin(ΣwΣ−1
1 Σw)

. (I.64)

By the triangle inequality, this implies that under Esys,

∥Σ̂−1
w − Σ̂−1

covΣwΣ−1
1 ∥op ≤ εsys +

2∥Σ−1
w ∥opε

′
cov

σmin(ΣwΣ−1
1 Σw)

.

This further implies that

∥Idx − Σ̂wΣ̂−1
covΣwΣ−1

1 ∥op ≤ ∥Σ̂w∥op(εsys +
2∥Σ−1

w ∥opε
′
cov

σmin(ΣwΣ−1
1 Σw)

). (I.65)

Since εsys ≤ 1 by the definition of Esys, we have that ∥Σ̂w∥op ≤ 2Ψ⋆, leading to the result. This
establishes the main inequality in (H.31).

I.10 Proof of Theorem 11

For the proof of Theorem 11, we introduce the following functions and random vectors:

ϕ(y0) ∶= L2
op(1 ∨ ∥x0∥2)

u ∶= Σw(Σw + σ2BB⊺ +AΣ0A
⊺)−1(Ax0 + ν0 +w0)

e ∶= u − ĥol,1(y1).

Recall that we are analyzing the following regression problem, where for n ≡ ninit:

h̃ol,0 ∈ arg min
h∈Hop

2n

∑
i=n+1

∥h(y(i)
0 ) − ĥol,1(y(i)

1 )∥
2
.

Proof of Theorem 11. Our strategy will be to invoke Corollary E.1 with ϕ, u, and e as above. We
verify the technical conditions of the corollary.

1. We directly verify from the structure of Hop we may take b = Ψ3
⋆ and L as in Assumption 5.

Hence, bL = Lop, and thus ϕ(y1) satisifes the requisite conditions of the ϕ function.
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2. Concentration property. Now, under event Esys, by Jensen’s inequality, Cauchy-Schwarz,
and the fact that ĥol,1 ∈ Hop (and hence satisfies ∥ĥol,1(y1)∥ ≤ Lop max{1, ∥x1∥}), we
have

ϕ(y0) ∨ ∥e − u∥2 ≤ ϕ(y0) ∨ (L2
op(1 + ∥x1∥2)),

≤ L2
op(1 + ∥x0∥2 + ∥x1∥2).

Since x0 ∼ N(0,Σ0) and x1 ∼ N(0,Σ1), where Σ1 = Σw +σ2BB⊺ +AΣ0A
⊺, we have by

Lemma I.11 that for all δ ∈ (0,1/e],

Pπol
[ϕ(y0) ∨ ∥e − u∥2 ≥ c′0 ln δ−1] ≤ δ, where c′0 ∶= 2L2

op(1 + 5dx(∥Σ0∥op + ∥Σ1∥op)).
(I.66)

Moreover, since σ ≤ 1 under Assumption 10, we have ∥Σ1∥ ≤ 3Ψ3
⋆, so that

c′0 ≤ 32L2
opΨ3

⋆dx =∶ c0,
and hence

Pπol
[ϕ(y0) ∨ ∥e − u∥2 ≥ c0 ln δ−1] ≤ δ. (I.67)

3. Bounding the error e. By Lemma H.4, we have with probablity at least 1−5δ/2 over ĥol,1,

Eπol
[∥e∥2] ≤ ε2

ol,1. (I.68)

4. Realizability. We have

Eπol
[u ∣ y0] = Eπol

[u ∣ x0],
= Eπol

[Σw(Σw + σ2BB⊺ +AΣ0A
⊺)−1(Ax0 + ν0 +w0) ∣ x0],

= Σw(Σw + σ2BB⊺ +AΣ0A
⊺)−1Ax0,

= ΣwΣ−1
1 Ax0 ∶= h⋆(x0). (I.69)

Therefore, by the definition of Hop in (H.1) and the fact that ∥ΣwΣ−1
1 A∥op ≤ Ψ3

⋆, we are
guaranteed the existence of h ∈ Hop such that h(x0) = E[u ∣ y0].

Applying Corollary E.1 with c← c0, du, dx ← dx, and the above bound on Eπol
[∥e∥2], we obtain for

n← ninit that with probability at least 1 − 3δ
2
− 5δ

2
= 1 − 4δ (the second term comes from the event

used to bound Eπol
[∥e∥2]),

E∥h̃ol,0(y0) − h⋆(y)∥2 ≲
c0(d2

x + ln ∣F ∣) ln(ninit

δ
)2

ninit
+ ε2

ol,1

as needed. In particular, recalling that h⋆(y0) = ΣwΣ−1
1 Ax0 in the above realizability discussion, we

find that for an appropriate upper bound ε̃2
ol,1,

E∥h̃ol,0(y0) −ΣwΣ−1
1 Ax0∥2 ≤ ε̃2

ol,1 ≲
c0(d2

x + ln ∣F ∣) ln(ninit

δ
)2

ninit
+ ε2

ol,1

This further implies that

Eπol
[∥Σ̂wΣ̂−1

covh̃ol,0(y0) −Ax0∥2] ≤ 2∥Σ̂−1
w ∥2

op∥Σ̂cov∥2
opε̃

2
ol,1

+ 2Eπol
[∥(Idx − Σ̂wΣ̂−1

covΣwΣ−1
1 )Ax0∥2] ,

≤ 2∥Σ̂−1
w ∥2

op∥Σ̂cov∥2
opε̃

2
ol,1

+ 2dx∥(Idx − Σ̂wΣ̂−1
covΣwΣ−1

1 )A∥2
op∥Σ0∥, (I.70)

where the last inequality follows by Lemma I.9 since x0 ∼ N(0,Σ0). Thus, under the event Esys, we
have by Lemma H.5 and a union bound, with probability at least 1 − (3κ + 9)δ,

Eπol
[∥Σ̂wΣ̂−1

covh̃ol,0(y0) −Ax0∥2] ≲ ∥Σ−1
w ∥2

op∥Σcov∥2
op (

c0(d2
x + ln ∣F ∣) ln(ninit

δ
)2

ninit
+ ε2

ol,1)

+ dxε
2
cov∥A∥2

op∥Σ0∥, (I.71)
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where we recall that Σcov = ΣwΣ−1
1 Σw by definition. The desired bound (H.34) follows by the fact

πol and π̂ match at round zero.

We now prove that Eq. (H.36) holds. By definition of f̃1, we have

f̃1(y0∶1) = Σ̂wΣ̂−1
covh̃ol,0(y0) + ĥ0(y1) − Âĥ0(y0), (I.72)

and so since h̃ol,0 and ĥ0 are in Hop, we have by Jensen’s inequality and Cauchy-Schwarz,

∥f̃1(y0∶1)∥2 ≤ 4∥Σ̂w∥2
op∥Σ̂−1

cov∥2
opL

2
op(1 + ∥x0∥2)

+ 4L2
op(1 + ∥x1∥2) + 4∥A∥2

op(1 + ∥x0∥2) + 4∥A − Â∥2
op(1 + ∥x0∥2). (I.73)

Under Esys we have ∥Σ̂w∥op ≤ 2∥Σw∥ and ∥Â −A∥op ≤ 1, and the event of Lemma H.5 implies that
∥Σ̂−1

cov∥op ≤ 2∥Σ−1
cov∥op. Hence, using that Lop ≥ 1, we can further upper bound by

∥f̃1(y0∶1)∥2 ≤ L2
op(64∥Σw∥2

op∥Σ−1
cov∥2

op + 4∥A∥2
op + 4)(1 + ∥x0∥2) + 4L2

op(1 + ∥x1∥2).

Next, we note that ∥Σw∥op ≤ Ψ⋆ and ∥Σ−1
cov∥op ≤ 3Ψ5

⋆. Hence, we can further simplify this bound to

584L2
opΨ12

⋆ (2 + ∥x0∥2 + ∥x1∥2).

Since x0 ∼ N(0,Σ0) and x1 ∼ N(0,Σ1), we have, by Lemma I.11,

Pπ̂ [∥f̃1(y0∶1)∥2 ≥ 584LopΨ12
⋆ (2 + (3dx + 2)(∥Σ0∥op + ∥Σ1∥op)) ln(2η)] ≤ η−1,

so that in particular, we may take

b̄20 ∶= 104dxL
2
opΨ12

⋆ (1 + ∥Σ0∥op + ∥Σ1∥op). (I.74)

This establishes Eq. (H.36).

I.11 Supporting Results

Lemma I.9. Let z ∼ N(0,Σ), where Σ ∈ Rm×m is a positive definite matrix. Then E[∥z∥2] ≤
m∥Σ∥op.

Proof. Let z′ ∶= Σ−1/2z and note that z′ ∼ N(0, Im), and so ∥z′∥2 ∼ χ2(m). As a result, we have

E[∥z∥2] = E[∥Σ1/2z′∥2]
(∗)
≤ ∥Σ∥opE[∥z′∥2] =m∥Σ∥op,

where (∗) follows by Cauchy-Schwarz.

Lemma I.10. Let a0 > 0 and (a1, c1, z1), . . . , (as, cs, zs) ⊂ R3
>0, where (zi) are (potentially depen-

dent) non-negative random variables satisfying P [zi ≥ ci ln δ−1] ≤ δ, for all i ∈ [s] and δ ∈ (0,1/e].
Then, for all δ ∈ (0,1/e] we have

δ ≥ P [a0 + a1z1 + ⋅ ⋅ ⋅ + aszs ≥ (a0 +
s

∑
i=1

aici) ln(s/δ)] ,

≥ P [a0 + a1z1 + ⋅ ⋅ ⋅ + aszs ≥ (ln s + 1)(a0 +
s

∑
i=1

aici) ln δ−1] . (I.75)

Proof. Let c(δ) ∶= (a0 +∑si=1 aici) ln δ−1. Define z0 = c0 = 1. Since δ ∈ (0, e−1], we have

P [a0 + a1z1 + ⋅ ⋅ ⋅ + aszs ≥ c(δ)] = P [
s

∑
i=0

ai(zi − ci ln δ−1) ≥ 0] ,

≤ P [∃i ∈ [s] ∶ zi − ci ln δ−1 ≥ 0] ,

≤
s

∑
i=1

P [zi − ci ln δ−1 ≥ 0] ,

≤ sδ. (by assumption) (I.76)
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For any given δ ≤ 1/e, by applying this result with δ′ ∶= δ/s, we have for all δ ∈ (0,1/(se)], δ′ ≤ 1/e,
and so

c(δ′) = (a0 +
s

∑
i=1

aici) ln(s/δ) ≤ (ln s + 1)(a0 +
s

∑
i=1

aici) ln(1/δ).

This together with (I.76) implies (I.75).

Lemma I.11. Let a0 > 0 and (a1, c1,z1), . . . , (as, cs,zs) be such that (ai, ci) ⊂ R2
>0 and zi ∈ Rdi

are random vectors satisfying zi ∼ N(0,Σi) for i ∈ [s]. Then, for all δ ∈ (0,1/e] we have

δ ≥ P [a0 + a1∥z1∥2 + ⋅ ⋅ ⋅ + as∥zs∥2 ≥ (a0 +
s

∑
i=1

ai∥Σi∥op ⋅ (3di + 2)) ln(s/δ)] ,

≥ P [a0 + a1∥z1∥2 + ⋅ ⋅ ⋅ + as∥zs∥2 ≥ (ln s + 1)(a0 +
s

∑
i=1

ai∥Σi∥op ⋅ (3di + 2)) ln δ−1] . (I.77)

Proof. For i ∈ [s], let z′i ∶= Σ
−1/2
i zi; in this case, z′i ∼ N(0, Idi). Thus, by Lemma 1 of [21], we

have that
δ ≥ P [∥z′i∥2 ≥ di + 2

√
di ln δ−1 + 2 ln δ−1]

≥ P [∥zi∥2 ≥ ∥Σi∥op (di + 2
√
di ln δ−1 + 2 ln δ−1)]

≥ P [∥zi∥2 ≥ ∥Σi∥op (di + 2
√
di ln δ−1 + 2 ln δ−1)]

≥ P [∥zi∥2 ≥ ∥Σi∥op ⋅ (3di + 2) ln δ−1] , (I.78)

where the last inequality follows by the fact that δ ∈ (0,1/e]. By (I.78) and Lemma I.10, we get
(I.77).

Lemma I.12. Let ε > 0, andM,N ∈ Rm×m be given. SupposeN is non-singular and ∥M−N∥op ≤ ε.
Then if ε < σmin(N)/2, M is non-singular and

∥Im −M−1N∥op ≤ 2ε

σmin(N)
. (I.79)

Proof. We first bound the minimum singular value of M . Let x ∈ Rm be a unit-norm vector such
that ∥Mx∥ = σmin(M). Then, from the fact that ∥M −N∥op ≤ ε, we have,

ε ≥ ∥Mx −Nx∥,
≥ ∥Nx∥ − ∥Mx∥, (by the triangle inequality)
= σmin(N) − σmin(M). (using that ∥x∥ = 1)

In particular, the last inequality implies that
σmin(M) ≥ σmin(N) − ε. (I.80)

Thus, since ε < σmin(N), the matrix M is invertible. On the other hand, we have
ε ≥ ∥M −N∥op,

≥ σmin(M) ⋅ ∥Im − (M)−1N∥op,

≥ (σmin(N) − ε)∥Im −M−1N∥op. (by (I.80))
The desired result follows by the fact that ε < σmin(N)/2.

J Main Theorem and Proof

We now state and prove the main guarantee for RichID-CE (Algorithm 1). To begin, we state the
values for the algorithm’s parameters nid and nop:

nid = Ω⋆(λ−2
MT 3κ5(dx + du)16 ln15(1/δ) ⋅ ln∣F ∣

ε6
), (J.1)

nop = Ω⋆(λ−2
MT 3κ3(dx + du)12 ln11(1/δ) ⋅ ln∣F ∣

ε6
). (J.2)
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We also recall from Section 2.1 that for the burn-in time, we use the choice

κ0 ∶= ⌈(1 − γ⋆)−1 ln (84Ψ5
⋆α

4
⋆dx(1 − γ⋆)−2 ln(103 ⋅ nid))⌉ .

Finally, we set rid =
√

Ψ⋆, and set rop = Ω⋆(1) to be a sufficiently large problem-dependent constant.
The values for σ2 and b̄ are given in the following theorem.

Theorem 1a. Let δ ∈ (0,1/e] and ε = Ǒ(1) be given. Suppose we set b̄2 = Θ⋆((dx + du) ln(1/δ)),
σ2 = Ǒ(ε2/b̄2 ∧ λM), and choose nid and nop as in (J.1) and (J.2). Then with probability at least
1 −O(κT ⋅ δ), Algorithm 1 produces a policy π̂ with

JT (π̂) − JT (π∞) ≤ ε, (J.3)

and does so while using at most

O⋆(λ−2
MT 4κ5(dx + du)16 ln15(1/δ) ⋅ ln∣F ∣

ε6
)

trajectories of length O⋆(T ).

J.1 Proof of Theorem 1a

Proof of Theorem 1a. We first restate Theorem 3, which bounds the estimation error for the system
parameter estimates produced by Phase II of Algorithm 1.

Theorem 3 (Guarantee for Phase II). If nid = Ω⋆(d2
xduκ(ln ∣F ∣ + dudxκ)max{1, σmin(Cκ)−4}),

then with probability at least 1 − 11δ over Phases I and II,

∥[Âid; B̂id] − [Aid;Bid]∥op ∨ ∥Q̂id −Qid∥op ∨ ∥Σ̂w,id −Σw,id∥op ≤ εid, (12)

where εid ≤ O⋆(n−1/2
id ln2(nid/δ)

√
dxduκ(ln ∣F ∣ + dudxκ)).

Going forward we condition on the event in Theorem 3, and define f⋆,id ∶= Sidf⋆,id and K∞,id ∶=
K∞S

−1
id . We recall that whenever this event holds, we have

∥Sid∥op ∨ ∥S−1
id ∥

op
≤ Ψ

1/2
⋆ ∨ (1 − γ⋆)−1(4Ψ2

⋆α
2
⋆)σ−1

min(Cκ) = O⋆(1),

as per Theorem 2. As a consequence, we have the following fact, which we will use heavily
going forward: If we define (Ψ′

⋆, α
′
⋆, γ

′
⋆, κ

′
⋆, L

′) to be the analogues of (Ψ⋆, α⋆, γ⋆, κ⋆, L) for
(Aid,Bid,Qid,R,Σw,id, f⋆,id), we have Ψ′

⋆ = O⋆(Ψ⋆) and L′ = O⋆(L), and we may take α′⋆ =
O⋆(α⋆), γ′⋆ ≤ γ⋆, and κ′⋆ ≤ κ⋆.

We first apply Lemma H.1, which implies that once εid = Ǒ(1), we have

∥K̂ −K∞,id∥op
= O⋆(εid). (J.4)

Next, we invoke Theorem 4, associating A ← Aid, B ← Bid, Q ← Qid, Σw ← Σw,id, f⋆ ← f⋆,id,
and inflating the problem-dependent parameters by O⋆(1) accordingly. In particular, suppose that
ε2

id ≤ Ǒ((ln∣F ∣ + d2
x)n−1

op) for a problem-dependent constant c′id = Ǒ(1), and suppose we set
b̄2 = Θ⋆((dx + du) ln(nop)) and σ2 = Ǒ(λ′M) = Ǒ(λM). Then conditioned on the event of
Theorem 3, we are guaranteed that for any δ ∈ (0,1/e], with probability at least 1 −O(κTδ),

ε2
op ∶= Eπ̂ [max

1≤t≤T
∥f̂t(y0∶t) − f⋆,id(yt)∥2

2] ≤ O⋆(
λ′−2
M
σ4

⋅ T 3κ2(dx + du)4 ⋅
(d2

x + ln∣F ∣) ln5(nop/δ)
nop

).

where λ′M is the analogue of λM for the parameters (Aid,Bid,Σw,id); note that to apply the theorem,
we must set the radius of the class Hop based on Ψ′

⋆ rather than Ψ⋆, which leads to the value for this
parameter passed into Algorithm 5 when it is invoked within Algorithm 1. Likewise, we must inflate
b̄ by Ω⋆(1). Lastly, we note that λ′M ≥ Ω⋆(λM); which can be quickly verified.
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Taking a union bound and simplifying the upper bounds slightly, we are guaranteed that with
probability at least 1 −O⋆(κTδ),

ε2
id ≤ κ2(dx + du)4 ln4(nid/δ)

ln∣F ∣
nid

ε2
op ≤ O⋆(

λ−2
M
σ4

T 3κ3(dx + du)6 ln5(nop/δ) ⋅
ln∣F ∣
nop

),

so long as the conditions on nid, εid, b̄, and σ2 described so far hold. We next invoke Theorem 7
with τ = T (again, we use that changing the basis by Sid inflates problem-dependent constants by
O⋆(1)),12 which implies that

JT (π̂) − JT (π∞) ≤ O⋆(b̄ ⋅ cx ⋅ (cx ⋅ εid + εop + σ)),

where c2x = max1≤t≤T Eπ̂∥xt∥2, so long as σ2 = O⋆(1). From Lemma I.1, we have c2x ≤ O⋆(b̄2 +
dx) = O⋆(b̄2), so we may further simplify to

JT (π̂) − JT (π∞) ≤ O⋆(b̄2 ⋅ (b̄ ⋅ εid + εop + σ)).

Hence, to ensure the regret is at most O⋆(ε), as a first step we choose σ = Ǒ(ε/b̄2). This leads to

ε2
op ≤ O⋆(λ−2

MT 3κ3(dx + du)10 ln9(1/δ) ⋅ ln∣F ∣
nop

⋅ 1

ε4
).

We next choose ε2
op = Ǒ(ε2/b̄4) which, per the inequality above, entails setting

nop = Ω⋆(λ−2
Mκ3T 3(dx + du)12 ln11(1/δ) ⋅ ln∣F ∣

ε6
).

Finally, we require that εid ≤ Ǒ(ε/b̄3), and we also require εid to satisfy the earlier constraint that
ε2

id ≤ Ǒ((ln∣F ∣ + d2
x)n−1

op). To satisfy the first constraint, it suffices to take

nid = Ω⋆(κ2(dx + du)6 ln6(1/δ) ln∣F ∣
ε2

).

For the second constraint, it suffices to take

nid = Ω⋆(nop ⋅ κ2(dx + du)4 ln4(/δ))

= Ω⋆(λ−2
MT 3κ5(dx + du)16 ln15(1/δ) ⋅ ln∣F ∣

ε6
).

Lastly, we observe that the algorithm uses O(nop ⋅ T + nid) trajectories in total, leading to the final
calculation in the theorem statement.

12It is possible to get better dependence on T by choosing different values for τ based on ε, but for the sake
of simplicity we do not pursue this here.
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