
Reconciling Modern Deep Learning with Traditional
Optimization Analyses: The Intrinsic Learning Rate

Zhiyuan Li∗
Princeton University

zhiyuanli@cs.princeton.edu

Kaifeng Lyu ∗
Tsinghua University

vfleaking@gmail.com

Sanjeev Arora
Princeton University & IAS
arora@cs.princeton.edu

Abstract

Recent works (e.g., (Li and Arora, 2020)) suggest that the use of popular nor-
malization schemes (including Batch Normalization) in today’s deep learning can
move it far from a traditional optimization viewpoint, e.g., use of exponentially
increasing learning rates. The current paper highlights other ways in which be-
havior of normalized nets departs from traditional viewpoints, and then initiates
a formal framework for studying their mathematics via suitable adaptation of the
conventional framework namely, modeling SGD-induced training trajectory via
a suitable stochastic differential equation (SDE) with a noise term that captures
gradient noise. This yields: (a) A new “intrinsic learning rate” parameter that is the
product of the normal learning rate η and weight decay factor λ. Analysis of the
SDE shows how the effective speed of learning varies and equilibrates over time
under the control of intrinsic LR. (b) A challenge—via theory and experiments—to
popular belief that good generalization requires large learning rates at the start
of training. (c) New experiments, backed by mathematical intuition, suggesting
the number of steps to equilibrium (in function space) scales as the inverse of
the intrinsic learning rate, as opposed to the exponential time convergence bound
implied by SDE analysis. We name it the Fast Equilibrium Conjecture and suggest
it holds the key to why Batch Normalization is effective.

1 Introduction

The training of modern neural networks involves Stochastic Gradient Descent (SGD) with an appro-
priate learning rate schedule. The formula of SGD with weight decay can be written as:

wt+1 ← (1− ηtλ)wt − ηt∇Lt(wt),
where λ is the weight decay factor (or L2-regularization coefficient), ηt and∇Lt(wt) are the learning
rate and batch gradient at the t-th iteration.

Traditional analysis shows that SGD approaches a stationary point of the training loss if the learning
rate is set to be sufficiently small depending on the smoothness constant and noise scale. In this
viewpoint, if we reduce the learning rate by a factor 10, the end result is the same, and just takes 10
times as many steps. SGD with very tiny step sizes can be thought of as Gradient Descent (GD) (i.e.,
gradient descent with full gradient), which in the limit of infinitesimal step size approaches Gradient
Flow (GF).

However, it is well-known that using only small learning rates or large batch sizes (while fixing other
hype-parameters) may lead to worse generalization (Bengio, 2012; Keskar et al., 2017). From this
one concludes that finite (not too small) learning rate —alternatively, noise in the gradient estimate,
or small batch sizes— play an important role in generalization, and many authors have suggested that
the noise helps avoid sharp minima (Hochreiter and Schmidhuber, 1997; Keskar et al., 2017; Li et al.,

∗These authors contribute equally.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2018; Izmailov et al., 2018; He et al., 2019). Formal understanding of the effect involves modeling
SGD via a Stochastic Differential Equation (SDE) in the continuous time limit (Li and Tai, 2019):

dWt = −η(t)λWtdt− η(t)∇L(Wt)dt+ η(t)Σ
1/2
Wt
dBt,

where Σw is the covariance matrix of the noise atWt = w. Several works have adopted this SDE
view and given some rigorous analysis of the effect of noise (Smith and Le, 2018; Chaudhari and
Soatto, 2018; Shi et al., 2020).

While this SDE view is well-established, we will note in this paper that the past works (both
theory and experiments) often draw intuition from shallow nets and do not help understand modern
architectures, which can be very deep and crucially rely upon normalization schemes such as Batch
Normalization (BN) (Ioffe and Szegedy, 2015), Group Normalization (GN) (Wu and He, 2018),
Weight Normalization (WN) (Salimans and Kingma, 2016). We will discuss in Section 4 that these
normalization schemes are incompatible to the traditional view points in the following senses. First,
normalization makes the loss provably non-smooth around origin, so GD could behave (and does
behave, in our experiments) significantly differently from its continuous counterpart, GF, if weight
decay is turned on. For example, GD may oscillate between zero loss and high loss and thus cannot
persistently achieve perfect interpolation. Second, there is experimental evidence suggesting that
the above SDE may be far from mixing for normalized networks in normal training budgets. Lastly,
assumptions about the noise in the gradient being a fixed Gaussian turn out to be unrealistic.

In this work, we incorporate effects of normalization in the SDE view to study the complex interaction
between BN, weight decay, and learning rate schedule. We particularly focus on Step Decay, one of
the most commonly-used learning rate schedules. Here the training process is divided into several
phases 1, . . . ,K. In each phase i, the learning rate ηt is kept as a constant η̄i, and the constants η̄i are
decreasing with the phase number i. Our main experimental observation is the following one, which
is formally stated as a conjecture in the context of SDE in Section 5.2.
Observation 1.1. If trained for sufficiently long time during some phase i (1 ≤ i ≤ K), a neural
network with BN and weight decay will eventually reach an equilibrium distribution in the function
space. This equilibrium only depends on the product η̄iλ, and is independent of the history in the
previous phases. Furthermore, the time that the neural net stays at this equilibrium will not affect its
future performance.

Our contributions. In this work, we identify a new “intrinsic LR” parameter λe = λη based on
Observation 1.1. The main contributions are the following:

1. We theoretically analyse how intrinsic LR controls the evolution of effective speed of learning and
how it leads to the equilibrium. This is done through incorporating BN and weight decay into the
classical framework of Langevin Dynamics (Section 5).

2. Based on our theory, we empirically observed that small learning rates can perform equally well,
which challenges the popular belief that good generalization requires large initial LR (Section 6).

3. Finally, we make a conjecture, called Fast Equilibrium Conjecture, based on mathematical intuition
(Section 5) and experimental evidence (Section 6): the number of steps for reaching equilibrium
in Observation 1.1 scales inversely to the intrinsic LR, as opposed to the mixing time upper bound
eO(1/η) for Langevin dynamics (Bovier, 2004; Shi et al., 2020). This gives a new perspective in
understanding why BN is effective in deep learning.

2 Related Works
Effect of Learning Rate / Batch Size. The generalization issue of large batch size / small learning
rate has been observed as early as (Bengio, 2012; LeCun et al., 2012). (Keskar et al., 2017) argued
that the cause is that large-batch training tends to converge to sharp minima, but (Dinh et al., 2017)
noted that sharp minima can also generalize well due to invariance in ReLU networks. (Li et al.,
2019) theoretically analysed the effect of large learning rate in a synthetic dataset to argue that the
magnitude of learning rate changes the learning order of patterns in non-homogeneous dataset. To
close the generalization gap between large-batch and small-batch training, several works proposed
to use a large learning rate in the large-batch training to keep the scale of gradient noise (Hoffer
et al., 2017; Smith and Le, 2018; Chaudhari and Soatto, 2018; Smith et al., 2018). Shallue et al.
(2019) demonstrated through a systematic empirical study that there is no simple rule for finding the
optimal learning rate and batch size as the generalization error could largely depend on other training
metaparameters. None of these works have found that training without a large initial learning rate
can generalize equally well in presence of BN.

2

Batch Normalization. Batch Normalization is proposed in (Ioffe and Szegedy, 2015). While the
original motivation is to reduce Internal Covariate Shift (ICS), (Santurkar et al., 2018) challenged
this view and argued that the effectiveness of BN comes from a smoothening effect on the training
objective. (Bjorck et al., 2018) empirically observed that the higher learning rate enabled by BN is
responsible for the better generalization. (Kohler et al., 2019) studied the direction-length decoupling
effect in BN and designed a new optimization algorithm with faster convergence for learning 1-layer
or 2-layer neural nets. Another line of works focus on the effect of scale-invariance induced by BN as
well as other normalization schemes. (Hoffer et al., 2018a) observed that the effective learning rate
of the parameter direction is η

‖wt‖2
. (Arora et al., 2019b) identified an auto-tuning behavior for the

effective learning rate and (Cai et al., 2019) gave a more quantitative analysis for linear models. In
presence of BN and weight decay, (van Laarhoven, 2017) showed that the gradient noise causes the
norm to grow and the weight decay causes to shrink, and the effective learning rate eventually reaches
a constant value if the noise scale stays constant. (Zhang et al., 2019) validated this phenomenon
in the experiments. (Li and Arora, 2020) rigorously proved that weight decay is equivalent to an
exponential learning rate schedule.

3 Preliminaries
Stochastic Gradient Descent and Weight Decay. Let {(xi, yi)}ni=1 be a dataset consisting of
input-label pairs. In (mini-batch) stochastic gradient descent, the following is the update, where
Bt ⊆ {1, . . . , n} is a mini-batch of random samples, wt is the vector of trainable parameters of a
neural network, L(w;B) = 1

|B|
∑
b∈B `B(w;xb, yb) is the average mini-batch loss (we use subscript

B because ` can depend on B if BN is used) and ηt is the learning rate (LR) at step t:
wt+1 ← wt − ηt∇L(wt;Bt). (1)

Weight decay (WD) with parameter λ (a.k.a., adding an `2 regularizer term λ
2 ‖w‖

2
2) is standard in

networks with BN, yielding the update:
wt+1 ← (1− ηtλ)wt − ηt∇L(wt;Bt). (2)

Normalization Schemes and Scale-invariance. Batch normalization (BN) (Ioffe and Szegedy,
2015) makes the training loss invariant to re-scaling of layer weights, as it normalizes the output
for every neuron (see Appendix A for details; scale-invariance emerges if the output layer is fixed).
We name this property as scale-invariance. More formally, we say a function f : Rd → R is
scale-invariant if f(w) = f(αw),∀w ∈ Rd, α > 0. Note that scale-invariance is a general property
that also holds for loss in presence of other normalization schemes (Wu and He, 2018; Salimans and
Kingma, 2016; Ba et al., 2016).

Scale-invariance implies the gradient and Hessian are inversely proportional to ‖w‖ , ‖w‖2 respec-
tively, meaning that the smoothness is unbounded near w = 0. This can be seen by taking gradients
with respect to w on both sides of f(w) = f(αw):

Lemma 3.1. For a scale-invariant function f : Rd → R, ∇f(αw) = 1
α∇f(w) and ∇2f(αw) =

1
α2∇2f(w) hold for all w and α > 0.

The gradient can also be proved to be perpendicular to w, that is, 〈∇f(w),w〉 = 0 holds for allw.
This property can also be seen as a corollary of Euler’s Homogeneous Function Theorem. In the
deep learning literature, (Arora et al., 2019b) used this in the analysis of the auto-tuning behavior of
normalization schemes.

Approximating SGD by SDE. Define the expected loss L(w) := EB [L(w;B)] and the error
term ξ := ∇L(w;Bt)−∇L(w). Then we can rewrite the formula of SGD with constant LR η as
wt+1 ← wt − η (∇L(wt) + ξt). The mean of gradient noise is always 0. The covariance matrix
of the gradient noise at w equals to Σw := EB[(∇L(w;B) − ∇L(w))(∇L(w;B) − ∇L(w))>].
To approximate SGD by SDE, the classic approach is to model the gradient noise by Gaussian
noise ξt ∼ N (0,Σwt), and then take the continuous time limit to obtain the surrogate SDE for
infinitesimal LR (Li et al., 2017; Cheng et al., 2019). As is done in previous works (Smith and Le,
2018; Smith et al., 2018; Chaudhari and Soatto, 2018; Shi et al., 2020), we also use this surrogate
dynamics to approximate SGD with LR of any size:

dWt = −η
(
∇L(Wt)dt+ (ΣWt

)
1
2 dBt

)
. (3)

HereBt ∈ Rd is the Wiener Process (Brownian motion), which satisfiesBt−Bs ∼ N(0, (t− s)Id)
conditioned onBs. When Σw is 0 (the full-batch GD case), (3) is known as gradient flow.

3

Folklore view of landscape exploration. There is evidence that the training loss has many
global minima (or near-minima), whose test loss values can differ radically. The basins around
these global minima are separated by “hills” and only large noise can let SGD jump from one to
another, while small noise will only make the network oscillate in the same basin around a minimum.
The regularization effect of large LR/large noise happens because (1) sharp minima have worse
generalization (2) noise prevents getting into narrow basins and thus biases exploration towards flatter
basins. (But this view is known to be simplistic, as noted in many papers.)

4 Apparent Incompatibility between BN and Traditional View Points
In this section, we discuss how BN leads to issues with the traditional optimization view of gradient
flow and SDE. This motivates our new view in Section 5. Figures 5 and 6 are deferred into Appendix D
due to page limit.

Full batch gradient descent 6= gradient flow. It’s well known that if LR is smaller than the inverse
of the smoothness, then trajectory of gradient descent will be close to that of gradient flow. But
for normalized networks, the loss function is scale-invariant and thus provably non-smooth (i.e.,
smoothness becomes unbounded) around origin (Li et al., 2019). (By contrast, without WD, the SGD
moves away from origin (Arora et al., 2019b) since norm increases monotonically.) We will show
that this nonsmoothness is very real and makes training unstable and even chaotic for full batch SGD
with any nonzero learning rate. And yet convergence of gradient flow is unaffected.

Consider a toy scale-invariant loss, L(x, y) = x2

x2+y2 . Since loss only depends on x/y, WD has
no effect on it. Even with WD turned on, Gradient Flow (i.e., infinitesimal updates) will lead to
monotone decrease in |xt/yt|. But Figure 5a in the appendix shows that dynamics for GD with WD
are chaotic: as similar trajectories approach the origin, tiny differences are amplified and they diverge.

Modern deep nets with BN + WD (the standard setup) also exhibit instability close to zero loss. See
Figures 5b and 5c, where deep nets being trained on small datasets exhibit oscillation between zero
loss and high loss. In any significant period with low loss (i.e., almost full accuracy), gradient is small
but WD continues to reduce the norm, and resulting non-smoothness leads to large increase in loss.

Problems with random walk/SDE view of SGD. The standard story about the role of noise in
deep learning is that it turns a deterministic process into a geometric random walk in the landscape,
which can in principle explore the landscape more thoroughly, for instance by occasionally making
loss-increasing steps. Rigorous analysis of this walk is difficult since the mathematics of real-life
training losses is not understood. But assuming the noise in SDE is a fixed Gaussian, the stationary
distribution of the random walk can be shown to be the familiar Gibbs distribution over the landscape.
See (Shi et al., 2020) for a recent account, where SDE is shown to converge to equilibrium distribution
in eO(C/η) time for some term C depending upon loss function. This convergence is extremely slow
for small LR η and thus way beyond normal training budget.

Recent experiments have also suggested the walk does not reach this initialization-independent
equilibrium within normal training time. Stochastic Weight Averaging (SWA) (Izmailov et al., 2018)
shows that the loss landscape is nearly convex along the trajectory of SGD with a fixed hyper-
parameter choice, e.g., if the two network parameters from different epochs are averaged, the test
loss is lower. This reduction can go on for 10 times more than the normal training budget as shown
in Figure 6. However, the accuracy improvement is a very local phenomenon since it doesn’t happen
for SWA between solutions obtained from different initialization, as shown in (Draxler et al., 2018;
Garipov et al., 2018). This suggests the networks found by SGD within normal training budget highly
depends on the initialization, and thus SGD doesn’t mix in the parameter space.

Another popular view (e.g., (Izmailov et al., 2018)) believes that instead of mixing to the unique
global equilibrium, the trajectory of SGD could be well approximated by a multivariate Ornstein-
Uhlenbeck (OU) process around a local minimizer W∗, assuming the loss surface is locally strongly
convex. As the corresponding stationary point is a Gaussian distribution N (W∗,Σ), this explains
why SWA helps to reduce the training loss. However, this view is challenged by the fact that the `2
distance between weights from epochs T and T +∆ monotonically increases with ∆ for every T (See
Figure 6b), while E[‖WT −WT+∆‖22] should converge to the constant 2 Tr(Σ) as T,∆→ +∞ in
the OU process. This suggests that all these weights are correlated and haven’t mixed to Gaussian.

For the case where WD is turned off, (Arora et al., 2019b) proves that the norm of weight is monotone
increasing, thus the mixing in parameter space provably doesn’t exist for SGD with BN.

4

5 SDE-based framework for modeling SGD on Normalized Networks
For SGD with learning rate η and weight decay λ, we define λe := ηλ to be the effective weight decay.
This is actually the original definition of weight decay (Hanson and Pratt, 1989) and is also proposed
(based upon experiments) in (Loshchilov and Hutter, 2019) as a way to improve generalization for
Adam and SGD. In Section 5.1, we will suggest calling λe the intrinsic learning rate because it
controls trajectory in a manner similar to learning rate. Now we can rewrite update rule (2) and its
corresponding SDE as

wt+1 ← (1− λe)wt − η (∇L(wt) + ξt) . (4)

dWt = −η
(
∇L(Wt)dt+ (ΣWt

)
1
2 dBt

)
− λeWtdt. (5)

5.1 SDE with Weight Decay and Normalization

When the loss function is scale-invariant, the gradient noise ΣW is inherently anisotropic and
position-dependent: Lemma B.1 in the appendix shows the noise lies in the subspace perpendicular
to w and blows up close to the origin. To get an SDE description closer to the canonical format, we
reparametrize parameters to unit norm. Define W t = Wt

‖Wt‖ , Gt = ‖Wt‖2, where ‖w‖ stands for
the L2-norm of a vector w. The following Lemma is proved in the appendix using Itô’s Lemma:

Theorem 5.1. The evolution of the system can be described as:

dW t = − η

Gt

(
∇L(W t)dt+ (ΣW t

)
1
2 dBt

)
− η2

2G2
t

Tr(ΣW t
)W tdt (6)

dGt
dt

= −2λeGt +
η2

Gt
Tr(ΣW t

). (7)

The SDE enables clean mathematical demonstration of many properties of normalization schemes.
For example, dividing both sides of (7) by η gives

d(Gt/η)

dt
= −2λe ·

Gt
η

+
η

Gt
Tr(ΣW t

). (8)

This shows that the dynamics only depends on the ratio Gt/η, which also suggests that initial LR
is of limited importance, indistinguishable from scale of initialization. Now define γt := (Gt/η)2.
(η/Gt = γ−0.5

t was called the effective learning rate in (Hoffer et al., 2018a; Zhang et al., 2019;
Arora et al., 2019b).) This simplifies the equations:

dW t = −γ−1/2
t

(
∇L(W t)dt+ (ΣW t

)
1
2 dBt

)
− 1

2γt
Tr(ΣW t

)W tdt. (9)

dγt
dt

= −4λeγt + 2 Tr(ΣW t
). (10)

(10) can be alternatively written as the following, which shows that squared effective LR γt is a
running average of the norm squared of gradient noise.

γt = e−4λetγ0 + 2

∫ t

0

e−4λe(t−τ) Tr(ΣW τ
)dτ. (11)

Experimentally2 we find that the trace of noise is approximately constant. This is the assumption of
the next lemma (much weaker than assumption of fixed gaussian noise in past works).

Lemma 5.2. If σ2 ≤ Tr(ΣW) ≤ (1 + ε)σ2 for allW encountered in the trajectory, then

γt = e−4λetγ0 + (1 +O(ε))
σ2

2λe

(
1− e−4λet

)
. (12)

The lemma again suggests that the initial effective LR decided together by LR η and norm ‖W0‖ only
has a temporary effect on the dynamics: no matter how large is the initial effective LR, after O(1/λe)

time, the effective LR γ
−1/2
t always converges to the stationary value (1 +O(ε)) σ√

2λe
∝ λ−1/2

e .

2Figures 4 and 11 shows that after a certain length of time the relationship γ1/2
t ∝ λ−1/2

e holds approximately, up to a small multi-
plicative constant. Since γt is the running average of Tr(ΣW), the magnitude of the noise, it suggests for different regions of the landscape
explored by SGD with different intrinsic LR λe, the noise scales don’t differ a lot.

5

0 200 400 600 800 1000 1200
Number of epochs

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy Schedule_1:train acc

Schedule_1:test acc
Schedule_2:train acc
Schedule_2:test acc
Schedule_3:train acc
Schedule_3:test acc
Schedule_4:train acc
Schedule_4:test acc
Schedule_5:train acc
Schedule_5:test acc

(a) Train/test accuracy

0 200 400 600 800 1000 1200
Number of epochs

105

106

107
Schedule_1:norm square
Schedule_1:1/effective lr
Schedule_2:norm square
Schedule_2:1/effective lr
Schedule_3:norm square
Schedule_3:1/effective lr
Schedule_4:norm square
Schedule_4:1/effective lr
Schedule_5:norm square
Schedule_5:1/effective lr

(b) Norm and effective LR

Figure 1: PreResNet32 trained by SGD with 5 random LR/WD schedules in the first 500 epochs converge
to the same equilibrium when LR and WD factor are set the same at epoch 500 – These different trajectories
exhibit similar test/train accuracy, norm and effective LR. Moreover, they achieve the same best test accuracy
(∼ 95%, the same as that with momentum) after decaying LR and removing WD at epoch 1000, suggesting that
the equilibrium is independent of initialization. See details of the schedules in Table 1. (Appendix)

5.2 A conjecture about mixing time in function space
As mentioned earlier, there is evidence that SGD may take a very long time to mix in the parameter
space. However, we observed that test/train errors converge in expectation soon after the norm
‖Wt‖ converges in expectation, which only takes O(1/λe) time by our theoretical analysis. More
specifically, we find experimentally that the number of steps of SGD (or the length of time for SDE)
after the norm converges doesn’t significantly affect the expectation of any known statistics related to
the training procedure, including train/test errors, and even the output distribution on every single
datapoint. This suggests the neural net reaches an “equilibrium state” in function space.

The above findings motivate us to define the notion of “equilibrium state” rigorously and make a
conjecture formally. For learning rate schedule η(t) and effective weight decay schedule λe(t), we
define ν(µ;λe, η, t) to be the marginal distribution ofWt in the following SDE whenW0 ∼ µ:

dWt = −η(t)
(
∇L(Wt)dt+ (ΣWt

)
1
2 dBt

)
− λe(t)Wtdt. (13)

For a random variable X , we define PX to be the probability distribution of X . The total variation
dTV(P1, P2) between two probability measures P1, P2 is defined by the supremum of |P1(A) −
P2(A)| over all measurable set A. Given input x and neural net parameter w, we use F (w;x) to
denote the class prediction of the neural net on input x.
Conjecture 5.3 (Fast Equilibrium Conjecture). Under the dynamics of (9) and (10), modern neural
nets converge to the equilibrium distribution in O(1/λe) time in the following sense. Given two
initial distributions µ, µ′ forW0, constant learning rate and effective weight decay schedules λ∗e, η

∗,
there exists a mixing time T = O(1/λ∗e)

3 such that for any input data x from some input domain X ,
dTV

(
PF (Wt; x), PF (W ′

t ; x)

)
≈ 0 for all t ≥ T , whereWt ∼ ν(µ;λ∗e, η

∗, t),W ′
t ∼ ν(µ′;λ∗e, η

∗, t).

It is worth to note that this conjecture obviously does not hold for some pathological initial dis-
tributions, e.g., all the neurons are initially dead. But we can verify that our conjecture holds for
many initial distributions that can occur in training neural nets, e.g., random initialization, or the
distribution after training with certain schedule for certain number of epochs. It remains a future
work to theoretically identify the specific condition for this conjecture.

Interesting, we empirically find that the above conjecture still holds even if we are allowed to fine-tune
the model before producing the output. This can be modeled by starting another SDE from t ≥ T :

Conjecture 5.4 (Fast Equilibrium Conjecture, Strong Form). Let η̃(τ), λ̃e(τ) be a pair of learning
rate and effective weight decay schedules. Under the same conditions of Conjecture 5.3, there
exists a mixing time T = O(1/λ∗e) such that for any input data x from some input domain X ,
dTV

(
PF (Wt,τ ; x), PF(W ′

t,τ ; x)

)
≈ 0 for all t ≥ T , where Wt,τ ∼ ν

(
ν(µ;λ∗e, η

∗, t); λ̃e, η̃, t
)

,

W ′
t,τ ∼ ν

(
ν(µ′;λ∗e, η

∗, t); λ̃e, η̃, t
)

.

In the Appendix C we provide the discrete version of the above conjecture by viewing each step of
SGD as one step transition of a Markov Chain. By this means we can also extend the conjecture to
SGD with momentum and even Adam.

3 Here we assume the both initial weight norm and the initial LR are of constant magnitude. Otherwise there will be a multiplicative
log γ0 factor in the mixing time, as indicated by Equation (11). This log dependency can usually be ignored in practice, unless the initial
weight norm or LR are extremely large or small. See Figure 8.

6

(a) Train accuracy (b) Test accuracy (c) 0.5 log10 γt (d) Train/Test Accuracy

Figure 2: (a)-(c) Achieving SOTA test accuracy by 0.9-momentum SGD with small learning rates (the blue
line). (Similar phenomenon observed for vanilla SGD, see Figure 10 in Appendix F) The initial learning rate is
0.1, initial WD factor is 0.0005. The label wd_x_y_lr_z_u means dividing WD factor by 10 at epoch x and y,
and dividing LR by 10 at epoch z and u. For example, the blue line means dividing LR by 10 twice at epoch 0,
i.e. using an initial LR of 0.001 and dividing LR by 10 at epoch 5000. The red line is baseline. (d) Equilibrium
of smaller intrinsic LR leads to higher test accuracy on CIFAR after LR decay by 10. PreResNet32 trained with
SGD without momentum and with WD factor 0.0005.

5.3 What happens in real life training – An interpretation

Let’s first recap Step Decay – there are K phases and LR in phase i is η̄i. Below we will explain or
give better interpretation for some phenomena in real life training related to Step Decay.

Sudden increase of test error and training loss after every LR decay: Usually here LR is
dropped by something like a factor 10. As shown above, the instant effect is to reduce effective LR by
a factor of 10, but it gradually equilibriates to the value λ−1/2

e , which is only reduced by a factor of√
10. Hence there is a slow rise in error after every drop, as observed in previous works (Zagoruyko

and Komodakis, 2016; Zhang et al., 2019; Li and Arora, 2020). This rise could be beneficial since it
coincides with equilibrium state in function space.

Intrisic LR and the final LR decay step: However, the final LR decay needs to be treated
differently. It is customary do early stopping, that finish very soon after the final LR decay, when
accuracy is best. The above paragraph can help to explain this by decomposing the training after
the final LR decay into two stage. In the first stage, the effective LR is very small, so the dynamics
is closer to the classical gradient flow approximation, which can settle into a local basin. In the
second stage, the effective LR increases to the stationary value and brings larger noise and worse
performance. This decomposition also applies to earlier LR decay operations, but the phenomenon is
more significant for the final LR decay because the convergence time O(1/λe) is much longer.

Since each phase in Step decay except the last one is allowed to reach equilibrium, the above
conjecture suggests the generalization error of Step Decay schedule only depends on the intrinsic LR
for its last equilibrium, namely the second-to-last phase. Thus, Step Decay could be abstracted into
the following general two-phase training paradigm, where the only hyper-parameter of SGD that
affects generalization is the intrinsic LR, λe:

1. SDE Phase. Reach the equilibrium of (momentum) SGD with λe (as fast as possible).

2. Gradient Flow Phase. Decay the learning rate by a large constant, e.g., 10, and set λe = 0. Train
until loss is zero.

The above training paradigm says for good generalization, what we need is only reaching the
equilibrium of small (intrinsic) LR and then decay LR and stop quickly. In other words, the initial
large LR should not be necessary to achieve high test accuracy. Indeed our experiments show that
networks trained directly with the small intrinsic LR, though necessarily for much longer due to
slower mixing, also achieve the same performance. See Figure 2 for SGD with momentum and
Figure 10 for vanilla SGD.

So what’s the benefit of early large learning rates? Empirically we observed that initial large
(intrinsic) LR leads to a faster convergence of the training process to the equilibrium. See the red lines
in Figure 2. A natural guess for the reason is that directly reaching the equilibrium of small intrinsic
LR from the initial distribution is slower than to first reaching the equilibrium of a larger intrinsic LR
and then the equilibrium of the target small intrinsic LR. This has been made rigorous for the mixing
time of SDE in parameter space (Shi et al., 2020). In our setting, we show in Appendix E that this
argument makes sense at least for norm convergence: the initial large LR reduces the gap between
the current norm and the stationary value corresponding to the small LR, in a much shorter time.
In Figure 8, we show that the early large learning rate is crucial for the learnability of normalized
networks with initial distributions with extreme magnitude. Intriguingly, though without a theoretical
analysis, early large learning rate experimentally (see Figure 10c) accelerates norm convergence and
convergence to equilibrium even with momentum.

7

50 100 150 200
epoch

0

2

4

6

8

10

er
ro

r
100 120 140

0

2

4

Const (train)
Const (test)

LR-decay (train)
LR-decay (test)

WD-decay (train)
WD-decay (test)

(a) Train/test accuracy

100 101 102

number of trials

10 2

10 1

to
tal

 v
ar

iat
io

n
wi

th
 C

on
st[

12
0]

Const[60]
LR-decay[120]
WD-decay[120]

100 101 102

number of trials

10 3

10 2

to
tal

 v
ar

iat
io

n
wi

th
 C

on
st[

20
0]

LR-decay[200]
WD-decay[200]

(b) Total variation

Figure 3: A simple 4-layer CNN trained on MNIST with three schedules converge to the same equilibrium after
intrinsic LRs become equal at epoch 81. (a) The train/test errors (averaged over 500 trials) are almostly the same
from epoch 81. (b) We estimate the total variation between the empirical distribution of the predictions on test
images for neural nets trained with schedule Const and other schedules for 120/200 epochs (solid lines). The
estimated value decreases with the number of trials. For comparison, the dashed lines are the sum of averaged
test errors of each pair of training processes, which can be seen as baselines since the sum is the total variation
when the set of images that lead to wrong predictions for the two training processes are completely different.

But is it worth waiting for the equilibrium of small (intrinsic) LR? In Figure 2d we show
that different equilibrium does lead to different performance after the final LR decay. Given this
experimental result we speculate the basins of different scales in the optimization landscape seems
to be nested, i.e., a larger basin can contain multiple smaller basins of different performances. And
reaching the equilibrium of a smaller intrinsic LR seems to be a stronger regularization method,
though it also costs much more time.

Batch size and linear scaling rule: Recall the batch loss is L(w;B) = 1
|B|
∑
b∈B `B(w;xb, yb).

If `B is independent of B, such as GroupNorm or LayerNorm is used instead of BN, we have
ΣBw = 1

BΣ1
w, where ΣBw is the noise covariance when the batch size is B. Therefore, let WB,η

t

denote the solution in Equation (3), we have WB,η
t = W

1, ηB
Bt , given that the initialization are the

same, i.e. WB,η
0 = W

1, ηB
0 . In other words, up to a time rescaling, doubling the batch size B is

equivalent to halving down LR η for all losses in the SDE regime, a.k.a. linear scaling rule (Goyal
et al., 2017), in which case it can be shown that λeB alone determines the equilibrium of SDE. However,
this analysis is less general, e.g., it doesn’t work for BN, especially when batch size goes to 0, as ΣBw
can be significantly different from 1

BΣ1
w due to the noise in batch statistics. Thus we treat batch size

B as a fixed hyper-parameter in this paper.

6 Experimental Evidence of Theory

6.1 Equilibrium is independent of the initial distribution

In this subsection we aim to show that the equilibrium only depends on the intrinsic LR, λe = ηλ,
and is independent of the initial distribution of the weights and individual values of η and λ.

MNIST Experiments. We use a simple 4-layer CNN for MNIST. To highlight the effect of scale-
invariance, we make the CNN scale-invariant by fixing the last linear layer as well as the affine
parameters in every BN. Figure 3a shows the train/test errors for three different schedules, Const,
LR-decay and WD-decay. Each error curve is averaged over 500 independent runs, where we call
each run as a trial. Const initiates the training with η = 0.1 and λ = 0.1. LR-decay initiates
the training with 4 times larger LR and decreases LR by a factor of 2 every 40 epochs. WD-decay
initiates the training with 4 times larger WD and decreases WD by a factor of 2 every 40 epochs. All
these three schedules share the same intrinsic LR from epoch 81 to 120, and thus reach the same
train/test errors in this phase as we have conjectured. Moreover, after we setting η = 0.01 and λ = 0
at epoch 121 for fine-tuning, all the schedules show the same curve of decreasing train/test errors,
which verifies the strong form of our conjecture.

Figure 3b measures the total variation between predictions of neural nets trained for 120 and 200
epochs with different schedules. Given a pair of distributions W,W ′ of neural net parameters
(e.g., the distributions of neural net parameters after training with LR-decay and WD-decay for 200
epochs), we enumerate each input image x from the test set and compute the total variation between
the empirical distributions Dx,D′x of the class prediction on x for weights sampled fromW,W ′,

8

(a) Train/test accuracy (b) Norm and 1/ effective LR, γ0.5
t

Figure 4: Smaller intrinsic LR takes longer time to stabilize its norm. We train two PreResNet32 by SGD
with the same initial LR, η = 3.2 and WD factor, λ = 0.0005 without momentum. The LR/ WD factor are
divided by 2 at epoch 200, 400, 600, 800, 1200, 2000 and 4000 respectively. Still, the networks share almost the
same effective LR and train/test accuracy for most of the time. The best test accuracies for both are achieved by
removing WD and dividing LR by 10 at epoch 8000.

where Dx,D′x are estimated via Monte Carlo. Figure 3b shows that the average total variation over
test inputs decrease with the number of trials, again suggestting mixing happens in the function space.

CIFAR-10 Experiments. We use PreResNet32 for CIFAR10 with data augmentation and the batch
size is 128. We modify the downsampling part according to the Appendix C in (Li et al., 2019) and
fix the last layer and γ, β in every BN, to ensure the scale invariance. In Figure 1 we focus on the
comparison between the performance of the networks within and after leaving the equilibrium, where
the networks are initialized differently via different LR/WD schedules before switching to the same
intrinsic LR. We repeat this experiment with VGG16 on CIFAR-10 (Figure 12 in Appendix F) and
PreResNet32 on CIFAR-100 (Figure 13 in Appendix F) in appendix and get the same results. A
direct comparison between the effect of LR and WD can be found in Figure 4.

6.2 Reaching Equilibrium only takes O(1/(λη)) steps

In Figure 4 we show that convergence of norm is a good measurement for reaching equilibrium, and
it takes longer time for smaller intrinsic LR λe. The two networks are trained with the same sequence
of intrinsic learning rates, where the first schedule (blue) decays LR by 2 at epoch , and the second
schedule decays WD factor by 2 at the same epoch list. Note that the effective LR almost has the
same trend as the training accuracy. Since in each phase, the effective LR γ−0.5

t ∝ ‖Wt‖−2, we
conclude that the convergence of norm suggests SGD reaches the equilibrium.

In Figure 11 (Appendix F) we provide experimental evidence that the mixing time to equilibrium in
function space scales to 1

ηλ . Note in Equation (12), the convergence of norm also depends on the
initial value. Thus in order to reduce the effect of initialization on the time towards equilibrium, we use
the setting of Figure 3 in (Li et al., 2019), where we first let the networks with the same architecture
reach the equilibrium of different intrinsic LRs, and we decay the LR by 10 and multiplying the WD
factor by 10 simultaneously. In this way the intrinsic LR is not changed and the equilibrium is still
the same. However, the effective LR is perturbed far away from the equilibrium, i.e. multiplied by
0.1. And we measure how long does it takes SGD to recover the network back to the equilibrium and
we find it to be almost linear in 1/λη.

7 Conclusion and Open Questions

We pointed that use of normalization in today’s state-of-art architectures today leads to a mismatch
with traditional mathematical views of optimization. To bridge this gap we develop the mathematics
of SGD + BN + WD in scale-invariant nets, in the process identifying a new hyper-parameter
“intrinsic learning rate”, λe = ηλ, for which appears to determine trajectory evolution and network
performance after reaching equilibrium. Experiments suggest time to equilibrium in function space is
only O(1

λe
), dramatically lower than the usual exponential upper bound for mixing time in parameter

space. Our fast equilibrium conjecture about this may guide future theory. The conjecture suggests a
more general two-phase training paradigm, which could be potentially interesting to practitioners and
lead to better training.

Our theory shows that convergence of norm is a good sign for having reached equilibrium. However,
we still lack a satisfying measure of the progress of training, since empirical risk is not good. Finally,
it would be good to understand why reaching equilibrium helps regularization.

9

Acknowledgement

This work is supported from NSF, ONR, Simons Foundation, Schmidt Foundation, Mozilla Research,
Amazon Research, DARPA, SRC and Microsoft Research.

Broader Impact

The observation of this paper may help understanding the generalization of deep learning and make
hyper-parameter tuning easier for both researchers and practitioners.

References
Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On

exact computation with an infinitely wide neural net. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’ Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8139–8148. Curran Associates, Inc., 2019a.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. In International Conference on Learning Representations, 2019b.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, pages 437–478. Springer, 2012.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 7694–7705. Curran Asso-
ciates, Inc., 2018.

Eckhoff-Michael Gayrard Véronique Klein Markus Bovier, Anton. Metastability in reversible
diffusion processes i: Sharp asymptotics for capacities and exit times. Journal of the European
Mathematical Society, 006(4):399–424, 2004.

Yongqiang Cai, Qianxiao Li, and Zuowei Shen. A quantitative analysis of the effect of batch
normalization on gradient descent. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 882–890, Long Beach, California, USA, 09–15 Jun 2019.
PMLR.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference, con-
verges to limit cycles for deep networks. In International Conference on Learning Representations,
2018.

Xiang Cheng, Dong Yin, Peter L Bartlett, and Michael I Jordan. Stochastic gradient and langevin
processes. arXiv preprint arXiv:1907.03215, 2019.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1019–1028. JMLR.org, 2017.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht. Essentially no barriers
in neural network energy landscape. arXiv preprint arXiv:1803.00885, 2018.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural Information
Processing Systems, pages 8789–8798, 2018.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

10

Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases for minimal network construction with
back-propagation. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems
1, pages 177–185. Morgan-Kaufmann, 1989.

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local minima.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 2553–2564. Curran Associates, Inc.,
2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 1731–1741. Curran Associates, Inc., 2017.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 2160–2170. Curran Associates, Inc., 2018a.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classifier: the marginal value of training the
last weight layer. In International Conference on Learning Representations, 2018b.

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning-Volume 37, pages 448–456. JMLR. org, 2015.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Ricardo Silva, Amir
Globerson, and Amir Globerson, editors, 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018,
pages 876–885. Association For Uncertainty in Artificial Intelligence (AUAI), January 2018. 34th
Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018 ; Conference date: 06-08-2018
Through 10-08-2018.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
8571–8580. Curran Associates, Inc., 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann, Ming Zhou, and Klaus
Neymeyr. Exponential convergence rates for batch normalization: The power of length-direction
decoupling in non-convex optimization. In Kamalika Chaudhuri and Masashi Sugiyama, editors,
Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine Learning
Research, pages 806–815. PMLR, 16–18 Apr 2019.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient BackProp,
pages 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi:
10.1007/978-3-642-35289-8_3.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 6389–6399.
Curran Associates, Inc., 2018.

11

Qianxiao Li and Cheng Tai. Stochastic modified equations and dynamics of stochastic gradient
algorithms i: Mathematical foundations. J. Mach. Learn. Res., 20:40–1, 2019.

Qianxiao Li, Cheng Tai, et al. Stochastic modified equations and adaptive stochastic gradient
algorithms. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 2101–2110. JMLR. org, 2017.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’ Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 11674–11685. Curran Associates, Inc., 2019.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. In Interna-
tional Conference on Learning Representations, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in Neural Information Processing
Systems, pages 901–909, 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 2483–2493.
Curran Associates, Inc., 2018.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal
of Machine Learning Research, 20(112):1–49, 2019. URL http://jmlr.org/papers/v20/
18-789.html.

Bin Shi, Weijie J Su, and Michael I Jordan. On learning rates and schrödinger operators. arXiv
preprint arXiv:2004.06977, 2020.

Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient
descent. In International Conference on Learning Representations, 2018.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase the
batch size. In International Conference on Learning Representations, 2018.

Twan van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

Yuxin Wu and Kaiming He. Group normalization. arXiv preprint arXiv:1803.08494, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith, editors, Proceedings of the British Machine Vision Conference
(BMVC), pages 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.
30.87.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. In International Conference on Learning Representations, 2019.

12

http://jmlr.org/papers/v20/18-789.html
http://jmlr.org/papers/v20/18-789.html

A Batch Normalization

Batch normalization (BN) (Ioffe and Szegedy, 2015) is one of the most commonly-used normalization
schemes. Given a mini-batch of inputs {zb}b∈B from the last layer, a batch normalization layer
first normalizes the inputs by subtracting the mean µB := 1

|B|
∑
b∈B zb and dividing the variance

σ2
B = 1

|B|
∑
b∈B(zb − µB)2, and then applies a linear transformation with trainable parameters γ and

β:

BN(zb) = γ
zb − µB
σB

+ β.

Typically BN is placed between the linear transformation and activation function. This makes the
loss invariant to the re-scaling of weights in the linear transformation preceding the BN. If we fix the
weights in the last linear layer as suggested by (Hoffer et al., 2018b) and put BN after every linear
transformation, then the loss is invariant to all its parameters (see Appendix C of (Li and Arora, 2020)
for more details).

B Missing derivation and proofs

For scale-invariant loss function L(w;B), we have the following lemma on the covariance matrix of
gradient noise:

Lemma B.1. If L(w;B) is scale-invariant with respect to w, then

1. Σcw = c−2Σw for any c > 0.

2. ‖Σ1/2
w w‖2 = w>Σww = 0.

Proof. Note that the expectation of scale-invariant functions is scale-invariant, so L(w) is scale-
invariant. The first bullet can be proved by combining the definition of Σcw and

∇L(cw;B)−∇L(cw) =
1

c
(∇L(w;B)−∇L(w)) .

For the second bullet, by homogeneity we have 〈∇L(w;B),w〉 = 0 and 〈∇L(w),w〉 = 0, so
〈∇L(w;B)−∇L(w),w〉 = 0. This impliesw>Σww = E[〈∇L(w;B)−∇L(w),w〉2] = 0.

To prove Theorem 5.1, we will need to use the Itô’s lemma, which is stated below:

Lemma B.2 (Itô’s Lemma). SupposeXt = (X1
t , X

2
t , . . . , X

d
t) is a vector of Itô’s processes s.t.

dXt = µtdt+GtdBt,

we have for any twice differentiable function f ,

df(t,Xt) =
∂f

∂t
dt+ (∇Xf)

T
dXt +

1

2
(dXt)

T
(HXf) dXt,

=

{
∂f

∂t
+ (∇Xf)

T
µt +

1

2
Tr
[
GT
t

(
∇2

Xf
)
Gt

]}
dt+ (∇Xf)

T
Gt dBt

Recall the following original SDE in the space of W . Below we will prove Theorem 5.1 by Itô’s
Lemma.

dWt = −η
(
∇L(Wt)dt+ (ΣWt

)
1
2 dBt

)
− λeWtdt.

Theorem 5.1. The evolution of the system can be described as:

dW t = − η

Gt

(
∇L(W t)dt+ (ΣW t

)
1
2 dBt

)
− η2

2G2
t

Tr(ΣW t
)W tdt (6)

dGt
dt

= −2λeGt +
η2

Gt
Tr(ΣW t

). (7)

13

Proof for Theorem 5.1. We can prove (6) and (7) by Itô’s Lemma. For (7), note that Gt = ‖Wt‖2,
we have

dGt = 2W>
t dWt + dW>

t dWt

= 2
〈
Wt,−η

(
∇L(Wt)dt+ (ΣWt

)
1
2 dBt

)
− λeWtdt

〉
+ η2 Tr(ΣWt

)dt.

By scale-invariance and Lemma B.1, 〈Wt,∇L(Wt)〉 = 0,
〈
Wt, (ΣWt)

1
2 dBt

〉
= 0, Tr(ΣWt) =

1
Gt

Tr(ΣW t
). So we can simplify the formula to conclude that

dGt = −2λeGtdt+
η2

Gt
Tr(ΣW t

)dt.

For (6), let v ∈ Rd be an arbitrary vector, then

d
〈
v,W t

〉
=

〈
∂
〈
v,W t

〉
∂Wt

, dWt

〉
+

1

2
(dWt)

> ∂
2
〈
v,W t

〉
(∂Wt)

2 dWt

=

〈
1

‖Wt‖
(
v −

〈
v,W t

〉
W t

)
, dWt

〉
+
η2

2
Tr

(
(ΣWt

)
1
2
∂2
〈
v,W t

〉
(∂Wt)

2 (ΣWt
)

1
2

)
dt

By scale-invariance and Lemma B.1, 〈Wt,∇L(Wt)〉 = 0, (ΣWt
)

1
2Wt = 0, which means the

column span of ΣWt
is orthogonal toWt. Thus we can apply Lemma B.3 below and get

Tr

(
(ΣWt

)
1
2
∂2
〈
v,W t

〉
(∂Wt)

2 (ΣWt
)

1
2

)
= −v

>W t

‖Wt‖2
Tr (ΣWt

) .

Then we have

d
〈
v,W t

〉
=

〈
v

‖Wt‖
,−η

(
∇L(Wt)dt+ (ΣWt

)
1
2 dBt

)〉
− η2

2 ‖Wt‖2
〈
W t,v

〉
Tr(ΣWt

)dt.

By scale-invariance, this can be simplified to the following formula:

d
〈
v,W t

〉
= − η

‖Wt‖2
〈
v,∇L(W t)dt+ (ΣW t

)
1
2 dBt

〉
− η2

2 ‖Wt‖4
Tr(ΣW t

)
〈
v,W t

〉
dt,

which proves (6), since v is arbitrary.

Lemma B.3. For any twice differentiable function g : Rd → R, the Hessian matrix of f(w) :=
g(w
‖w‖) satisfies that, ∀v>w = 0,

v>∇2f(w)v =
1

‖w‖2
(
v>∇2g(w̄)v − w̄>∇g(w̄) ‖v‖2

)
. (14)

where w̄ = w
‖w‖ .

Proof. For any v ∈ Rd s.t. v>w = 0, we define h(λ) = f(w + λ ‖w‖v). Then by definition,
‖w‖2 v>∇2f(w)v = h′′(0).

On the other hand, note v>w = 0, we have

w + λ ‖w‖v
‖w + λ ‖w‖v‖

=
w + λ ‖w‖v
‖w‖

1√
1 + λ2 ‖v‖2

= (w̄ + λv)(1− λ2 ‖v‖2

2
+O(λ4))

= w̄ + λv − λ2 ‖v‖2

2
w̄ +O(λ3).

14

Thus

h(λ) = g(w̄ + λv − λ2 ‖v‖2

2
w̄ +O(λ3))

= g(w̄) + λ∇g(w̄)>v +
λ2

2

(
v>∇2g(w̄)v − ‖v‖2∇g(w̄)>v

)
+O(λ3),

from which we conclude h′′(0) = v>∇2g(w̄)v − ‖v‖2∇g(w̄)>v.

Proof for Lemma 5.2. By (11), we can upper bound and lower bound γt by

γt ≤ e−4λetγ0 + 2

∫ t

0

e−4λe(t−τ)(1 + ε)σ2dτ ≤ e−4λetγ0 +
1

2λe
(1− e−4λet)(1 + ε)σ2dτ.

γt ≥ e−4λetγ0 + 2

∫ t

0

e−4λe(t−τ)σ2dτ ≥ e−4λetγ0 +
1

2λe
(1− e−4λet)σ2dτ.

Therefore, we have γt = e−4λetγ0 + (1 +O(ε)) σ2

2λe

(
1− e−4λet

)
.

Connection to Exp LR schedule: (Li and Arora, 2020) shows that

wt+1 ← wt − η(1− λe)−2t (∇L(wt) + ξt)

yields the same trajectory in function space as Equation (4) for scale invariant loss L. In fact, they
also correspond to the same surrogate SDE Equations (9) and (10), where the exponent in the rate
schedule is the intrinsic LR.
Lemma B.4. The following SDE with exponential LR is equivalent to Equations (9) and (10), where
γt = ‖Wt‖4e−4λet

η2 .

dWt = −e2λetη
(
∇L(Wt)dt+ (ΣWt)

1
2 dBt

)
.

Proof. By Itô’s Lemma, let Ut = e−λetWt, we have

dUt =− λeUtdt+ e−λetdWt

=− λeUtdt+ e−λet
(
∇L(Wt)dt+ (ΣWt

)
1
2 dBt

)
=− λeUtdt+∇L(Ut)dt+ (ΣUt)

1
2 dBt,

where the last step is by scale-invariance.

NoteUt has the same direction asWt, i.e. Ut = W t, we can apply Theorem 5.1 to get Equations (6)
and (7), and thus get Equations (9) and (10), with γt = ‖Ut‖4

η2 = ‖Wt‖4e−4λet

η2 .

C Extension to Other Optimization Algorithms

C.1 Momentum

In this subsection we use momentum SGD as an example to show how does the discrete version of
the fast equilibrium conjecture look like. Throughout this section we will assume all the momentum
factors are constant, and we only care about the role of LR η and WD factor λ in the discrete
dynamics.

For fixed LR η and WD λ, the formula of SGD with momentum can be written as follows:

vt+1 ← βvt + (∇L(wt;Bt) + λwt)

wt+1 ← wt − ηvt+1,

which is also equivalent to

wt+1 −wt = β(wt −wt−1)− η(∇L(wt;Bt) + λwt).

15

We can decouple the effect of WD from SGD by replacing ηλ by λe:

wt+1 − (1 + β − λe)wt + βwt−1 = −η∇L(wt;Bt).
By scale invariance of L, letting w′t = wt√

η , we have

w′t+1 − (1 + β − λe)w′t + βw′t−1 = −∇L(w′t;Bt),

which means the effect of η in the new parametrization is no more than rescaling the initialization.
This motivates as to define λe = ηλ as the effective WD, or intrinsic LR.

Unlike vanilla SGD, the evolution of norm for momentum SGD is more complicated. However, a
folklore intuition is that, if the gradient of loss L changes slowly, one can approximate momentum
SGD by vanilla SGD with LR ηλ

1−γ . Therefore, we propose the following discrete version of fast
equilibrium conjecture.

For LR schedule η(t) and WD schedule λ(t), we define ν(µ;λ, η, t) to be the marginal distribution
of (wt,vt) in the following dynamical system when (w0,v0) ∼ µ:

vt+1 ← βvt + (∇L(wt;Bt) + λ(t)wt)

wt+1 ← wt − η(t)vt+1

Conjecture C.1 (Fast Equilibrium Conjecture for Momentum). For SGD with momentum, modern
neural nets converge to the equilibrium distribution in O(1/λe) time in the following sense. Given
two initial distributions µ, µ′ for w0, constant LR and effective WD schedules λ∗, η∗, there exists
a mixing time T = O(1/λ∗e), where λ∗e = η∗λ∗, such that for any input data x from some input
domain X ,

dTV

(
PF (wt; x), PF (w′t; x)

)
≈ 0,

for all t ≥ T , where (wt,vt) ∼ ν(µ;λ∗, η∗, t), (w′t,v
′
t) ∼ ν(µ′;λ∗, η∗, t).

Moreover, let η̃(τ), λ̃(τ) be a pair of LR and WD schedules, then there exists a mixing time T =
O(1/λ∗e) such that for any input data x from some input domain X ,

dTV

(
PF (wt,τ ; x), PF(w′t,τ ; x)

)
≈ 0

for all t ≥ T , where wt,τ ∼ ν
(
ν(µ;λ∗, η∗, t); λ̃, η̃, t

)
, w′t,τ ∼ ν

(
ν(µ′;λ∗, η∗, t); λ̃, η̃, t

)
.

C.2 Adam

Algorithm 1 Adam with L2 regularization and Adam with decoupled weight decay (AdamW) [Copied from (Loshchilov and Hutter,
2019)]

1: given α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8, λ ∈ R
2: initialize time step t← 0, parameter vector θt=0 ∈ Rn, first moment vectormt=0 ← 0, second

moment vector vt=0 ← 0, schedule multiplier ηt=0 ∈ R
3: repeat
4: t← t+ 1
5: ∇ft(θt−1)← SelectBatch(θt−1) {select batch and return the corresponding gradient}
6: gt ← ∇ft(θt−1) +λθt−1

7: mt ← β1mt−1 + (1− β1)gt {here and below all operations are element-wise}
8: vt ← β2vt−1 + (1− β2)g2

t
9: m̂t ←mt/(1− βt1) {β1 is taken to the power of t}

10: v̂t ← vt/(1− βt2) {β2 is taken to the power of t}
11: ηt ← SetScheduleMultiplier(t){can be fixed, decay, or also be used for warm restarts}
12: θt ← θt−1 − ηt

(
αm̂t/(

√
v̂t + ε) +λθt−1

)
13: until stopping criterion is met
14: return optimized parameters θt

Connection to AdamW: (Loshchilov and Hutter, 2019) found that using the parametrization of
λe = ηλ achieves better generalization and a more separable hyper-parameter search space for SGD

16

and Adam, which are named SGDW and AdamW respectively. So far we have justified the role of
intrinsic LR for SGD(W). The theorem below shows that the notion of the intrinsic LR also holds for
AdamW, while the learning rate has no more power than initialization scale.

Theorem C.2. For fixed scale-invariant losses {ft(w)}t=1, constant schedule multiplier ηt ≡ η and
ε = 0, multiplying the initial weightW0 and the learning rate α by the same constant C would not
change the trajectory of AdamW (Appendix C.2) in function space.

Remark C.3. The notation of LR is slightly different in (Loshchilov and Hutter, 2019) than in the
main paper, where alpha is LR and ηt is the SCHEDULE MULTIPLIER. By using schedule multiplier,
AdamWAppendix C.2 can decay LR and WD factor simultaneously. This notation is only used for the
statement of the above theorem and its proof.

Proof. The proof is based on induction. It suffices to prove that for two history {θt}t=0 and {θ′t}t=0

satisfying that Cθt = θ′t, for all 0 ≤ t ≤ T and some C > 0, and evolving with α and α′ = Cα
respectively, the following holds:

CθT+1 = θ′T+1.

Note that by scale invariance of ft, gt = Cg′t,∀1 ≤ t ≤ T , therefore by definition αm̂T /
√
v̂T =

αm̂′T /
√
v̂′T , i.e. it’s independent of scaling of the history. We now can conclude that

CθT+1 = CθT − ηCαm̂T /
√
v̂T − ηCθT = θ′T − ηα′m̂′T /

√
v̂′T − ηθ

′
T = θT+1,

which completes the proof.

D Supplementary Figures for Section 4

In this section, we provide experimental evidence, Figures 5 and 6, for incompatibilities omitted in
Section 4.

(a) GD with WD on L(x, y) (b) Train accuracy (c) Norm

Figure 5: WD makes GD on scale-invariant loss unstable and chaotic, for both the toy model and PreResNet32.
(a) The toy model is trained GD with LR 0.1, WD 0.5 and two initial points near zero loss. The initial points
are very close to each other. (b)(c) Convergence never truly happens for PreResNet32 trained on sub-sampled
CIFAR10 containing 1000 images with full-batch GD, WD 5×10−4, LR 1.6 (without momentum). PreResNet32
can easily get 100% training accuracy but is unable to stay long. WD is turned off at epoch 30000.

E Discussion on the Benefit of Early Large Intrinsic LR

Fast equilibrium conjecture says that the equilibrium can be reached in O(1/λe) steps for all
reasonable initializations. Indeed, Equation (12) indicates that there is also a logarithmic dependency
on γt

γ0
, i.e., if the initial effective LR is far from the effective LR at equilibrium, then the mixing time

can be larger by a multiplicative constant compared to good initial effective LRs. Below we show this
constant improvement coming from a good initialization matters a lot for real life training (meaning
the training budget is limited), and the usage of initial large intrinsic LR helps SGD to reach a better
initialization for the final phase, and thus allow faster mixing to the final equilibrium.

17

2000 3000 4000 5000 6000 7000 800084

86

88

90

92

94

96

Te
st

 A
cc

ur
ac

y

Average till the current epoch
Average between epoch 2000 and the current
Network at the current epoch

(a) Test accuracy

2000 3000 4000 5000 6000 7000

20
00

30
00

40
00

50
00

60
00

70
00

27.5

30.0

32.5

35.0

37.5

40.0

(b) Pairwise `2 distance

Figure 6: Stochastic Weight Averaging improves the test accuracy of PreResNet32 trained vanilla SGD on
CIFAR10. In particular, test accuracy is improved by 4% by simply averaging a network with any other
network along the same trajectory, suggesting the trajectory is still local. However, the distance between
parameters keeps increasing. As a comparison, the average parameter norm (over epoch 2000-8000) is around
39, which has exactly the same magnitude as the pairwise distance, indicating the langevin diffusion view around
strongly convex local optimum in (Izmailov et al., 2018) may not suffice to explain the success of SWA. Similar
phenomenon is observed for monetum SGD, see Figure 7.

(a) Test accuracy (b) Pairwise `2 distance

Figure 7: Stochastic Weight Averaging improves the test accuracy of PreResNet32 trained with momentum
SGD on CIFAR10.

The benefit of early large intrinsic learning rates. In this section we give experimental evidence
that how the fast equilibrium conjecture led by BatchNorm + WD makes the Step Decay training
schedule robust to various different initialization methods. In detail, we compare the following 4 types
of initialization: Neural Tangent Kernel (NTK) initialization (Jacot et al., 2018; Arora et al., 2019a),
Kaiming initialization (He et al., 2015) , Kaiming initialization multiplied by 1000 and Kaiming
initialization multiplied by 0.001. In Figure 8 we show that the initial large (intrinsic) learning rate in
Step Decay is very necessary to ensure SGD reach the equilibrium of small (intrinsic) LR within the
normal training budget, and thus achieving good test accuracy.

Comparison between the above four initialization. Briefly speaking, these methods are quite
similar as they all initialize each parameter by i.i.d. Gaussian, and the only difference is the variance
of the gaussian distribution in each layer. For Kaiming initialization, the variance is roughly 1

N ,
and for NTK initialization, the variance is always O(1) but there is an additional multiplier of
O(1√

N
) per layer, where N is the number of the input channels/neurons that layer. 4 Note that the

NTK initialization and Kaiming initialization are always the same in function space. Due the scale
invariance led by BatchNorm, all the scaled version of Kaiming initialization are the same as the
original Kaiming initialization in function space.

4Strictly speaking, NTK initialization is a re-parametrization of Kaiming initialization, rather than a different
initialization method, as the additional multiplier indeed changes the architecture.

18

0 50 100 150
Number of epochs

0

20

40

60

80

100

Ac
cu

ra
cy

ntk

0 50 100 150
Number of epochs

0

20

40

60

80

100

Ac
cu

ra
cy

kaiming

0 50 100 150
Number of epochs

0

20

40

60

80

100

Ac
cu

ra
cy

0.001×kaiming

0 50 100 150
Number of epochs

0

20

40

60

80

100

Ac
cu

ra
cy

1000×kaiming

wd=0.0001_fisrt_decay=0:train acc
wd=0.0001_fisrt_decay=0:test acc
wd=0.0001_fisrt_decay=80:train acc
wd=0.0001_fisrt_decay=80:test acc
wd=0.0005_fisrt_decay=0:train acc
wd=0.0005_fisrt_decay=0:test acc
wd=0.0005_fisrt_decay=80:train acc
wd=0.0005_fisrt_decay=80:test acc

(a) Train/test Accuracy

0 50 100 150
Number of epochs

28

212

216

220

224

228

232
ntk

0 50 100 150
Number of epochs

210

212

214

216

218

220

222
kaiming

0 50 100 150
Number of epochs

2 3

23

29

215

221

227

0.001×kaiming

0 50 100 150
Number of epochs

213

219

225

231

237

243 1000×kaiming

wd=0.0001_fisrt_decay=0:norm square
wd=0.0001_fisrt_decay=0:1/effective lr
wd=0.0001_fisrt_decay=80:norm square
wd=0.0001_fisrt_decay=80:1/effective lr
wd=0.0005_fisrt_decay=0:norm square
wd=0.0005_fisrt_decay=0:1/effective lr
wd=0.0005_fisrt_decay=80:norm square
wd=0.0005_fisrt_decay=80:1/effective lr

(b) Norm and effective LR

Figure 8: The large initial intrinsic LR (as well as large WD factor) helps achieve high test accuracy
within normal training budget consistently for different initialization methods. The training curve
and convergence time to equilibrium for large initial LR is robust even to the extreme small/large
initializations. PreResNet32 trained by momentum SGD with initial LR 0.1 on CIAFR10 with 4
different initialization methods, 2 different WD values, and 2 different LR schedules. Each LR
schedule divides its LR by 10 twice at epoch [80,120] (the normal schedule) or epoch [0,120]
(meaning starting with a 10 times smaller LR, 0.01). The red line and orange line performs much
better than their counterparts (without initial large LR) when not using standard Kaiming Initialization.
Still, the red line even outperforms orange line a lot when the initialization are extremely large or
small, due to the effect of large intrinsic LR brought by large WD factor. This justifies the argument
in Section 5 that the equilibrium of small intrinsic LR is much closer to that of large intrinsic LR, than
some arbitrary random initialization. This is very clear from the view of norm convergence. See (b).

19

A Theoretical Analysis on Norm Convergence. Although the convergence of norm is not equiva-
lent to the convergence in function space, analysing the convergence of norm can provide insights
into how large LR helps training. Now we theoretically analyse the effect of early large LR on the
convergence rate of norm. We compare the following two processes with the same initial norm
squared G0:

1. Train the neural net with LR η;

2. Train the neural net with intrinsic LR Kη, then decay it to η after the norm converges.

For simplicity, we consider the case that σ2

2ηλ = 1, which means γt in the first process eventually
converges to 1 +O(ε); other cases can be transformed to this case by re-scaling the initialization.

For the first process, γt = G0/η
2 initially. By Lemma 5.2, γt converges to 1 +O(ε) in

O

(
1

ηλ
max

{
ln
G0

η2
, 1

})
time. For the second process, γt = G0/(K

2η2) initially, and γt first converges to (1 + O(ε)) 1
K

in O
(

1
Kηλ max

{
ln G0

Kη2 , 1
})

time. After LR decay, γt instantly becomes (1 + O(ε))K as γt is

inversely proportional to LR squared. Then we only need another O(1
ηλ lnK) time to make the

effective LR converges again. Overall, the second process takes

O

(
1

Kηλ
max

{
ln

G0

Kη2
, 1

}
+

1

ηλ
lnK

)
(15)

time. Comparing the second process with the first process, we can see that the large initial LR reduces
the dependence of convergence time on the initial norm. It is worth to note that G0

η2 is typically larger
than K (which equals to 10) in Figure 8. Therefore, a large initial LR also leads to faster convergence
time without tuning the initialization scale.

Explanation for different convergence rates in Figure 8: The 4 settings about LR schedules and
WD can be interpreted using Equation (15) as the choices of (K,λ). Let η = 0.01, K = 1 means
starting with η = 0.01, while K = 10 means starting with the default LR, 0.1, which is 10 times
larger than η. For the rest 3 initializations other than kaiming initialization, from Figure 8, we can
see that the initial norm are all exponentially large5, making ln G0

Kη2 a large constant. Thus the total
steps of training has to be Ω(1

Kηλ ln G0

Kη2) for the effective learning rate to grow and the training to
proceed. This could also be seen directly from the ratio of the slopes of the log norm square, which is
1 : 10 : 5 : 50.

F Supplementary Figures and Tables for Section 6

F.1 Equilibrium is Independent of Initialization

This subsection provides supplementary materials to justify that the equilibrium is independent of
initialization.

Table 1 shows the LR and WD of each random schedule in Figure 1. Figure 12 and Figure 13 are
experiments in similar settings as Figure 1 to show that the equilibrium is independent of initialization
for VGG16 on CIFAR-100.

We also validate our claim in the case that we initialize the training with a single possible initial
point w0 in a similar setting as Figure 3. That is, we first randomly sample a parameter from the
distribution for random initialization, and use it to initialize CNNs in all the independent runs for
estimating the equilibrium. Figure 9 shows that CNNs still converge to the equilibrium even if the
initial parameter w0 is fixed to the same random sample.

5As discussed earlier, NTK initialization has larger weight norm. For 0.001 kaiming initialization, the reason
is more subtle: the initial norm are indeed super small, thus leading to huge initial gradient, and therefore the
norm grows quickly in the first few iterations.

20

Epoch 0 100 200 300 400 500 1000
Schedule_1 - LR/4 LR×4 LR/4 LR×2 LR×2 LR/10,WD = 0
Schedule_2 - - - - - - LR/10,WD = 0
Schedule_3 - LR×4 LR/2 LR/2 LR/4 LR×4 LR/10,WD = 0
Schedule_4 - LR,WD×4 LR,WD/2 LR,WD/2 LR,WD/4 LR,WD×4 LR/10,WD = 0
Schedule_5 LR×32 LR/2 LR/2 LR/2 LR/2 LR/2 LR/10,WD = 0

Table 1: LR/WD Schedules in Figure 1. All the schedules have the same initial LR = 0.4 and classic
WD = 0.0005. The batch size is 128 and momentum is turned off.

100 101 102

number of trials

10 2

to
tal

 v
ar

iat
io

n
wi

th
 C

on
st,

 fi
xe

d
w

0 [
12

0]

Const[120]
LR-decay[120]
WD-decay[120]

100 101 102

number of trials

10 3

10 2

to
tal

 v
ar

iat
io

n
wi

th
 C

on
st,

 fi
xe

d
w

0 [
20

0]

Const[200]
LR-decay[200]
WD-decay[200]

Figure 9: CNNs trained on MNIST converge to the equilibrium even if the initial parameter w0 is fixed to
some random sample. We estimate the total variation between the empirical distribution of the predictions on
test images for neural nets trained with schedule Const with fixed w0 and other schedules for 120/200 epochs
(solid lines). The estimated value decreases with the number of trials. The dashed lines are the sum of averaged
test errors of each pair of training processes which can be seen as baselines.

F.2 Equilibrium Can be Reached in O(1/λη) Steps

In this subsection we provide more experimental evidence that the mixing time to equilibrium in
function space scales to 1

ηλ . Note in (12), the convergence of norm also depends on the initial value.
Thus in order to reduce the effect of initialization on the time towards equilibrium, we use the setting
of Figure 3 in (Li et al., 2019), where we first let the networks with the same architecture reach the
equilibrium of different intrinsic LRs, and we decay the LR by 10 and multiplying the WD factor by
10 simultaneously. In this way the intrinsic LR is not changed and the equilibrium is still the same.
However, the effective LR is perturbed far away from the equilibrium, i.e. multiplied by 0.1. And we
measure how long does it takes SGD to recover the network back to the equilibrium and we find it to
be almost linear in 1/λη.

0 1000 2000 3000 4000 5000 6000
Number of epochs

99.0

99.2

99.4

99.6

99.8

100.0

100.2

Ac
cu

ra
cy

lr_0_0_5000
wd_0_lr_0_5000
wd_0_0_lr_5000
lr_80_lr_300

(a) Train accuracy

0 1000 2000 3000 4000 5000 6000
Number of epochs

90

91

92

93

94

95

96

Ac
cu

ra
cy

lr_0_0_5000
wd_0_lr_0_5000
wd_0_0_lr_5000
lr_80_lr_300

(b) Test accuracy

0 1000 2000 3000 4000 5000 6000
Number of epochs

103

104

105

lr_0_0_5000
wd_0_lr_0_5000
wd_0_0_lr_5000
lr_80_lr_300

(c) Effective LR, γ−1/2
t

Figure 10: Achieving SOTA test accuracy by 0.9-momentum SGD with small learning rates (the blue line). The
initial learning rate is 0.1, initial WD factor is 0.0005. The label wd_x_y_lr_z_u means dividing WD factor by
10 at epoch x and y, and dividing LR by 10 at epoch z and u. For example, the blue line means dividing LR
by 10 twice at epoch 0, i.e. using an initial LR of 0.01 and dividing LR by 10 at epoch 5000. The red line is
baseline.

21

0 5 10 15 20
Number of steps after adjusting × intrinsic LR

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

Ac
cu

ra
cy

0 200 400 600 800 1000
Number of epochs after adjusting

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

Ac
cu

ra
cy

lr=0.8:train acc
lr=0.8:test acc
lr=0.4:train acc
lr=0.4:test acc
lr=0.2:train acc
lr=0.2:test acc
lr=0.1:train acc
lr=0.1:test acc
lr=0.05:train acc
lr=0.05:test acc
lr=0.025:train acc
lr=0.025:test acc
lr=0.0125:train acc
lr=0.0125:test acc

(a) Train/test accuracy

2 0 2 4 6 8 10
 Number of steps after adjusting × intrinsic LR

24
25
26
27
28
29

210
211
212
213
214
215
216
217

0 200 400 600 800 1000
 Number of epochs after adjusting

24
25
26
27
28
29

210
211
212
213
214
215
216
217

lr=0.8:norm square
lr=0.8:1/effective LR
lr=0.8:1/(effective LR * intrinsic LR)
lr=0.4:norm square
lr=0.4:1/effective LR
lr=0.4:1/(effective LR * intrinsic LR)
lr=0.2:norm square
lr=0.2:1/effective LR
lr=0.2:1/(effective LR * intrinsic LR)
lr=0.1:norm square
lr=0.1:1/effective LR
lr=0.1:1/(effective LR * intrinsic LR)
lr=0.05:norm square
lr=0.05: 1/effective LR
lr=0.05:1/(effective LR * intrinsic LR)
lr=0.025:norm square
lr=0.025: 1/effective LR
lr=0.025:1/(effective LR * intrinsic LR)
lr=0.0125:norm square
lr=0.0125: 1/effective LR
lr=0.0125:1/(effective LR * intrinsic LR)

(b) Norm and effective LR

Figure 11: VGG16 was trained on CIFAR10 with BN + SGD and different intrinsic LRs. Then LR
and WD were changed while maintaining their product (i.e., intrinsic LR). Number of steps to reach
equilibrium again was measured. It scales inversely with intrinsic LR, supporting Fast Equilibrium
Conjecture.

22

0 200 400 600 800 1000 1200
Number of epochs

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

Schedule_1:train acc
Schedule_1:test acc
Schedule_2:train acc
Schedule_2:test acc
Schedule_3:train acc
Schedule_3:test acc
Schedule_4:train acc
Schedule_4:test acc
Schedule_5:train acc
Schedule_5:test acc

(a) Train/test accuracy

0 200 400 600 800 1000 1200
Number of epochs

28

29

210

211

212

213

214

215

216

Schedule_1:norm square
Schedule_1:1/effective lr
Schedule_2:norm square
Schedule_2:1/effective lr
Schedule_3:norm square
Schedule_3:1/effective lr
Schedule_4:norm square
Schedule_4:1/effective lr
Schedule_5:norm square
Schedule_5:1/effective lr

(b) Norm and effective LR

Figure 12: VGG16 trained by SGD on CIAFR10 with 5 random LR/WD schedules in Table 1, same
as that in Figure 1. These different trajectories exhibit similar test/train accuracy, norm and effective
LR after switching to the same intrinsic LR at epoch 500. Moreover, they achieve the same best
test accuracy (∼ 94%) after decaying LR and removing WD at epoch 1000. This again supports the
conjecture that the equilibrium is independent of initialization.

23

0 200 400 600 800 1000 1200
Number of epochs

60

70

80

90

100

Ac
cu

ra
cy

Schedule_1:train acc
Schedule_1:test acc
Schedule_2:train acc
Schedule_2:test acc
Schedule_3:train acc
Schedule_3:test acc
Schedule_4:train acc
Schedule_4:test acc
Schedule_5:train acc
Schedule_5:test acc

(a) Train/test accuracy

0 200 400 600 800 1000 1200
Number of epochs

26

27

28

29

210

211

212

213

214

215

216

217

Schedule_1:norm square
Schedule_1:1/effective lr
Schedule_2:norm square
Schedule_2:1/effective lr
Schedule_3:norm square
Schedule_3:1/effective lr
Schedule_4:norm square
Schedule_4:1/effective lr
Schedule_5:norm square
Schedule_5:1/effective lr

(b) Norm and effective LR

Figure 13: PreResNet32 trained by SGD on CIAFR100 with 5 random LR/WD schedules in Table 1,
same as that in Figure 1. These different trajectories exhibit similar test/train accuracy, norm and
effective LR after switching to the same intrinsic LR at epoch 500. Moreover, they achieve the same
best test accuracy (∼ 78%) after decaying LR and removing WD at epoch 1000, thus supporting the
conjecture that the equilibrium is independent of initialization.

24

	Introduction
	Related Works
	Preliminaries
	Apparent Incompatibility between BN and Traditional View Points
	SDE-based framework for modeling SGD on Normalized Networks
	SDE with Weight Decay and Normalization
	A conjecture about mixing time in function space
	What happens in real life training – An interpretation

	Experimental Evidence of Theory
	Equilibrium is independent of the initial distribution
	Reaching Equilibrium only takes O(1/()) steps

	Conclusion and Open Questions
	Batch Normalization
	Missing derivation and proofs
	Extension to Other Optimization Algorithms
	Momentum
	Adam

	Supplementary Figures for sec:incompat
	Discussion on the Benefit of Early Large Intrinsic LR
	Supplementary Figures and Tables for sec:evidence
	Equilibrium is Independent of Initialization
	Equilibrium Can be Reached in O(1/) Steps

