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Abstract

While semi-supervised learning (SSL) has proven to be a promising way for
leveraging unlabeled data when labeled data is scarce, the existing SSL algorithms
typically assume that training class distributions are balanced. However, these SSL
algorithms trained under imbalanced class distributions can severely suffer when
generalizing to a balanced testing criterion, since they utilize biased pseudo-labels
of unlabeled data toward majority classes. To alleviate this issue, we formulate
a convex optimization problem to softly refine the pseudo-labels generated from
a biased model, and develop a simple iterative algorithm, named Distribution
Aligning Refinery of Pseudo-label (DARP) that solves it provably and efficiently.
Under various class-imbalanced semi-supervised scenarios, we demonstrate the
effectiveness of DARP and its compatibility with state-of-the-art SSL schemes.

1 Introduction

It has been repeatedly shown that deep neural networks (DNNs) can achieve human- or super-
human-level performances on various tasks [1, 17, 32]. This success, however, crucially relies on
the availability of large-scale labeled datasets, which typically requires a lot of human efforts to be
constructed. For example, the cost for labeling sequential (such as video and speech) data is often
proportional to their lengths. Furthermore, some specific domain knowledge is often critical for
labeling (such as medical) data. Semi-supervised learning (SSL) is one of promising, conventional
ways to bypass this cost by leveraging unlabeled data for improving the performance of DNNs, given
a small amount of labeled data [4, 5, 42]. The common approach of these modern state-of-the-art
SSL algorithms is producing pseudo-labels for unlabeled data based on a model’s prediction and then
utilize the generated pseudo-labels for training the model iteratively [28, 36].

Most previous works on the line usually assume a balanced class distribution for both labeled and
unlabeled datasets. However, in many realistic scenarios, the underlying class distribution of training
data is highly imbalanced [27, 37]. It is well known that such an imbalanced class distribution hurts
the generalization of DNN:s, i.e., makes their predictions to be biased toward majority classes [13].
In other words, DNNs trained under an imbalanced class distribution suffer when generalizing to a
balanced testing criterion. This issue can be more problematic for SSL algorithms since they generate
pseudo-labels of unlabeled data from the model’s biased predictions, i.e., pseudo-labels are even
more severely imbalanced compared to true labels of labeled or unlabeled data. For example, when
we train a Wide ResNet [43] on CIFAR-10 [12] under the imbalance ratio v = 150" using a recent

!The number of training samples of a class (in both labeled and unlabeled datasets) is up to 150 times smaller
than that of another class.
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Figure 1: Experimental results on CIFAR-10 under the imbalance ratio vy = 150. (a) Class distribution
of labeled and unlabeled data. (b) Relative size of pseudo-labels compares to size of true labels
for each SSL algorithm. It is noticeable that the models fail to generate pseudo-labels on minority
classes; hence the imbalance ratio of pseudo-labels is much larger than a true ratio v = 150. (c) Test
accuracy gain due to SSL algorithms compares to the vanilla model trained using only labeled data.

SSL algorithm, MixMatch [5], the resulting imbalance ratio of pseudo-labels becomes v = 1046,
which is much larger than the true ratio v = 150 (see Figure 1(b) for detailed class-wise statistics).

Due to the aforementioned reason, we found that the performance of classifiers trained by recent
SSL algorithms under the imbalanced class distribution often degrades on minority classes, even
compared to the vanilla scheme using only labeled training samples (see Figure 1(c)). This implies
that utilizing imbalanced unlabeled data for training can be dangerous for the classes having relatively
small number of samples. Identifying a potential risk under class-imbalanced SSL scenarios is an
important but under-explored research problem, up to date.

Contribution. To handle the issue, we propose a simple technique, coined distribution aligning
refinery of pseudo-label (DARP), applicable to any existing SSL scheme utilizing pseudo-labels
of unlabeled data. Our high-level idea is to refine the original, biased pseudo-labels so that their
distribution can match the true class distribution of unlabeled data. Importantly, we also constrain
our refined pseudo-labels to be not too far from the original pseudo-labels (constructed by an SSL
algorithm). Without such a constraint, the individual quality of refined pseudo-labels can be poor,
even when their overall distribution matches the true distribution. Motivated by the insight, we
formulate an optimization problem for constructing refined pseudo-labels: minimizing the distortion
from the original pseudo-labels, while matching the true class distribution.

The DARP algorithm is an efficient, iterative procedure to solve the proposed (convex) optimization
with a provable guarantee. It finds the unique optimal solution by solving the Lagrangian dual of the
original optimization. To further enhance the quality of the refined pseudo-labels, we additionally
suggest removing some small and noisy entries in the original pseudo-labels when running DARP.

We demonstrate the effectiveness of the proposed approach under various realistic scenarios by
varying the imbalanced class distributions. Despite its simplicity, the proposed DARP algorithm
improves recent state-of-the-art SSL algorithms in all test cases, e.g., our method improves MixMatch
[5], ReMixMatch [4] and FixMatch [35] with up to 77.2%, 31.4% and 53.1% relative reduction on
the balanced test error, respectively. As expected, we find that our method is more effective when the
(class) distribution mismatch between labeled and unlabeled data becomes severe. We believe that
DARP method can be a strong baseline when other researchers pursue the related tasks in the future.

2 Related works

Learning with class-imbalanced data. Despite having several well-organized datasets in research,
e.g., CIFAR [23] and ILSVRC [33], real-world datasets usually have a “long-tailed” label distribution
[27, 37]. It is well-known that such class-imbalanced datasets make the standard training of DNN
harder to generalize [13, 31, 39]. A natural approach to bypass this class-imbalance problem is
re-balancing the training objective with respect to the class-wise sample sizes. Two of such methods
are representative: (a) re-weighting the given loss function by a factor inversely proportional to the
sample frequency in a class-wise manner [19, 22], and (b) re-sampling the given dataset so that
the expected sampling distribution during training can be balanced [9, 16, 20]. However, naively



re-balancing the objective usually results in harsh over-fitting to minority classes, so several attempts
have been made to alleviate this issue: [12] proposed the concept of “effective number” for each
class as alternative weights in the re-weighting method. [8, 21] found that both re-weighting and
re-sampling can be much more effective when applied at the later stage of training, in case of DNNS.
Recently, [26] suggested re-balancing the training objective using unlabeled data, but it performs
much worse compared to recent state-of-the-art semi-supervised learning algorithms.

Semi-supervised learning. The goal of a semi-supervised learning (SSL) algorithm is to improve the
model’s performance by leveraging unlabeled data to alleviate the need for labeled data. A popular
class of SSL algorithms can be roughly viewed as producing a pseudo-label for each unlabeled data
based on the model’s prediction and then training the model to predict the pseudo-label when the
unlabeled data is given as input. For example, pseudo labeling [25] (also known as self-training
[41, 42]) generates the pseudo-label using the model’s class prediction and trains the model with it
again. Similarly, consistency regularization based methods obtain pseudo-label utilizing the model’s
predicted distribution after arbitrarily modifying the input [28, 34] or model function [36]. Recent
state-of-the-art SSL algorithms combine both schemes for producing better pseudo-labels [4, 5].
However, since the pseudo-label of the unlabeled data is generated from the model’s prediction, these
methods can be inefficient or even harmful when the model’s prediction is biased toward majority
classes due to the imbalanced class distribution (see Figure 1(c)).

3 Handling imbalanced semi-supervised learning
3.1 Pseudo-label under imbalanced semi-supervised learning

We first describe the problem setup of our interest. Consider a classification problem with K classes.
Let x € R? and y € {0, 1} denote an input vector and corresponding one-hot label, respectively,
where d is the dimension of the input. We assume the following datasets are available:

Dlabeled — {(‘rlabeled labeled) }N Dunlabeled { unlabeled}

n rIn n=1" m=1"

where D1abeled punlabeled corregpond to labeled and unlabeled datasets, respectively. Then, the goal
of the learner is to train a classifier f = [f]X , : R? — [0, 1] using the above datasets: it outputs
the predictive probability fx(z) € [0, 1] for each class k given an input z. We also let y2ntabeled

denote the one-hot label of the true (yet unknown) class of z*=!2beed The numbers of data in class

k under Dabeled gpd punlareled e denoted by Ny, and Mj, respectively, i.e., E w1 N = N and

K . . . .
> 1 My = M. We are interested in class-imbalanced scenarios where =2k N and maxe My gpe

k=1 ] A . ming Ny ming Mg
much larger than 1 as illustrated in Figure 1(a).

To utilize the unlabeled training data effectively, most recent state-of-the-art SSL algorithms infer
their labels by some pseudo-labels (e.g., classifier’s prediction of augmented data [4, 5]) denoted by

Aunlabeled K E Aunlabeled

Then, they train the model by optimizing supervised losses (e.g., cross-entropy) corresponding
to (xlabeled glabeled) ypg (punlabeled gunlabeled) ' noggibly with other regularization losses, e.g.,
consistency loss [28, 36]. Hence the performance of SSL algorithm is quite sensitive to the quality
of pseudo-labels y;lnnlabel. However, the imbalanced class distribution incurs the bias of the model’s
prediction toward majority classes of large Ny, and the resulting quality of the pseudo-labels can be
significantly degraded. As reported in Figure 1(b), pseudo-labels can be more severely imbalanced
than the truth. Hence, some SSL algorithms utilizing these pseudo-labels as direct supervision or a
source of regularization can be ineffective or even harmful for minority classes (see Figure 1(c)).

M

m:l.

3.2 Distribution aligning refinery of pseudo-label

Now, we present our technique, coined distribution aligning refinery of pseudo-label (DARP). The
input of DARP could be any pseudo-labels constructed from any SSL algorithm, i.e., it can incorporate
into various SSL algorithms for refining their outputs. In this section, we focus on describing how to
refine pseudo-labels given the true class distribution of unlabeled data, i.e., { My} . As {M;H< |
is not known for the learner in general, we will discuss how to estimate it in Section 3.3.



Algorithm 1 DualCoordinateAscent: Coordinate ascent algorithm for dual of (1)

Require: {foflabeled n]\{:l’ {wm}%:l’ {Mk}i{:p T

Ensure: The unique solution of (1)

10 9, + ymmiabeled 00 o 1, B2« 1, Vm,k
2: fort =1to T do
3: iftisoddort =T then
K . g1\
& ol (SELRMEE) L m,
5: BL < BLY, Yk
6: else
7: al a1l Ym
8 B Solvesso (L, ih(K)al 27 — M),
9: endif
10: end for

s g (k) = 99, (K)ol (BT ) 7w, Vm, k

Refining pseudo-labels via optimization. Given the original pseudo-labels {giatabeled} M (gen-

erated by an SSL algorithm), we are interested in refining them so that their class distribution matches
the true distribution { M}, }£ . Simultaneously, we also want to preserve the original information in
{guntabeled} M ag much as possible, to maintain the high quality of refined pseudo-labels. To this
end, we propose the following convex optimization problem with respect to variables {g,, }A_;:

M
minimize Z Wi Drcr, (G, || grmtabeted) (1)

m=1

M K
subjectto Y (k) = My, Yk, Y (k) = 1, Vm, g (k) € [0,1], Ym, k
m=1 k=1

where the KL-divergence objective Dy, (4, || gi2t2Peled) s to preserve the original information

of gunlabeled and the constraint fozl 9m(k) = Mj, is to match to the true class distribution of
unlabeled data. In particular, the above optimization is encouraged to preserve more information of
high-confident original pseudo-labels by introducing weight w,,, to each data by

N -1
Wy 1= (H(y;xlxlabeled)) ,
i.e., larger weight to more confident data of smaller entropy H.
Solving the optimization (1), e.g., by some generic convex scheme, might incur much computational
overhead, especially for refining a large number of pseudo-labels. To address this issue, we propose
an efficient iterative procedure, Algorithm 1, for solving (1). In essence, it is a coordinate ascent

algorithm for Lagrangian dual of (1), which alternatively finds the local optimum of each of dual
variables {a,, }M_, and {3 }/~_,. We provide the following provable guarantee of Algorithm 1.

Theorem 1. The output of Algorithm I converges to the unique solution of (1) as T — oo unless
Zn]\le Wi D1, (G || g1E212001e) = o0 for all feasible {g,, }M_,.

We present the formal derivation of Algorithm 1 and the proof of Theorem 1 in Section A and B of
the supplementary material. In our experiments, we empirically observe that 7' = 10 is enough for
the convergence.”

Removing small entries of pseudo-labels. To further enhance the quality of pseudo-labels, we
would concentrate on confident entries of the original pseudo-labels by removing small and noisy

entries as below:
QO (k) - yAlellabeled(k) lf xl;r;labeled c uk
m 0 otherwise

; 2

’Solvez>o(f(Z)) returns Z > 0 such that f(Z) = 0. We utilize the Newton’s method [6, 14] for
Solvez>o(f(Z)) in all experiments in this paper.

3Consequently, when we apply DARP to a SSL algorithm, the additional running time incurred by DARP is
at most 20% of that of the vanilla SSL algorithm in our experiments.



Algorithm 2 DARP: Distribution aligning refinery of pseudo-label

Input: Unlabeled data {zunlabeled}M pseudo -labels {puniabelediM = sample-wise weights
{wm }M_,, true class distribution {M;}X |, number of classes K, number of iterations T,
hyper-parameter for removing noisy pseudo-label entries 4.

Output: Refined pseudo-labels jPARP
1: for k =1to K do
2 {ml, ... Thar} 4 Sort ({ymmtebeled (k) | Vm})
3 {xunlabeled . ’x%xlabeled}’ 8 — Lé‘ . MkJ
4: end for
~unlabeled k) if xunlabeled c Z/{k
3- ~unlabeled k) «— Ym ( m 7 0 _ 30 _ 1 V k
Ym (k) { 0 otherwise am = B "

6: §P4% (k) < DualCoordinateAscent ({gamtebeted}M_ Lo, 3N { M} |, T)

where Uy, is the subset of top d - M), unlabeled data having larger values of y*1¢4(k) for some
8§ > 0. Namely, we clip the value of y*2#e1ed (L) to be zero if it is relatively small. At some angle,
the initialization (2) is expected to decrease the entropy of §f,, compared to the naive initialization
90 = y“mnlabeled which is similar to the entropy minimization technique used in the previous SSL

algorithm [15] in spirit. The full details of the proposed DARP are described in Algorithm 2.

3.3 Estimating class distribution of unlabeled data

Recall that DARP requires the true class distribution of unlabeled data, { My}, . If both labeled
and unlabeled data are sampled from the same distribution (arguably the most practical scenario),
{M;}}5_, can be inferred from that of labeled data. Otherwise, we suggest to use the following
simple procedure for estimating it using a confusion matrix C¥nlabeled ¢ REXK.

M unlabeled . l.unlabeled
M1 L ZmZI fl (l‘m ) m~yunlaé;ed(j)_1 fl( m )

— Cunlabeled - X : C}.“.llabeled =
. ( ) LY |{m ‘ yu.nlabeled( ) — 1}‘
My Zm . fK( u.nlabeled)

where C}12>¢1°4 denote the empirical probability that the model predicts class i when the true class
is j. The equation is derived from the definition of Ctn12beled g follow:

Z’m 1 f ( unlabeled) |{m | yunlabeled( ) — 1}| Ml
: — Cﬂmlabeled X : — Cunlabeled X :
Zﬁf 1 f ( unlabeled) ‘{m | yu.nlabeled ) = 1}| MK

However, to obtain the confusion matrix C*22¢1ed the true labels for unlabeled dataset are required
which do not exist. To circumvent this, we approximate it using the given labeled dataset D2beted 4
This estimation assumes that confusion matrices of labeled and unlabeled datasets are similar and
it holds when both datasets are constructed from the same input distribution (although their label
distributions are different). Also, it is worth noting that similar approaches are used in the case of
noisy labels [18] and domain adaptation [3].

4 Experiments

In this section, we evaluate our algorithm on various scenarios for imbalanced semi-supervised
learning in classification problems. We first describe the experimental setups in Section 4.1. In
Section 4.2, we present empirical evaluations on DARP and other baseline algorithms under various
setups. In Section 4.3, we present detailed analysis on DARP.

“We split the labeled dataset as D***'d = D°st | D2i® where D°** N D*® = (). Then, we train
another classifier g : R? — [0, 1]% using D*****, and obtain the confusion matrix C*** using g on D°**. In our
experiments, we construct D°** by taking 10 samples for each class and train g using a vanilla scheme. After
that, we train a classifier f by fully using D****'*? for training with C°** as the estimation of C"™*'2**¢4,



4.1 Experimental setup

Imbalanced dataset. We consider “synthetically long-tailed” variants of CIFAR-10, CIFAR-100
[23], and STL-10 [11] in order to evaluate our algorithm under various levels of imbalance. Results
on real-world dataset, SUN-397 [40], are also given in Section C of the supplementary material.
For constructing the class-imbalanced training dataset, without loss of generality, we assume the
ordered numbers of labeled data in each class as Ny > --- > Nx. We use a single parameter ; > 1,

called the imbalance ratio, tok control the class-imbalance of the labeled dataset: once ; and N; are
—1
given, we set N, = Ny -7, %=1 so that Ny = 7; - Nk as done by [12]. Namely, larger +; indicates
more imbalanced class distribution. Likewise, we assume that M; > --- > M for the unlabeled
dataset and its class-imbalance is controlled by v,, > 1, as we did for the labeled dataset. We use
N; = 1500, M7 = 3000 for CIFAR-10 and N; = 150, M; = 300 for CIFAR-100, respectively.
Figure 1(a) illustrates the constructed imbalanced class distribution on CIFAR-10 with v; = ,, = 150.
To evaluate the classification performance of models trained under the imbalanced dataset, we report
two popular metrics: balanced accuracy (bACC) [19, 39] and geometric mean scores (GM) [7, 24],
which are defined by the arithmetic and geometric mean over class-wise sensitivity, respectively. In

this section, mean and standard deviation are reported across three random trials, respectively.

Baselines. We compare our algorithm with various baselines, including recent re-balancing algo-
rithms for learning with class-imbalanced labeled data only (i.e., without using unlabeled data) and
semi-supervised learning algorithms for learning with both labeled and unlabeled data (i.e., without
considering class-imbalance). We first consider a naive baseline without any re-balancing and using
unlabeled data, denoted by (a) Vanilla. Then, we consider a wide range of previous “re-balancing”
algorithms denoted by (b) Re-sampling [20]: each class is equally sampled for training; (c) Label-
distribution-aware margin (LDAM-DRW) [8]: the classifier is trained to impose larger margin to
minority classes and balancing the objective at the later stage of training; (d) Classifier re-training
(cRT) [21]: only re-train the classifier with the balanced objective after training a whole network
under imbalanced distribution. We also consider a wide range of previous “semi-supervised learning”
algorithms denoted by (e) Virtual adversarial training (VAT) [28]: for unlabeled data, consistency
regularization with its adversarial example is added; (f) Mean-Teacher [36]: adding consistency
regularization between the prediction of the current model and the ensemble of previous models;
(g) MixMatch [5]: both pseudo-label and consistency regularization are applied with Mixup regular-
ization [44]; (h) ReMixMatch [4]: MixMatch is further improved with an augmentation anchoring
and a distribution alignment. (i) FixMatch [35]: strongly augmented unlabeled data are used for
training where their pseudo-labels are generated from their weakly augmented version. Details on the
implementation of the baseline algorithms are presented in Section E of the supplementary material.

Training details. All experiments are conducted with Wide ResNet-28-2 [30] and it is trained with
batch size 64 for 2.5 x 10° training iterations. For all algorithms, we evaluate the model on the
test dataset for every 500 iterations and report the average test accuracy of the last 20 evaluations
following [5]. We apply the DARP procedure for every 10 iterations with fixed hyper-parameters
0 = 2 and T = 10, which is empirically enough for the convergence of DARP. Since pseudo-labels
are not accurate at the early stage of training, we are not using DARP until the first 40% of iterations.
More training details are presented in Section E of the supplementary material.

4.2 TImbalanced semi-supervised learning

We evaluate DARP with both re-balancing (RB) and semi-supervised learning (SSL) algorithms under
various levels of class-imbalance. We apply DARP to recent state-of-the-art SSL algorithms: Mix-
Match [5], ReMixMatch [4] and FixMatch [35], denoted by MixMatch+DARP, ReMixMatch+DARP
and FixMatch+DARP, respectively, and observe the gain due to DARP.

CIFAR-10 under ~; = ~,. We first conduct experiments in the case vy := ~; = . This is arguably
the most natural scenario that each data in both datasets is sampled from the same distribution. Here,
we choose M o Nj for both DARP and ReMixMatch. To verify the effectiveness of DARP
in this scenario, we compare DARP with various semi-supervised learning (SSL) algorithms and
re-balancing (RB) algorithms on CIFAR-10 with various 7. Table 1 summarizes the performance
of baseline algorithms with/without DARP for learning CIFAR-10. It is noticeable that many SSL
algorithms perform worse than RB algorithms, even they use more training (unlabeled) data. We
observe that this is because the pseudo-labels of SSL algorithms generated from the biased models
are likely to follow the majority classes of labeled data (see Figure 2(a)). Hence, utilizing these



Table 1: Comparison of classification performance (bACC/GM) on CIFAR-10 under three different
class-imbalance ratio v = v; = 7,. SSL denotes semi-supervised learning and RB denotes re-
balancing. The numbers in brackets below the gray rows are relative test error gains from DARP,
compared to applied baseline SSL algorithms, respectively. The best results are indicated in bold.

CIFAR-10 (v = v = 7u)

(-12.9% / -14.1%)

(-14.0% / -18.8%)

Algorithm SSL  RB v =150 v =100 v =150
Vanilla - - 65.24005/ 61.1+£000  58.8+013/51.0+011  55.64043 / 44.0+098
Re-sampling [20] - V' 6431048/ 60.6+067 55.8+047/45.1+030 52.2+005/38.2+1.40
LDAM-DRW [8] - V' 68.9+007/67.01008 62.8+017/58.9+£060 57.9+020/50.4+030
cRT [21] - v 67.8+013/66.3+015  63.2+045/59.9+040  59.3+0.10/ 54.6+072
VAT [28] v - 70.64029 / 67.8+019  62.6:+040/55.1+056 57.94042/46.3 1047
Mean-Teacher [36] v - 68.8+105/64.9+1535  60.9+033/52.8+081  54.5+022/39.8+073
MixMatch [5] v - 73.2+056/ 68.9+115  64.8+028/49.04205  62.5+031/42.5+1.68
MixMatch + DARP v - 7524047/ 72.84063 67.9+014/61.2+015 65.8+052/56.5+2.08
(-741% 1 -12.6%)  (-8.77% / -23.8%)  (-8.69% / -24.4%)
ReMixMatch [4] v - 81.54026/ 80.24+032  73.8+038/69.5+084  69.9+047/ 62.5+035
ReMixMatch + DARP v - 82.1+0.14/80.8£000  75.840090/ 72.61024  T1.0£027 / 64.5x068
(-3.45% 1-3.52%) (-7.84% /-10.2%) (-3.60% / -5.19%)
FixMatch [35] v - 79.2+033/ 77.8+036  71.5+072/66.8+151  68.4+0.15/59.9+043
FixMatch + DARP v - 81.8+024/80.9+028  75.5+005/73.0£000 70.42025/ 64.9+0.17

(-22.4% 1 -20.3%)

Table 2: Comparison of classification performance (bACC/GM) on CIFAR-10 under four different
class-imbalance ratio =, with ; = 100. SSL denotes semi-supervised learning and RB denotes
re-balancing. The numbers in brackets below the gray rows are relative test error gains from DARP,
compared to applied baseline SSL algorithms, respectively. The best results are indicated in bold.

CIFAR-10 (v = 100)

Algorithm SSL  RB Yu=1 Yu = 50 Yu = 150 Y = 100 (reversed)
Vanilla - - 58.8+0.13/51.0+011  58.8+0.13/51.0+0.11  58.8+013/51.0+0.11 ‘ 58.8+013/51.0+011
Re-sampling [20] V' 55.8+047/45.1+030 55.8+047/45.1+030  55.8+047/45.1+030 55.8+047/45.1+030
LDAM-DRW [8] V' 62.8+017/589+060 62.8+017/58.9+060 62.8+017/58.9x060 62.8+0.17/ 58.9+060
cRT [21] - V' 6324045/ 5994040  63.24045/59.9+040  63.2+045/ 59.9+040 63.2+045 / 59.9+040
VAT [28] v - 65.2+012/59.5+026  64.0+031/57.3+x066 62.8+019/55.1+070 59.4+036 / 50.6+061
Mean-Teacher [36] v - 73.9x110/ 7172142 61.24051/53.5+084  59.7+050 / 50.0+1.61 61.0+082/56.4+164
MixMatch [5] v - 41.5+076/ 12.0+4134  64. 14058/ 48.3+070  65.5+064/51. 14241 47.9+0.00 / 20.5+05
MixMatch + DARP v - 86.7+080/ 86.2+082  68.3+047/62.2+121  66.7+025 / 58.8+042 72.9+024/ 71.0+032
(-772% 1 -84.4%)  (-11.8% /-27.0%) (-3.62% / -15.7%) (-48.0% / -63.6%)
ReMixMatch [4] v - 48.3+014/19.5+085  75.14043/ 7194077  72.5+010/ 68.2+032 49.0+055/ 17. 14148
ReMixMatch* v - 85.0+135/ 8434155 77.0+012/74.7+004  72.8+0.10 / 68.8+021 75.3+003/ 72.3+004
ReMixMatch* + DARP v - 89.7+015/89.4+1017 7741022/ 7502025 73.2+011/69.24031 80.1+0.11/78.5x017
(-31.4%/-32.5%) (-1.72%/-1.49%) (-1.53% / -2.64%) (-19.5% / -22.5%)
FixMatch [35] v - 68.9+195/42.8+811  73.9+025/70.5+052  69.6+060/ 62.6+1.11 65.5+005 / 26.0+0.44
FixMatch + DARP v - 85.44055/85.0+065 77.3+017/75.5+021  72.9+024/69.5+0.18 74.9+051/72.3+113
(-53.1%/-73.8%) (-13.3%/-17.0%) (-10.9% / -18.4%) (-31.3% / -60.3%)

biased pseudo-labels for training can be ineffective or even harmful. On the other hand, DARP refines
such biased pseudo-labels correctly (see Figure 2(c)), and consequently, it improves the performance
of all the applied SSL algorithms: MixMatch, ReMixMatch and FixMatch. For example, DARP
exhibits 22.4%/20.3% relative error reductions of bACC/GM in the case of FixMatch under v = 150.
While DARP outperforms all the baselines, it could be even further improved by combining with RB
algorithms (see Section D of the supplementary material).

CIFAR-10 under v; 7 ~,. The imbalance ratio of unlabeled data may not be the same as that of
labeled data in general, i.e., v; # 7, and 7, is unknown. In this case, we estimate { M, k}i{:l for both
ReMixMatch and DARP as described in Section 3.3.

Table 2 summarizes the experimental results under ; # +,. Here, we denote “ReMixMatch” for
ReMixMatch without estimation of { M k}é{:l, i.e., it assumes M}, o« N, and “ReMixMatch*” for
ReMixMatch with estimation of {1}, }%_,. In Table 2, one can observe that DARP consistently
improves all the baselines. Surprisingly, the relative error gain from DARP increases as +,, decreases,



Table 3: Comparison of classification performance (bACC/GM) on CIFAR-100 and STL-10 under
two different class-imbalance ratio v;. SSL denotes semi-supervised learning and RB denotes re-
balancing. The numbers in brackets below the gray rows are relative test error gains from DARP,
compared to applied baseline SSL algorithms, respectively. The best results are indicated in bold.

CIFAR-100 (v = 7,) STL-10 (7 # 74)

Algorithm SSL  RB v =10 v =20 v =10 v =20
Vanilla - - 55.9+012/50.7+012  49.5+003/40.3+004 56.4+150/51.8+167  48.1+026/ 38.2+067
Re-sampling - V' 54.6+005/48.9+040 48.1+017/383+0s2  57.8+076/ 53.6+080 47.4+016/35.8+011
LDAM-DRW - V' 55.7+075/51.6+008 50.4+032/45.4+098 58.0+053/54.4+084  50.2+005 / 42.4+008
cRT - V' 56.2+036/522+038  50.7+011/43.84004  59.24053/55. 71065 49.2+4029/42.3 1020
VAT v - 54.6+006 / 48.6 011 48.5+016/38.5+025  64.2+033/ 61.1x050 56.24003 / 50.5+008
Mean-Teacher v - 54.1+013/ 4824005 48.2+013/37.6+007  57.7+010/ 54.8+087  48.0+047/35.3+381
MixMatch v - 60.1+030/ 48.1+408  53.4+004/41.94016 56.3+046 / 4824108 45.2+019/22.0+012
MixMatch + DARP v - 60.94024/ 55.84005  54.84027/45.64048  67.91024/65. 12051  58.31+073/52.2+1.01
(-2.04% / -14.8%) (-3.38% /-6.33%) (-26.7% /-32.7%) (-23.9% / -38.8%)
ReMixMatch v - 59.24003/52.1+013  53.5+003/42.3+013  67.8+045/61.14092  60.1+118/44.9+15
ReMixMatch + DARP v - 59.84020/52.9+041  54.4+007/ 4424007 79.4+007/782+010 70.9+044/ 67.0+162
(-1.25% 1 -1.59%) (-1.88% /-3.23%) (-36.0% /-44.0%) (-27.0% / -40.0%)
FixMatch v - 60.1+005 / 54.4+011  54.0+004 / 44.41017  72.9+009/ 69.6 4001  63.4+021/52.6:£000
FixMatch + DARP v - 61.1+023/56.4+028 54.9+005/46.4+041  77.8+033/76.5+040 69.9+177/ 65.4+307

(-2.55% 1 -4.40%)

(-1.97% / -3.60%)

(-18.2% / -22.8%)

(-17.9% 1 -27.0%)

i.e., the overall class-distribution becomes more balanced. We believe that this is because SSL
algorithms without DARP cannot fully enjoy this more balanced distribution as their pseudo-labels
of minority class data are significantly biased toward majority classes. Meanwhile, DARP correctly
refines pseudo-labels to (approximately) follow the true class-distribution, and hence it can take
advantage of a more balanced class distribution of unlabeled dataset.

To further investigate this phenomenon, we also evaluate algorithms for unlabeled dataset with

k—1
reversely ordered class-distribution, i.e., My < --- < My and My = My -, *~' for ~y, = 100,
denoted by “y,, = 100 (reversed)” in Table 2. As expected, SSL algorithms fail as they provide wrong
pseudo-labels to the most of unlabeled data (which are majority in unlabelded data while minority in
labeled data). In contrast, DARP successfully refines theses pseudo-labels and significantly improves
baselines as in prior experiments. For example, DARP exhibits 19.5%/22.5% relative error reductions

of bACC/GM compared to the second-best method ReMixMatch* under ~y,, = 100 (reversed).

CIFAR-100 and STL-10. We also present experimental results on CIFAR-100 and STL-10 datasets.
In the case of CIFAR-100, we construct its “synthetically long-tailed” variants as done in Section
4.1, and assume that labeled and unlabeled datasets have the same class distribution, i.e., y; = 7.
Since STL-10 also has a balanced labeled dataset with N = 500 for £ = 1, ..., 10, we construct
“synthetically long-tailed” variants with N; = 450. We fully use a given unlabeled data in STL-
10 with M = 100, 000, whose class distribution is unknown. Hence, in case of STL-10, labeled
and unlabeled datasets may not have the same class distribution (i.e., ; # ~,) and we estimate
{M;; }E_, for DARP as previously conducted for Table 2. Table 3 summarizes the performance of
baseline algorithms and DARP for learning both CIFAR-100 and STL-10. One can verify that DARP
consistently improves the applied SSL algorithms for both datasets. It is also noticeable that the gain
from DARP is significant on STL-10. This is because the mismatch of labeled and unlabeled datasets
is significant in STL-10 as the given unlabeled dataset is usually known to be closed to the uniform
distribution [5, 11]. Consequently, this result shows the importance of consideration of distribution
mismatch between labeled and unlabeled data again, and the superiority of DARP.

4.3 Detailed analysis on DARP

Comparison with other distribution matching. The main motivation of DARP is to correct bias
in pseudo-labels by matching the class distribution of pseudo-labels and true class distribution of
unlabeled data. In this aspect, we compare DARP with the other distribution matching algorithms
[2, 4], which are originally proposed under the balanced labeled/unlabeled class distributions, but
applicable to any imbalanced settings. [2] directly adds the KL divergence loss as a regularizer
where the class distribution of pseudo-labels is approximated within a mini-batch for optimizing
loss. [4] proposes the “distribution alignment” procedure, which re-scales pseudo-labels to match
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Figure 2: Confusion matrices of pseudo-labels on CIFAR-10 under y; = 100, v, = 1 using MixMatch
[5]. (a) is from the original pseudo-labels. (b) and (c) are from refined pseudo-labels via DARP under
0 = oo and § = 2, i.e., without/with removing small entries, respectively.

Table 4: Comparison of classification performance (b ACC/GM) on CIFAR-10 across different
distribution matching methods applied to ReMixMatch [4] under ~; = 100.

Algorithm Yy =1 Yu = 50 Yu =100 7y, = 100 (reversed)
[2] 81.4/80.5 76.0/72.7 725/67.8 729/67.1
[4] 85.0/84.3 77.0/747 73.8/69.5 75.3/72.3
DARP 89.7/894 77.4/75.0 75.8/72.6 ‘ 80.1/78.5

the class distribution and then re-normalize them to satisfy the probability constraint. However, both
methods cannot guarantee the exact distribution matching. Table 4 clearly shows that DARP provides
larger performance gains compared to other algorithms. Note that we use the same target distribution
{ M}, for all algorithms. Here, one can observe that the performance gap between DARP and
other algorithms becomes significant as the mismatch of labeled and unlabeled datasets becomes
severe. This is because DARP exactly matches the distributions, while other algorithms do not.

Quality of refined pseudo-labels. We further evaluate DARP by measuring the error from refined
pseudo-labels using underlying true labels hidden to DARP. For this, we use the model trained on
CIFAR-10 under v; = 100, v, = 1 using MixMatch [5], which originally suffers from the biased
pseudo-labels (see Figure 1(b)). Figure 2 visualizes the confusion matrix C"#*abeled of pseudo-labels
and refined pseudo-labels where C"*12beled g defined in Section 3.3. As expected, the original
pseudo-labels are highly biased toward majority classes of the labeled dataset, i.e., small class indices.
On the other hand, refined pseudo-labels are more likely to be unbiased compared to the original
one, and the quality of pseudo-labels is significantly improved, especially in minority classes. In
particular, for small §, the confusion matrix is less biased, while it is more biased for large §. We
explain such an observation as follows: given ¢, the number of possible k-th nonzero entries in
all refined pseudo-labels is restricted by d M. Here, large  allows more freedom in the choice of
entries of the refined pseudo-labels, which would result in a smaller distortion from the original
biased pseudo-labels (see our optimization objective (1)). Hence, for large §, the resulting refined
pseudo-labels are likely to preserve the original pseudo-labels’ properties, including its bias. Besides,
small § regularizes the entries of refined pseudo-labels and hence, reduces the bias of the original
pseudo-labels. The effect of other components of DARP is presented in the supplementary material.

5 Conclusion

In this paper, we propose a simple and effective method to refine pseudo-labels for semi-supervised
learning (SSL) under assuming class-imbalanced training distributions. Our main idea is to refine the
biased pseudo-labels (generated by an SSL algorithm) so that (a) their distribution match to the true
class distribution and (b) they still preserve the information of the original pseudo-label as much as
possible. To further increase the quality of the refined pseudo-labels, we suggest to remove some
noisy entries in the original pseudo-labels. Our method is quite easy-to-use to be adapted to any SSL
algorithms. The class-imbalanced SSL scenarios are under-explored in the literature, and we think
our work can be a strong guideline when other researchers pursue these tasks in the future.



Broader Impact

In this paper, we first identify that current state-of-the-art semi-supervised learning (SSL) algorithms
can suffer from the class-imbalanced distribution of training data due to the biased prediction toward
majority classes. Then, we propose a Distribution Aligning Refinery of Pseudo-label (DARP), which
corrects such biased pseudo-labels from any SSL algorithms by solving the proposed optimization
based on the knowledge of underlying distribution.

While this paper focused on the ordinary classification problem under class-imbalanced distribution,
we expect that our work can contribute in a broader way, such as resolving the undesirable bias
of deep neural networks (DNNs). Recently, it has been revealed that DNNs are often misled to
exploit unintended correlation when the dataset is highly biased, although they achieve state-of-the-art
performances on many tasks in artificial intelligence. The lack of de-biased samples might incur this
phenomenon, one can address this by gathering such data without labels. However, in this way, the
situation can deteriorate, i.e., the bias of DNNs can be severed, as we have identified in this work
since the existing SSL algorithms mainly rely on the current prediction. However, by leveraging the
prior knowledge, our method provides a safe way for utilizing the unlabeled data in this scenario, so
that one can get desired de-biased models.

Simultaneously, our work reveals the vulnerability of recent state-of-the-art semi-supervised learning
(SSL) algorithms under realistic scenarios. After [30] points out the limitation of current SSL
algorithms, especially about the existence of out-of-distribution samples within unlabeled dataset, this
scenario is recently considered by many researchers for stepping forward to the real-world application
[10, 29]. However, as we have identified in this work, given class-imbalanced distribution can also
be problematic. Even this scenario frequently occurs in the real-world, this direction is relatively
under-explored so far [38]. Hence, we expect our work can encourage future researchers to focus on
this crucial yet unnoticed direction for the application of semi-supervised learning in the real world.
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