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A Proof of Theorem 1

In this section, we present the formal proof of Theorem 1. To this end, we interpret DARP as a
coordinate ascent algorithm of the Lagrangian dual of its original objective (1), and discuss the
necessary and sufficient condition of correct convergence of DARP, i.e., convergence to the optimal
solution of (1).

More generally, we consider the following problem: For A 2 Rn⇥m
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where 1n denotes the n-dimensional vector consisting of ones. We note that the above problem is
well-known in information theory as the I-projection [12] when wi = 1 8i. Now, we will show that
DARP is indeed a coordinate ascent algorithm for the dual of the above optimization. To this end, we
formulate the Lagrangian dual of (3).

Lemma 1. The Lagrangian dual of (3) is given by
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In addition, the optimal objective value of (3) is equivalent to that of (4), i.e., the strong duality holds.

Here, the primal optimal solution M of (3) and the dual optimal solutions �, ⌫ of (4) satisfies that

Mij = Aije
�wi+�i+⌫j

wi 8i, j (5)

We provide the formal proof of Lemma 1 in Section B.1 for the completeness. Apparently, (4) is a
concave optimization problem and solving (4) directly provides the optimal solution of (3) due to the
last statement of Lemma 1. To show the connection between DARP and (4), we introduce the below
lemma. We present the formal proof of the below lemma in Section B.2.

Lemma 2. A pair (�, ⌫) is the unique optimal solution of (4) if and only if the below equalities hold:
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In addition, for the coordinate ascent updates x
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, y
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for (4) defined by

�
⇤ := argmax

�2Rn
>0

g(�, ⌫), ⌫
⇤ := argmax

⌫2Rm
>0

g(�, ⌫). (7)

find the solutions of the former and latter equality of (6), respectively.

By substituting ↵i = e
��i+wi

wi ,�j = e
�⌫j , one can verify that DARP is exactly a coordinate ascent

(7). Therefore, we conclude that DARP indeed optimizes the dual of (3) and it finds the unique
optimum M once it converges due to the last statement of Lemma 1. In particular, its correct
convergence is guaranteed if the unique critical point of g(�, ⌫) exists, i.e., there exists �, ⌫ satisfying
(6).



B Proofs of technical Lemmas

B.1 Proof of Lemma 1

The Lagrangian dual function g(�, ⌫) is defined by
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Since g is convex with respect to M , the desired M can be computed by finding the critical point,
i.e., M minimizes the above objective if and only if each Mij satisfies
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Using the above identity, we reformulate (8) as
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Hence, the Langrangian dual of (3) is given by (4). Since the optimization (3) satisfies the Slater’s
condition, i.e., there exists a feasible solution of (3) [38, 6], the strong duality holds. Finally, the

optimal solution M of (3) satisfies Mij = Aije
�wi+�i+⌫j

wi due to (9). This completes the proof of
Lemma 1

B.2 Proof of Lemma 2

It is straightforward to derive that
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Since g(�, ⌫) is concave for � (or ⌫) given ⌫ (or �), �⇤ (or ⌫⇤) is a coordinate ascent update if and
only if g(�,⌫)

@� = 0n (or g(�,⌫)
@⌫ = 0m). This directly implies the second statement of Lemma 2 and

completes the proof of Lemma 2.



C Experimental results on SUN397

Table 5: Comparison of classification performance (bACC/GM) on SUN397. SSL denotes semi-
supervised learning and RB denotes re-balancing. The numbers in brackets below the gray rows are
relative test error gains from DARP, compared to applied baseline SSL algorithms, respectively. The
best results are indicated in bold.

Method SSL RB � ⇡ 46

Vanilla - - 38.3±0.05 / 29.9±0.08

cRT - X 39.3±0.21 / 33.7±0.37

FixMatch X - 44.9±0.11 / 35.7±0.66

FixMatch + DARP X - 45.5±0.32 / 37.5±0.04

(-1.09% / -2.80%)
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Figure 3: Class distribution of labeled
and unlabeled dataset of SUN-397.

In this section, we further verify the effectiveness of DARP on
the real-world imbalanced dataset, SUN-397 [44]. SUN-397
is a dataset for a scene categorization and originally consists
of 108,754 RGB images labeled with 397 classes. Since the
dataset itself does not provide any separated split for testing,
we first hold-out 50 samples per each class for testing. After
that, we artificially construct the labeled and unlabeled dataset
using the remaining dataset under Mk

Nk
= 2. See Figure

3 for the class distribution of constructed dataset. With this
dataset, we compare the models trained under 4 representative
algorithms: vanilla, classifier re-training (cRT) [23], FixMatch [39] and FixMatch+DARP. Table 5
summarizes the experimental results. Here, DARP surpasses all the baseline algorithms, and this
result shows the extensibility of DARP toward the real-world dataset.

Training details. For pre-processing, we randomly crop and rescale to 224 ⇥ 224 size all labeled
and unlabeled training images before applying augmentation. Following the experimental setups
in [39], our batch contains 128 labeled data and 640 unlabeled data on each step. Here, we use
standard ResNet-34 [19] model and train it for 300 epochs of unlabeled data using SGD optimizer
with momentum 0.9. We utilize linear learning rate warmup for the first 5 epochs until it reaches
an initial value of 0.4. Then, we decay the learning rate at epochs 60, 120, 160, and 200 epochs
by dividing it by 10. For applying FixMatch [39], we use unlabeled loss weight �u = 5 and
confidence threshold ⌧ = 0.7. We utilize Exponential moving average technique with decay 0.9 and
use RandAugment with random magnitude [13] for strong augmentation and random horizontal flip
for weak augmentation.



D Combination of re-balancing and semi-supervised learning

Table 6: Comparison of classification performance (bACC/GM) on CIFAR-10 under three different
class-imbalance ratio � = �l = �u. SSL denotes semi-supervised learning and RB denotes re-
balancing. The numbers in brackets below the gray rows are relative test error gains from DARP,
compared to applied baseline SSL algorithms, respectively. The best results are indicated in bold.

CIFAR-10

Algorithm SSL RB � = 50 � = 100 � = 150

Vanilla - - 65.2±0.05 / 61.1±0.09 58.8±0.13 / 51.0±0.11 55.6±0.43 / 44.0±0.98

ReMixMatch [4] X - 81.5±0.26 / 80.2±0.32 73.8±0.38 / 69.5±0.84 69.9±0.47 / 62.5±0.35

ReMixMatch + DARP X - 82.1±0.14 / 80.8±0.09 75.8±0.09 / 72.6±0.24 71.0±0.27 / 64.5±0.68

(-3.45% / -3.52%) (-7.84% / -10.2%) (-3.60% / -5.19%)

ReMixMatch + cRT X X 86.8±0.50 / 86.5±0.49 81.4±0.41 / 80.7±0.45 78.9±0.84 / 77.8±0.94

ReMixMatch + DARP + cRT X X 87.3±0.16 / 87.0±0.11 83.5±0.07 / 83.1±0.09 79.7±0.54 / 78.9±0.49

(-4.33% / -3.63%) (-11.3% / -12.2%) (-3.61% / -5.12%)

Meanwhile DARP outperforms all the baselines, it could be further improved by combining with RB
algorithms. To verify this, we examine DARP and baseline SSL algorithm, ReMixMatach [4], by
combining with the classifier re-training (cRT) algorithm [23], which is a recently introduced state-
of-the-art RB algorithm. These algorithms are denoted by “ReMixMatch + cRT” and “ReMixMatch
+ DARP + cRT”, respectively, and the detailed implementation can be found in Section E. Table
6 summarizes the performance of ReMixMatch with/without DARP combined with cRT. One can
observe that combining with cRT improves both ReMixMatch and DARP significantly, but DARP
still outperforms ReMixMatch under cRT. For example, DARP exhibits 11.3%/12.2% relative error
gains of bACC/GM compared to ReMixMatch when � = �l = �u = 100.



E Implementation details

All experiments are conducted with Wide ResNet-28-2 [33] and it is trained with batch size 64 for
2.5⇥ 105 training iterations except Section C. For training with semi-supervised learning algorithms,
we use Adam optimizer [25] with a learning rate 2⇥ 10�3. For the hyperparameters of Adam, we
use �1 = 0.9, �2 = 0.999 and " = 10�8 which is a default choice of [25]. To evaluate models
trained by semi-supervised learning algorithms, we use an exponential moving average (EMA) of its
parameters with a decay rate 0.999 and apply weight decay of 4 ⇥ 10�4 at each update following
[5].5 For training with re-balancing algorithms, we use SGD with a learning rate 0.1, momentum 0.9
and weight decay 5⇥ 10�4. The learning rate of SGD decays by 0.01 at the time step 80% and 90%
of the total iterations following [8]. For all algorithms, we evaluate the model on the test dataset for
each 500 iterations and report the average test accuracy of the last 20 evaluations following [5].
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Case2: DA
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Figure 4: Distribution matching via
DARP for each iteration.

DARP. We apply DARP procedure for each 10 iterations with
fixed hyper-parameters � = 2 and T = 10, which is em-
pirically enough for the convergence of DARP. To show its
convergence empirically, we directly measure the distribution
mismatch as 1

M

PK
k=1 |M̃k � Mk| for each iteration, where

M̃k implies the resulting class distribution of refined pseudo-
labels. For additional comparison, we also report the results
from distribution alignment (DA) term of ReMixMatch [4]. We
use the model trained using MixMatch [5] under 3 cases: (1)
�l = 100, �u = 1, (2) � = �l = �u = 100 (reverse) and (3)
� = 100. Figure 4 shows that T = 10 is enough for the convergence and DARP’s superiority
compared to DA. The effect of � is presented in Section 4.3. Since the estimation is not accurate at
the early stage of training, we are not using DARP until the first 40% of iterations.

VAT, Mean-Teacher and MixMatch. In the experiments, we use VAT [31], Mean-Teacher [40] and
MixMatch [5] as the baselines for semi-supervised learning methods. Since these methods have some
hyperparameters, we use the same values for them as used in [5]. For VAT, the consistency coefficient
�u is set to 0.3, the norm constraint for adversarial perturbation ✏ is set to 1.0 and the norm of initial
perturbation ⇠ is set to 1.0 ⇥ 10�6. For Mean-Teacher, the consistency coefficient �u is set to 50
and the EMA model used for the evaluation is reused for the consistency regularization. Following
[40], we ramped up the consistency coefficient starting from 0 to �u using a sigmoid schedule so
that it achieves the maximum value at 1.0⇥ 105 iterations for both methods. For MixMatch, we set
temperature T as 0.5, the number of augmentation K as 2, the parameter for beta distribution ↵,� as
0.75 and the consistency coefficient �u as 75. During the entire iterations, the consistency coefficient
is linearly increased to �u started from 0.

ReMixMatch. For ReMixMatch [4], we use K = 2 for the number of augmentations to balance the
improvement from an augmentation anchoring and a computational cost. Also, we use RandAugment
[13] as a strong augmentation which is shown to be substitutable with CTAugment [39]. For the other
hyperparameters, we use the same values used in the original paper.

FixMatch. For FixMatch [39], we use µ = 2 for the ratio of unlabeled data µ and Adam optimizer
as described in Section 4.1 to fairly compare it with ReMixMatch. For the other hyperparameters,
�u used for balancing the loss from labeled and unlabeled data and ⌧ used as a threshold for
pseudo-labeling [28], we use the same values with the original paper, �u = 1 and ⌧ = 0.95.

cRT. To re-balance the network trained under the imbalanced class distribution, we use the classifier
re-training (cRT) scheme [23]. After training the network regardless of the use of unlabeled data
without considering the imbalance, we re-initialize the linear classifier of the network and only
re-train it for 1.0⇥ 104 iterations by freezing other parameters. We re-balance the training objective
by re-weighting the given loss [24] instead of re-sampling. Also, we re-train the classifier using only
the labeled dataset.

5We do not use the exponential moving average for evaluating “re-balancing” algorithms as it hurts the
performance.
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