
We thank all reviewers for their thoughtful comments and suggestions. We provide our feedback below.1

Reviewer 1 “The contribution is relevant and timely.” Thank you for your encouraging comments. “Many seminal2

papers on SLOPE-like regularizations are not cited.” We acknowledge the need for a more extensive section on the3

previous literature and will revise the introduction accordingly. “[. . . ] details on the convergence” Convergence is4

obtained when the duality gap as a fraction of the primal is less than 10−5 and the relative level of infeasiblity (see the5

appendix of Bogdan et al. 2015 [3]) is less than 10−3. We will include this in the revision. Regarding the computational6

cost of the rule, the rule sorts the gradient but does not solve the prox, which makes the cost slightly lower than the7

cost of a gradient step. We will clarify this in the revision. Thank you for pointing the typos in the proof. They will be8

corrected together with other observed inconsistencies.9

Reviewer 2 “The work is well presented, motivated, application is interesting and speedups are demonstrated.” Thank10

you for your positive feedback. “constructing a path of decreasing λ [. . . ]”. We will provide the suggested reference.11

“your rule is useful in the sequential setting but cannot be applied [. . . ] with a single lambda” It is possible to use the12

rule non-sequentially since the gradient for the null model is always available. We will clarify this in the revision. “the13

true solution is never available [. . . ]” Actually, our algorithm calculates the exact solution (to numerical precision)14

at each step, so the exact gradients at the previous steps are known. Please note that at each step we check the KKT15

conditions and, if needed, recalculate SLOPE after adding predictors removed by the rule. We observed that such16

corrections are rarely needed in practice. “More than being piecewise linear, you need its slope to be bounded by 1,17

don’t you?” At the intervals where the path is linear the unit bound is trivially satisfied (see the similar reasoning18

for the lasso). “References” Thank you for a large set of references. We will extend the review section accordingly.19

“I would like to see the efficiency of your rule in this setting”. We have extended the experiments to analyze the20

effectiveness of the rule with different path lengths (and thus coarseness). For the arcene data set and OLS model,21

for instance, the average proportion of eliminated predictors (out of the total) is 0.74, 0.92, 0.96 for path lengths of22

20, 50, and 100 respectively. Section 3.3.1 will be updated and extended accordingly. “it is better to have a violating23

[. . . ]”. We agree and will revise. “For the Lasso, there always exists a solution with support of size at most n”.24

This is not the case with SLOPE. Due to clustering, SLOPE can return even p nonzero coefficients (assuming some25

of them are equal to each other in absolute value) (cf. https://arxiv.org/abs/2004.09106). “[. . . ] you may26

need to run your simulations with larger n”. We have updated the results with new datasets (see the included table).27

time (s)

dataset model n p no screening screening

dorothea logistic 800 88119 845 14
e2006 OLS 3308 150358 43335 4874
news20 multinomial 200 62061 2101 133
physician poisson 4406 25 34 34

“can you explain how you break ties and why28

they don’t matter?” SLOPE clusters variables29

and averages the penalty coefficients over the30

ties (see Bogdan et al. [3] for SLOPE prox).31

“why should the screened set [. . . ]” We agree32

and will clarify this passage in the revision.33

“L184 could plot [. . . ]” We agree but are re-34

grettably not able to add such a plot due to35

space constraints. We will also take into account other editorial suggestions and include suggested references.36

Reviewer 3 “The authors derive a screening rule for SLOPE, which is both novel and impactful.” Thank you; we37

appreciate the supportive feedback. “[. . . ] the gradient estimate be arbitrarily far away from its real value”. This is true38

in theory, but unlikely in practice. In fact it has been empirically shown both for the lasso and SLOPE that in most cases39

the unit bound is conservative. In our article we show that violations are rare for typical data sets. “Shouldn’t guarantees40

be studied [. . . ]” We think there might be a misunderstanding here. If Algorithm 1 is used with a true gradient than it41

returns the true support. Our rule relies on replacing the true gradient with an estimate based on the unit bound and42

Proposition 2 specifies conditions under which Algorithm 1 returns the superset of the support. “[. . . ] biased gradient43

estimation.” Unless any of the mentioned events occurs the gradient is linear and bounded by the unit bound. Please44

note that the gradient at the previous step is known.45

Reviewer 4 “This paper aims to derive a screening rule for SLOPE, which is important in sparsity learning [and] [. . . ]46

easy to implement.” Thank you for the remarks. “The novelty is limited [...]” We respectfully disagree. Developing47

screening rules for SLOPE is notoriously difficult due to the non-separability of the penalty; ours is nevertheless one48

of the first attempts to do so. We are aware of only one article about a safe rule for SLOPE published in ICML (after49

we submitted). “The motivation is unclear. [. . . ]” It is not clear that it’s possible to extend GAP safe and EDPP50

rules to SLOPE. Since our submission, Bao et al. (https://arxiv.org/abs/2006.16433) have published a paper51

describing the first safe rule for SLOPE. Yet due to the non-separability of the penalty, this rule requires iteratively52

screening predictors during optimization, which means predictors cannot be screened prior to fitting, which we think53

highlights the difficulty in developing screening rules for SLOPE. “Experiments on real datasets are insufficient.” We54

agree. See the included table. “The authors may want to detail the differences [. . . ].” The difference between the lasso55

and SLOPE is that SLOPE has a non-separable penalty, which leads to a more complicated subgradient. In this paper56

we derived a form of the subgradient that enables us to efficiently generalize the strong rule for the lasso to SLOPE.57

https://arxiv.org/abs/2004.09106
https://arxiv.org/abs/2006.16433

