
Supplementary Materials1

1 Overview2

In the supplementary materials for paper “STLnet: Signal Temporal Logic Enforced Multivariate Recurrent3

Neural Networks”, we first introduce the preliminaries on Signal Temporal Logic in Section 2; Next, we give the4

formal proofs for the three propositions we proposed in the paper (Section 3); Finally, we present more details of5

evaluation (Section 4). We also include the code of STLnet and the synthesized datasets in the .zip file.6

2 Preliminaries: Signal Temporal Logic7

To briefly introduce the syntax and semantics of STL, we denote by X and P finite sets of real and propositional8

variables. We let ω : T→ Rm × Bn be a multi-dimensional signal, where T = [0, d) ⊆ R, m = |X|, n = |P |.9

Given a variable v ∈ X ∪P , we denote by πv(ω) the projection of ω on its component v. The syntax of an STL10

formula ϕ is usually defined as follows,11

ϕ ::= µ | ¬ϕ | ϕ ∧ ϕ | ♦(a,b)ϕ | �(a,b)ϕ | ϕU(a,b)ϕ.12

We call µ a signal predicate, which is a formula in the form of f(x) > 0 with a signal variable x ∈ X and13

a function f : X → R. The temporal operators �, ♦, and U denote “always", “eventually" and “until",14

respectively. The bounded interval (a, b) denotes the time interval of temporal operators.15

Below we present the formal definition of STL Boolean semantics. To informally explain the STL operations,16

formula �(a,b)ϕ is true iff ϕ is always true in the time interval (a, b). Formula ♦(a,b)ϕ is true iff ϕ is true17

at sometime between a and b. Formula ϕ1U(a,b)ϕ2 is true iff ϕ1 is true until ϕ2 becomes true at sometime18

between a and b.19

(ω, t) |= µ ⇔ f(x) > 0
(ω, t) |= ¬ϕ ⇔ (ω, t) |= ϕ
(ω, t) |= ϕ1 ∧ ϕ2 ⇔ (ω, t) |= ϕ1 and (ω, t) |= ϕ2

(ω, t) |= �(a,b) ⇔ ∀t ∈ (a, b), (ω, t) |= ϕ
(ω, t) |= ♦(a,b) ⇔ ∃t ∈ (a, b) ∩ T, (ω, t) |= ϕ
(ω, t) |= ϕ1UIϕ2 ⇔ ∃t′ ∈ (t+ a, t+ b) ∩ T, (ω, t′) |= ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′) |= ϕ1

Next, we present the formal definition of STL quantitative semantics.20

ρ(x ∼ c, ω, t) = πx(ω)[t]− c
ρ(¬ϕ, ω, t) = −ρ(ϕ, ω, t)

ρ(ϕ1 ∧ ϕ2, ω, t) = min{ρ(ϕ1, ω, t), ρ(ϕ2, ω, t)}
ρ(�Iϕ, ω, t) = min

t′∈(t,t+I)
ρ(ϕ, ω, t′)

ρ(♦Iϕ, ω, t) = max
t′∈(t,t+I)

ρ(ϕ, ω, t′)

ρ(ϕ1UIϕ2, ω, t) = sup
t′∈(t+I)∩T

(min{ρ(ϕ2, ω, t
′), inf

t′′∈[t,t′]
(ρ(ϕ1, ω, t

′′))})

The quantitative semantics (i.e., the robustness values) measure the satisfaction/violation degree of the STL21

formula. In the evaluation section of the paper, we use it to measure the prediction performance on property22

satisfaction.23

3 Proof of Propositions24

Proposition 4.1 (Restate, STL formula in DNF representation). Every STL ϕ can be represented in the DNF25

formula ξ(ϕ), where ξ(ϕ) is a formula that includes several clauses φk that is connected with the disjunction26

operator, and the length of φk is denoted by |φk|. Each clause φk can be further represented by several Boolean27

variables li that are connected with the conjunction operator. Finally, each Boolean variable li is the satisfaction28

range of a specific parameter.29

ξ(ϕ) = φ1 ∨ φ2 ∨ ... ∨ φK
φk = l

(k)
1 ∧ l(k)2 ∧ .. ∧ l(k)|φk|

∀k ∈ {1, 2..K}
l
(k)
i = {xjt | f(xjt) ≥ 0} where (t ∈ T ), ∀i ∈ {1, 2..|φk|}

(1)
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Proof. We prove Proposition 4.1 by induction. We use induction on the top-layer operator:31

• A single µ operator can be represented by a single l clause, where f(x0) ≥ 0.32

• If the low layer operators can be represented by DNF formula, the result of ¬, ∧, and ∨ operators can33

also be represented as DNF formula by the De Morgen rule.34

• The always operator �(a,b)φ can be decomposed as multiple ∧ operator on the time period (a, b).35

Given the DNF ϕ and a specific time t ∈ (a, b), the actual DNF should be ϕ with an additive time36

shift t on every time operator in ϕ. Then the STL formula is equivalent to a DNF built by applying the37

De Morgen rule on the DNFs with every t ∈ (a, b).38

• The eventually operator ♦(a,b)φ can be decomposed as multiple ∨ operator on the time period (a, b).39

Given the DNF ϕ and a specific time t ∈ (a, b), the actual DNF should be ϕ with an additive time40

shift t on every time operator in ϕ. Then the STL formula is equivalent to a DNF built by connecting41

the DNFs for every t ∈ (a, b) with ∨.42

• The until operator U(a,b) by the STL definition can be represented with � and ♦ operators. Therefore43

it can also be represented by a DNF.44

By induction, we have Proposition 4.1 proved.45

Proposition 4.2 (Restate). For two clauses φi and φj in a DNF ξ, if ∀ω |= φi, ω |= φj , and φi ⊆ φj , then we46

have DL1(ω, φi) ≤ DL1(ω, φj).47

Proof. Prove by contradiction. Assume DL1(ω, φi) > DL1(ω, φj). Let ω′ denotes the trace with minimal48

distance to ω in φj , that is, ω′ = arg minω′′|=φj
DL1(ω, ω′′). As φi ⊆ φj , we have ω′ |= φi. Therefore,49

DL1(ω, φi) = minω′′|=φi
DL1(ω, ω′′) ≤ DL1(ω, ω′), which clearly contradicts the assumption. Therefore,50

DL1(ω, φi) ≤ DL1(ω, φj).51

Proposition 4.3 (Restate, shortest distance of a trace to the DNF formula). Let ω̂ be the trace that satisfy the52

DNF formula ϕ = φ1 ∨ φ2 ∨ ... ∨ φK that has minimal distance to the input trace ω, then we have53

k̂ = arg min
k
DL1(ω, φk) (2)

and ω̂ is the trace that minimizes DL1(ω, φk̂) by DL1(ω, ω̂) = DL1(ω, φk̂).54

Proof. We prove the proposition by contradiction. Assume ω̂ |= ϕ, by the definition of DNF formula, we have55

∃k : ω̂ |= φk. Suppose k̂ is one of choices that ω̂ |= φk̂.56

If k̂ 6= arg minkDL1(ω, φk), then there exists another k′ that DL1(ω, φk′) < DL1(ω, φk̂). By the definition57

of DL1(ω, φk′), there exists a ω′ that DL1(ω, ω′) = DL1(ω, φk′) < DL1(ω, φk̂) = DL1(ω, ω̂). We also58

have ω′ |= φk′ , which indicates ω′ |= ϕ. Then ω′ is closer to ω and also satisfies ϕ, which contradicts the59

assumption.60

If ω̂ doesn’t minimize DL1(ω, φk̂), then there exists another ω′ |= φk̂ that DL1(ω, ω′) = DL1(ω, φk̂) <61

DL1(ω, ω̂). Then ω′ is closer to ω and also satisfies ϕ, which contradicts the assumption.62

4 Evaluation63

In Section 5.1 of the paper, we present the results of the learning model properties from six sets of synthesized64

datasets to show how STLnet support RNNs to better learn model properties. Here we elaborate the details of65

how we synthesized the datasets and their model properties. As we can see, all the six synthesized datasets are66

abstracted from very common scenarios from CPSs applications.67

For each of the six sets of experiments, we generated 50,000 instances (nd) and divided them into five subsets.68

Then, for each subset, we randomly selected 95% for training and 5% for testing. We repeated it five times. At69

last, we calculated the average results from these 25 runs.70

Below we present STL formulas of the model properties for each set of datasets. We also explained how we71

synthesized the datasets.72
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• Resource constraint:73

To synthesize the data with the model property of resource constraint, we use a piecewise constant74

function to generate nd instances, each following:75

x1(t) = x2(t) =

{
1.0− σ(t) t < d

1.005 + σ(t) t ≥ d.
(3)

where σ(t) is a small Gaussian noise, and d is pick randomly between 10 to 14. The function follows76

model property ϕ1, which is used in STLnet to enhance learning,77

ϕ1 = �[0,8]¬(x1 > 1) ∧�[14,19](x1 > 1) ∧�[0,8]¬(x2 > 1) ∧�[14,19](x2 > 1). (4)

• Consecutive change:78

To synthesize the data with the model property of consecutive change, we use a monotonically79

decreasing function to generate nd sequences, each following:80

x1(t) = x1(t− 1)−min(100, 0.2x1(t− 1))

x2(t) = x2(t− 1)−min(100, 0.2x2(t− 1)).
(5)

We pick the original value x1(0) and x2(0) uniformly between the range [0, 1000). The function81

follows model property ϕ2, which is used in STLnet to enhance learning,82

ϕ2 = �[0,19](¬(∆x1 > 100) ∧ ¬(∆x2 > 100)). (6)

• Variable and Temporal Correlation:83

To synthesize the data with the model property of variable and temporal correlation, we generate to84

generate nd sequences. Each sequence consists only 0 and 1, but keep not any group of 4 consecutive85

numbers to be the same. That is,86

x1(t) =


0 If x1(t− 1) = 1 ∧ x1(t− 2) = 1 ∧ x1(t− 3) = 1

1 If x1(t− 1) = 0 ∧ x1(t− 2) = 0 ∧ x1(t− 3) = 0

Bernoulli(0.5) Otherwise.
(7)

The function follows model property ϕ3, which is used in STLnet to enhance learning,87

ϕ3 = �[0,5]

(
♦[0,4](x1 > 0) ∧ ♦[0,4](¬(x1 > 0))

)
. (8)

• Reasonable range:88

To synthesize the data with the model property of reasonable range, we use a periodic function to89

generate nd sequences, each following:90

x1(t) = sin(at+ b)

x2(t) = cos(at+ b).
(9)

Where a is uniformly picked from [0.77, 1.03), and b is uniformly picked from [0, 0.5). The function91

follows model property ϕ4, which is used in STLnet to enhance learning,92

ϕ4 = �[0,19](x1 > −1.0 ∧ ¬(x1 > 1.0) ∧ x2 > −1.0 ∧ ¬(x2 > 1.0)). (10)

• Existence:93

To synthesize the data, we generate nd instances of 0 and 1. In each sequence make sure that for both94

x1 and x2 it equals 1 at a single t and equals 0 at other time. The function follows model property ϕ5,95

which is used in STLnet to enhance learning,96

ϕ5 = ♦[0, 19](x1 > 0.99) ∧ ♦[0, 19](x2 > 0.99). (11)

• Unusual cases:97

To synthesize the data with the model property of unusual cases, we generate nd instances following:98

x1(t) =

{
1000 t = td
0 otherwise.

(12)

and99

x2(t) =

{
10 ∃ti ∈ [1, 9], x1(t− ti) > 0

σ(t) otherwise.
(13)

where d is pick randomly between 0 to 4, and σ(t) is a small Gaussian noise.100

The function follows model property ϕ6, which is used in STLnet to enhance learning,101

ϕ6 = �[0,4](x1 > 500 ∨�[1,9]x2 > 9). (14)
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