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A Additional experimental results

A.1 Speedup of ELECTION CODING over SignSGD-MV

We observe the speedup of ELECTION CODING compared with the conventional uncoded scheme [6].
Table A.1 summarizes the required training time to achieve the target test accuracy, for various n, b, r
settings, where n is the number of nodes, b is the number of Byzantines, and r is the computational
redundancy. As the portion of Byzantines b

n increases, the suggested code with r > 1 has a much
higher gain in speedup, compared to the existing uncoded scheme with r = 1. Note that this
significant gain is achievable by applying codes with a reasonable redundancy of r = 2, 3. As an
example, our Bernoulli code with mean redundancy of r = 2 (two partitions per worker) achieves an
88% accuracy at unit time of 609 while uncoded SignSGD-MV reaches a 79% accuracy at a slower
time of 750 and fails altogether to reach the 88% level with b = 3 out of n = 9 workers compromised.

A.2 Performances for Byzantine mismatch scenario

Suppose the deterministic code suggested in this paper is designed for b̂ < b Byzantine nodes, where
b is the actual number of Byzantines in the system. When the number of nodes is n = 5 and the
number of Byzantines is b = 2, Fig. A.1 shows the performance of the deteministic code (with
redundancy r = 3.8) designed for b̂ = 1. Even in this underestimated Byzantine setup, the suggested
code maintains its tolerance to Byzantine attacks, and the performance gap between the suggested
code and the conventional SignSGD-MV is over 20%.

A.3 Performances for extreme Byzantine attack scenario

In Fig. A.2, we compare the performances of ELECTION CODING and the conventional SIGNSGD-
MV, under the maximum number of Byzantine nodes, i.e., b = (n � 1)/2, when n = 9 and
b = 4. The suggested Bernoulli code enjoy over 20% performance gap compared to the conventional
SignSGD-MV. This shows that the suggested ELECTION CODING is highly robust to Byzantine
attacks even under the maximum Byzantine setup, while the conventional SignSGD-MV is vulnerable
to the extreme Byzantine attack scenario.
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Table A.1: Training time (minutes) to reach the test accuracy for the suggested ELECTION CODING with r > 1
and the uncoded SignSGD-MV with r = 1, for experiments using ResNet-18 to train CIFAR-10. Here,1
means that it is impossible for the uncoded scheme to reach the target test accuracy. For every target test accuracy,
the suggested code with r > 1 requires less training time than the conventional uncoded scheme with r = 1.

Test accuracy 75% 80% 85% 89%

n=5, b=1
Suggested

Election Coding
r=3.8 39.2 68.6 137.2 392.1
r=2.5 28.0 56.0 119.0 287.0

SignSGD-MV r=1 52.6 95.6 191.2 1

n=9, b=2
Suggested

Election Coding
r=3 52.6 87.7 149.0 350.6
r=2 51.4 68.6 137.2 334.4

SignSGD-MV r=1 67.0 113.8 207.5 381.5

Test accuracy 30% 60% 79% 88%

n=5, b=2
Suggested

Election Coding
r=3.8 9.8 19.6 58.8 245.0
r=2.5 7.0 14.0 56.0 245.0

SignSGD-MV r=1 43.0 1 1 1

n=9, b=3
Suggested

Election Coding
r=3 8.8 26.3 122.7 394.4
r=2 8.6 60.0 351.5 608.7

SignSGD-MV r=1 13.4 167.3 749.5 1
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Figure A.1: Result for Byzantine mismatch scenario, i.e., b̂ 6= b, when n = 5 and b = 2. The suggested
deterministic code (with r = 3.8) is designed for b̂ = 1, which is smaller than the actual number of Byzantines
b = 2. Even in this underestimated Byzantine setup, the suggested code is highly tolerant compared to the
conventional SignSGD-MV.

A.4 Reducing the amount of redundant computation

We remark that there is a simple way to lower the computational burden of ELECTION CODING
by reducing the mini-batch size to ⇢B for some reduction factor ⇢ < 1. In this case, the effective
computational redundancy can be represented as reff = ⇢r. Fig. A.3 shows the performance of
ELECTION CODING with reduced effective redundancy. For experiments on n = 5 or n = 15, we
tested the Bernoulli code with redundancy r = 2.5 and r = 3, respectively, and reduced the batch
size by the ratio ⇢ = 0.5. This results in the effective redundancy of reff = 1.25 and reff = 1.5,
respectively, as in Fig. A.3 . Comparing with the SignSGD with effective redundancy reff = 1, the
suggested codes have 20 ⇠ 30% performance gap. This shows that ELECTION CODING can be used
as a highly practical tool for tolerating Byzantines, with effective redundancy well below 2.

A.5 Performances for larger networks / noisy computations

We ran experiments for a larger network, ResNet-50, as seen in Fig. A.4a. Our scheme with
redundancy reff = 1.5 is still effective here. We also considered the effect of noisy gradient
computation on the performance of the suggested scheme. We added independent Gaussian noise to
all gradients corresponding to individual partitions before the signs are taken (in addition to Byzantine
attacks on local majority signs). The proposed Bernoulli code can tolerate noisy gradient computation
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Figure A.2: Results for maximum Byzantine scenario, i.e., b = (n� 1)/2, when n = 9 and b = 4, under the
reverse attack on RESNET-18 training CIFAR-10. Bernoulli codes are abbreviated as "Bern. code".11



0 100 200 300 400 500
Training Time [min.]

0
10
20
30
40
50
60
70
80

Te
st

 A
cc

ur
ac

y 
(%

)

Bern.Code (r=2.5, =0.5, reff=1.25)
SignSGD-MV (r=1, =1, reff=1)

(a) n = 5, b = 2
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Bern.Code (r=3, =0.5, reff=1.5 )
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(b) n = 15, b = 6

Figure A.3: Impact of the reduced effective redundancy reff, under the reverse attack on RESNET-18 training
CIFAR-10. The suggested Bernoulli codes with effective redundancy reff = 1.25, 1.5 has a high performance
gain compared to the conventional SignSGD-MV.
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(a) ResNet-50
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(b) Noisy computation
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No Attack
b=3, Bern.Code (r=2)
b=3, Coordinate-wise Median
b=6, Bern.Code (r=2)
b=6, Bern.Code (reff=1.5)
b=6, Coordinate-wise Median
b=6, SignSGD-MV

(c) Compare with median
Figure A.4: Experimental results on CIFAR-10 dataset, for n = 15 and b = 6 (unless stated otherwise)

well, while uncoded signSGD-MV cannot, as shown in Fig. A.4b for added noise with variance
�2 = 1e�8.

A.6 Comparison with median-based approach

We compared our scheme with full gradient + median (FGM). As in Fig. A.4c, our scheme with
redundancy as low as reff = 1.5 outperforms FGM. While FGM requires no computational redun-
dancy, it needs 32x more communication bandwidth than ours while performing worse. For the 20%
Byzantine scenario (b = 3), FGM performs relatively better, but still falls well below ours. For the
severe 40% Byzantine case (b = 6), it is harder to achieve near-perfect protection but our schemes
clearly perform better.

B Hyperparmeter setting in experiments for CIFAR-10 dataset

Experiments for CIFAR-10 dataset on Resnet-18 use the hyperparameters summarized in Table B.2.
For the experiments on Resnet-50, the batch size is set to B = 64.

Table B.2: Hyperparameters used in experiments for CIFAR-10 dataset on Resnet-18
(n, b) (5,1) (5,2) (9,2) (9,3) (9,4) (15,3) (15,6) (15,7)

Batch size B
(per data partition) 24 48 64 14 16 64

Learning rate
decaying epochs E [40, 80] [20, 40, 80]

Initial learning rate � 10�4

Momentum ⌘ 0.9

C Notations and preliminaries

We define notations used for proving main mathematical results. For a given set S, the identification
function 1{x2S} outputs one if x 2 S, and outputs zero otherwise. We denote the mapping between
a message vector m and a coded vector c as �(·):

�(m) = c = [c1, · · · , cn] = [E1(m;G), · · · , En(m;G)].

We also define the attack vector � = [�1, �2, · · · , �n], where �j = 1 if node j is a Byzantine and
�j = 0 otherwise. The set of attack vectors with a given support b is denoted as Bb = {� 2 {0, 1}n :
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m � {0,1}n

M�

M+

c � {0,1}n

C� = �(M�)

�( � )
y � {0,1}n

Y�

Y+

f�( � )
�� � {0,1}

0
1

D( � )

C+ = �(M+)

Figure C.5: Mapping from m 2 {0, 1}n to µ̂ 2 {0, 1}. For all attack vectors � 2 Bb and attack functions
f� 2 F� , we want the overall mapping to satisfy µ̂ = 1 for all m 2M� and µ̂ = 0 for all m 2M+.

k�k0 = b}. For a given attack vector �, we define an attack function f� : c 7! y to represent the
behavior of Byzantine nodes. According to the definition of yj in the main manuscript, the set of
valid attack functions can be expressed as F� := {f� 2 F : yj = cj 8j 2 [n] with �j = 0}, where
F = {f : {0, 1}n ! {0, 1}n} is the set of all possible mappings. Moreover, the set of message
vectors m with weight t is defined as

Mt := {m 2 {0, 1}n : kmk0 = t}. (C.1)

Now we define several sets:

M+ := {m 2 {0, 1}n : kmk0 >
jn

2

k
}, M� := {m 2 {0, 1}n : kmk0 

jn

2

k
},

Y + := {y 2 {0, 1}n : kyk0 >
jn

2

k
}, Y � := {y 2 {0, 1}n : kyk0 

jn

2

k
}.

Using these definitions, Fig. C.5 provides a description on the mapping from m to µ̂. Since decoder
D(·) is a majority vote function, we have µ̂ = 1{y2Y +}. Moreover, we have µ = 1{m2M+}.

Before starting the proofs, we state several preliminary results. We begin with a property, which can
be directly obtained from the definition of y = [y1, · · · , yn].

Lemma C.1. Assume that there are b Byzantine nodes, i.e., the attack vector satisfies � 2 Bb. For a
given vector c, the output y = f�(c) of an arbitrary attack function f� 2 F� satisfies ky � ck0  b.
In other words, y and c differ at most b positions.

Now we state four mathematical results which are useful for proving the theorems in this paper.

Lemma C.2. Consider X =
Pn

i=1 Xi where {Xi}i2[n] is the set of independent random variables.
Then, the probability density function of X is

fX = fX1 ⇤ · · · ⇤ fXn = conv {fXi}i2[n].

Lemma C.3 (Theorem 2.1, [23]). Consider f and g, two arbitrary unimodal distributions that are
symmetric around zero. Then, the convolution f ⇤ g is also a symmetric unimodal distribution with
zero mean.

Lemma C.4 (Lemma D.1, [5]). Let g̃k be an unbiased stochastic approximation to the kthgradient
component gk, with variance bounded by �2

k. Further assume that the noise distribution is unimodal
and symmetric. Define the signal-to-noise ratio Sk := |gk|

�k
. Then we have

P [sign (g̃k) 6= sign (gk)] 
(

2
9

1
S2
k

if Si > 2p
3

1
2 � Sk

2
p
3

otherwise

which is in all cases less than or equal to 1
2 .

Lemma C.5 (Hoeffding’s inequality for Binomial distribution). Let X =
Pn

i=1 Xi be the sum of
i.i.d. Bernoulli random variables Xi ⇠ Bern(p). For arbitrary " > 0, the tail probability of X is
bounded as

P(X � np � n")  e�2"2n,

P(X � np  �n")  e�2"2n.

As an example, when " =
q

logn
n , the upper bound is 2

n2 , which vanishes as n increases.
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D Proof of Theorems

D.1 Proof of Theorem 1

Let qmax = maxk qk, where qk is defined in (2). Moreover, define uk = 1 � qk and umin = 1 � qmax.
Then, u?

min = 1 � max
k

q?k  1 � max
k

qk = umin holds. Now, we find the global estimation error

probability P(µ̂k 6= sign(gk)) for arbitrary k as below. In the worst case scenario that maximizes the
global error, a Byzantine node i always sends the wrong sign bit, i.e., yi,k 6= sign(gk). Let Xi,k be
the random variable which represents whether the ith Byzantine-free node transmits the correct sign
for coordinate k:

Xi,k =

⇢
1, ci,k = sign(gk)
0, otherwise

Then, Xi,k ⇠ Bern(pk). Thus, the number of nodes sending the correct sign bit is Xglobal,k =Pn(1�↵)
i=1 Xi,k, the sum of Xi,k’s for n � b = n(1 � ↵) Byzantine-free nodes, which follows the

binomial distribution Xglobal,k ⇠ B(n(1 � ↵), pk). From the Hoeffding’s inequality (Lemma C.5),
we have

P(Xglobal,k � n(1 � ↵)uk  �n(1 � ↵)"k)  e�2"2kn(1�↵) (D.1)

for arbitrary "k > 0. Set "k = uk � 1
2(1�↵) and define "min = min

k
"k. Then, we have

u?
min �

1

2(1 � ↵)
>

s
1

2(1 � ↵)

r
log(�)

n
, (D.2)

which is proven as below. Let Y =
p

2(1 � ↵). Then, (D.2) is equivalent to

u?
minY

2 �
r

log(�)

n
Y � 1 > 0, (D.3)

which is all we need to prove. Note that (D.2) implies that

Y 2

2
>

(
p

log(�)/n +
p

log(�)/n + 4u?
min)

2

8(u?
min)

2
,

which is equivalent to

Y >

p
log(�)/n

2u?
min

+

p
log(�)/n + 4u?

min

2u?
min

. (D.4)

Then,

u?
minY

2 �
r

log(�)

n
Y � 1 = u?

min

 
Y � 1

2u?
min

r
log(�)

n

!2

� 1

4u?
min

log(�)

n
� 1 > 0,

which proves (D.3) and thus (D.2). Thus, we have "k � "min � u?
min � 1

2(1�↵) >
q

1
2(1�↵)

q
log(�)

n > 0. Then, (D.1) reduces to

Pglobal,k = P(µ̂k 6= sign(gk)) = P(Xglobal,k  n/2)  e�2"2kn(1�↵) < 1/�,

which completes the proof.

D.2 Proof of Theorem 2

Here we basically follow the proof of [6] with a slight modification, reflecting the result of Theorem 1.
Let w1, · · · ,wT be the sequence of updated models at each step. Then, we have

f(wt+1) � f(wt)
(a)
 g(wt)

T (wt+1 �wt) +
dX

k=1

Lk

2
(wt+1 �wt)

2
k

(b)
= ��g(wt)

T µ̂ + �2
dX

k=1

Lk

2

= ��kg(wt)k1 + 2�
dX

i=1

|(g(wt))k| · 1{sign((g(wt))k) 6=µ̂k} + �2
dX

k=1

Lk

2
,
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where (a) is from Assumption 2, and (b) is obtained from wt+1 = wt � �µ̂ and |µ̂k| = 1. Let gk be
a simplified notation of (g(wt))k. Then, taking the expectation of the equation above, we have

E [f(wt+1) � f(wt)]  ��kg(wt)k1 +
�2

2
kLk1 + 2�

dX

k=1

|gk| P(µ̂k 6= sign(gk)). (D.5)

Inserting the result of Theorem 1 to (D.5), we have

E [f(wt+1) � f(wt)]  ��

✓
1 � 2

�

◆
kg(wt)k1 +

�2

2
kLk1

(a)
= �

s
f(w0) � f⇤

kLk1T

✓
1 � 2

�

◆
kg(wt)k1 +

f(w0) � f⇤

2T

where (a) is from the parameter settings of � in the statement of Theorem 2. Thus, we have

f(w0) � f⇤ � f(w0) � E [f(wT )] =
T�1X

t=0

E [f(wt) � f(wt+1)]

�
T�1X

t=0

E

"s
f(w0) � f⇤

kLk1T

✓
1 � 2

�

◆
kg(wt)k1 �

f(w0) � f⇤

2T

#

=

s
T (f(w0) � f⇤)

kLk1
E

"
1

T

T�1X

t=0

kg(wt)k1

#✓
1 � 2

�

◆
� f(w0) � f⇤

2
.

The expected gradient (averaged out over T iterations) is expressed as

1

T

T�1X

t=0

E [kg(wt)k1] 
1p
T

1

1 � 2
�

3

2

p
kLk1(f(w0) � f⇤) ! 0 as T ! 1

Thus, the gradient becomes zero eventually, which completes the convergence proof.

D.3 Proof of Theorem 3

Recall that according to Lemma 2 and the definition of Mt in (C.1), the system using the allocation
matrix G is perfect b�Byzantine tolerable if and only if

(n�1)/2X

v=1

|Sv(m)|  n � 1

2
� b (D.6)

holds for arbitrary message vector m 2 Mn�1
2

, where Sv(m) is defined in (4). Note that we have

kG(j, :)k0 =

8
<

:

1, 1  j  s
2b + 1, s + 1  j  s + L
n, s + L + 1  j  n.

(D.7)

from Fig. 3. Thus, the condition in (D.6) reduces to

|S1(m)| + |Sb+1(m)|  s. (D.8)

Now all that remains is to show that (D.8) holds for arbitrary message vector m 2 Mn�1
2

.

Consider a message vector m 2 Mn�1
2

denoted as m = [m1, m2, · · · , mn]. Here, we note that

S1(m) ✓ {1, 2, · · · , s}, Sb+1(m) ✓ {s + 1, s + 2, · · · , s + L} (D.9)

hold from Fig. 3. Define

v(m) := |{i 2 {s + 1, s + 2, · · · , n} : mi = 1}|, (D.10)
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Figure D.6: Sets of message vectors used in proving Lemmas D.1 and D.2

which is the number of 1’s in the last (n � s) coordinates of message vector m. Since m 2 Mn�1
2

,
we have

|{i 2 {1, 2, · · · , s} : mi = 1}| =
n � 1

2
� v(m). (D.11)

Note that since G(1 : s, :) = [ Is | 0s⇥(n�s)], we have

mTG(j, :) = 1{mj=1}, kG(j, :)k0 = 1, 8j 2 [s]. (D.12)

Combining (4), (D.9), (D.11), and (D.12), we have |S1(m)| = n�1
2 � v(m). Now, in order to obtain

(D.8), all we need to prove is to show

|Sb+1(m)|  s �
✓

n � 1

2
� v(m)

◆
(a)
= v(m) � b (D.13)

where (a) is from the definition of s in Algorithm 1. We alternatively prove that4

if |Sb+1(m)| � q for some q 2 {0, 1, · · · , L}, then v(m) � b + q. (D.14)

Using the definition M (q) := {m 2 Mn�1
2

: |Sb+1(m)| � q}, the statement in (D.14) is proved as
follows: for arbitrary q 2 {0, 1, · · · , L}, we first find the minimum v(m) among m 2 M (q), i.e.,
we obtain a closed-form expression for

v⇤q := min
m2M(q)

v(m). (D.15)

Second, we show that v⇤q � b + q holds for all q 2 {0, 1, · · · , L}, which completes the proof.

The expression for v⇤q can be obtained as follows. Fig. D.6 supports the explanation. First, define

M (q)
gather := {m 2 M (q) : if j, j + 2 2 Sb+1(m), then j + 1 2 Sb+1(m)}, (D.16)

the set of message vectors m which satisfy that Sb+1(m) is consisted of consecutive integers. We
now provide a lemma which states that within M (q)

gather, there exists a minimizer of the optimization
problem (D.15).
Lemma D.1. For arbitrary q 2 {0, 1, · · · , L}, we have

v⇤q = min
m2M(q)

gather

v(m).

Proof. From Fig. D.6 and the definition of v⇤q , all we need to prove is the following statement: for all
m 2 M (q) \ (M (q)

gather)
c, we can assign another message vector m⇤ 2 M (q)

gather such that v(m⇤) 
v(m) holds. Consider arbitrary m 2 M (q)\(M (q)

gather)
c, denoted as m = [m1, m2, · · · , mn]. Then,

there exist integers j 2 {1, · · · , L} and � 2 {2, 3, · · · , L� j} such that s + j, s + j + � 2 Sb+1(m)
and s+ j +1, · · · , s+ j + �� 1 /2 Sb+1(m) hold. Select the smallest j which satisfies the condition.
Consider m0 = [m0

1, · · · , m0
n] generated as the following rule:

1. The first s + j(b + 1) elements (which affect the first j rows of A in Figure 3) of m0 is
identical to that of m.

4Note that (D.14) implies (D.13), when the condition part is restricted to |Sb+1(m)| = q.
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2. The last n� (j + � � 1)(b + 1)� s elements of m are shifted to the left by (� � 1)(b + 1),
and inserted to m0. In the shifting process, we have b locations where the original mi and
the shifted mi+(��1)(b+1) overlap. In such locations, m0

i is set to the maximum of two
elements; if either one is 1, we set m0

i = 1, and otherwise we set m0
i = 0.

This can be mathematically expressed as below:

m0
i =

8
>><

>>:

mi, 1  i  s + j(b + 1)
max{mi, mi+(��1)(b+1)}, s + j(b + 1) + 1  i  s + (j + 1)(b + 1)
mi+(��1)(b+1), s + (j + 1)(b + 1) + 1  i  n � (� � 1)(b + 1)
0, n � (� � 1)(b + 1) + 1  i  n

(D.17)

Note that we have
nX

i=1

mi =
n � 1

2
(D.18)

since m 2 M(n�1)/2. Moreover, (D.17) implies

nX

i=1

m0
i =

s+j(b+1)X

i=1

m0
i +

s+(j+1)(b+1)X

i=s+j(b+1)+1

m0
i +

n�(��1)(b+1)X

i=s+(j+1)(b+1)+1

m0
i

=

s+j(b+1)X

i=1

mi +

s+(j+1)(b+1)X

i=s+j(b+1)+1

m0
i +

nX

i=s+(j+�)(b+1)+1

mi

(D.18)
=

n � 1

2
�

0

@
s+(j+�)(b+1)X

i=s+j(b+1)+1

mi �
s+(j+1)(b+1)X

i=s+j(b+1)+1

m0
i

1

A
(a)
 n � 1

2
(D.19)

where Eq.(a) is from
s+(j+�)(b+1)X

i=s+j(b+1)+1

mi

(b)
�

s+(j+1)(b+1)X

i=s+j(b+1)+1

(mi + mi+(��1)(b+1)) �
s+(j+1)(b+1)X

i=s+j(b+1)+1

max{mi, mi+(��1)(b+1)}

(D.17)
=

s+(j+1)(b+1)X

i=s+j(b+1)+1

m0
i

and Eq.(b) is from � � 2. Note that

v(m0) = v(m) � " (D.20)

holds for

" :=
n � 1

2
�

nX

i=1

m0
i, (D.21)

which is a non-negative integer from (D.19). Now, we show the behavior of Sb+1(m) as follows.
Recall that for j0 2 {s + 1, · · · , s + L},

G(j0, i0) =

⇢
1, if s + (j0 � s � 1)(b + 1) + 1  i0  s + (j0 � s � 1)(b + 1) + 2b + 1
0, otherwise

(D.22)
holds from Algorithm 1 and Fig. 3. Define

S+ := {j0 2 {s + j + �, · · · , s + L} : j0 2 Sb+1(m)},
S� := {j0 2 {s + 1, · · · , s + j} : j0 2 Sb+1(m)}.

From (D.17) and (D.22), we have
⇢

S� ✓ Sb+1(m0),
if j0 2 S+, then j0 � (� � 1) 2 Sb+1(m0).
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Thus, we have

|Sb+1(m
0)| � |S�| + |S+| = |Sb+1(m)|

(a)
� q (D.23)

where Eq.(a) is from m 2 M (q).

Now we construct m00 2 M (q) which satisfies v(m00)  v(m). Define S0 := {i 2 [s] : m0
i = 0}

and "0 := |S0|. The message vector m00 = [m00
1 , · · · , m00

n] is defined as follows.

Case I (when "  "0): Set m00
i = m0

i for i 2 {s+1, s+2, · · · , n}. Randomly select " elements in S0,
denoted as {i1, · · · , i"} = S(")

0 ✓ S0. Set m00
i = 1 for i 2 S(")

0 , and set m00
i = m0

i for i 2 S0 \ S(")
0 .

Note that this results in

v(m00) = v(m0). (D.24)

Case II (when " > "0): Set m00
i = 1 for i 2 [s]. Define S1 := {i 2 {s + 1, · · · , n} : m0

i = 0}.
Randomly select " � "0 elements in S1, denoted as {i01, · · · , i0"�"0} = S(")

1 ✓ S1. Set m00
i = 1 for

i 2 S(")
1 , and set m00

i = m0
i for i 2 {s + 1, · · · , n} \ S(")

1 . Note that this results in

v(m00) = v(m0) + (" � "0). (D.25)

Note that in both cases, the weight of m00 is

km00k0 =
nX

i=1

m00
i =

nX

i=1

m0
i + "

(D.21)
=

n � 1

2
. (D.26)

Moreover,

|Sb+1(m
00)|

(a)
� |Sb+1(m

0)|
(D.23)
� q (D.27)

holds where Eq.(a) is from the fact that all elements of m00 �m are non-negative. Finally,

v(m00) = v(m) � min{", "0}  v(m) (D.28)

holds from (D.20), (D.24), and (D.25). Combining (D.26), (D.27) and (D.28), one can confirm that
m00 2 M (q) and v(m00)  v(m) hold; this gathering process5 maintains the weight of a message
vector and does not increase the v value. Let m⇤ be the message vector generated by applying this
gathering process to m sequentially until Sb+1(m⇤) is consisted of consecutive integers. Then, m⇤

satisfies the followings:

1. Sb+1(m⇤) contains more than q elements. Moreover, since Sb+1(m⇤) is consisted of
consecutive integers, we have m⇤ 2 M (q)

gather.

2. v(m⇤)  v(m00)  v(m) holds.

Since the above process of generating m⇤ 2 M (q)
gather is valid for arbitrary message vector m 2

M (q) \ (M (q)
gather)

c, this completes the proof.

Now consider arbitrary message vectors satisfying m 2 M (q)
gather. Then, we have

Sb+1(m) = {j, j + 1, · · · , j + � � 1} (D.29)

for some j 2 {s + 1, · · · , s + L � � + 1} and � � q. Here, we define

M (q)
gather,overlap =

n
m 2 M (q)

gather : ms+(j0�s)(b+1) = 0 for j0 2 {j, · · · , j + � � 1}
o

(D.30)

We here prove that arbitrary message vector m 2 M (q)
gather can be mapped into another message

vector m0 2 M (q)
gather,overlap without increasing the corresponding v value, i.e., v(m0)  v(m).

5In Fig. D.7, one can confirm that Sb+1(m) is not consisted of consecutive integers (i.e., there’s a gap),
while Sb+1(m

00) has no gap. Thus, we call this process as gathering process.
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Figure D.7: The gathering process illustrated in the proof of Lemma D.1, when n = 17, b = 2. Under this
setting, we have Sb+1(m) = S3(m) = {j 2 {s + 1, · · · , s + L} : mTG(j, :) � 3}. Before the gathering
process, we have Sb+1(m) = {s+ 1, s+ 3}, while Sb+1(m

00) = {s+ 1, s+ 2} holds after the process.

Given a message vector m 2 M (q)
gather , define m0 = [m0

1, m
0
2, · · · , m0

n] as in Algorithm 2. In line 9
of this algorithm, we can always find l 2 [s] that satisfies ml = 0, due to the following reason. Note
that

nX

i=s+1

mi

(a)
� mTG(j, :)

(D.29)
� b + 1 (D.31)

holds where (a) is from the fact that G(j, i) = 0 for i 2 [s] as in (D.22). Thus, we have
sX

i=1

mi

(D.29)


nX

i=1

mi � (b + 1) =
n � 1

2
� (b + 1) = s � 1. (D.32)

Therefore, we have

9l 2 [s] such that ml = 0. (D.33)

The vector m0 generated from Algorithm 2 satisfies the following four properties:

1. m0 2 M(n�1)/2,

2. Sb+1(m0) = Sb+1(m) = {j, j + 1, · · · , j + � � 1},

3. m0 2 M (q)
gather,overlap,

4. v(m0)  v(m).

The first property is from the fact that lines 7 and 10 of the algorithm maintains the weight of the
message vector to be kmk0 = (n � 1)/2. The second property is from the fact that

(m0)TG(j0, :)
(D.22)
=

2b+1X

i=1

m0
s+(j0�s�1)(b+1)+i

(a)
=

(P2b+1
i=1 ms+(j0�s�1)(b+1)+i, if line 6 of Algorithm 2 is satisfied

2b, otherwise
(D.29)
� b + 1

for j0 2 {j, j+1, · · · , j+��1}, where (a) is from the fact that
P2b+1

i=1 ms+(j0�s�1)(b+1)+i = 2b+1
holds if line 6 of Algorithm 2 is not satisfied. The third property is from the first two properties and
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Algorithm 2 Defining m0 2M (q)
gather,overlap from arbitrary m 2M (q)

gather .

1: Input: message vector m = [m1,m2, · · · ,mn] having Sb+1(m) = {j, j + 1, · · · , j + � � 1}
2: Output: message vector m0 = [m0

1,m
0
2, · · · ,m0

n]
3: Initialize: m0 = m
4: for j0 = j to j + � � 1 do
5: if ms+(j0�s)(b+1) = 1 then
6: if 9i 2 [2b+ 1] such that ms+(j0�s�1)(b+1)+i = 0 then
7: m0

s+(j0�s�1)(b+1)+i  1, m0
s+(j0�s)(b+1)  0.

8: else
9: Find l 2 [s] such that ml = 0 (The existence of such l is proven in (D.33).)

10: m0
l  1, m0

s+(j0�s)(b+1)  0.
11: end if
12: end if
13: end for

b 1 b

b 1 b

b 1 b

b 1 b

⋱⋮

!
! + 1

! + $ − 1

{'!" #$!$% &"% "'}'(%)&"%

{'!" #$! &"% "'}'(%)&"%

{'!" #$!"*$) &"% "'}'(%)&"%
⋮)&"% * =

!, !- !. !/⋯

: Overlapping region (each region contains b elements of '' )

: Non-overlapping region (each region contains 1 element of '')

Figure D.8: The illustration of overlapping regions and {al}�l=0 in (D.35)

the definition of M (q)
gather,overlap in (D.30). The last property is from the fact that 1) each execution

of line 7 in the algorithm maintains v(m0) = v(m), and 2) each execution of line 10 in the algorithm
results in v(m0) = v(m) � 1. Thus, combining with Lemma D.1, we have the following lemma:

Lemma D.2. For arbitrary q 2 {0, 1, · · · , L}, we have

v⇤q = min
m2M(q)

gather,overlap

v(m).

According to Lemma D.2, in order to find v⇤q , all that remains is to find the optimal m 2
M (q)

gather,overlap which has the minimum v(m). Consider arbitrary m 2 M (q)
gather,overlap and denote

Sb+1(m) = {j, j + 1, · · · , j + � � 1}. (D.34)

Define the corresponding assignment vector {al}�l=0 as

al =
bX

i=1

ms+(j�s�1+l)(b+1)+i, (D.35)

which represents the number of indices i satisfying mi = 1 within lth overlapping region, as illustrated
in Fig. D.8. Then, we have

aj0�j + aj0�j+1 =
bX

i=1

ms+(j0�s�1)(b+1)+i + ms+(j0�s)(b+1)+i

(D.30)
=

2b+1X

i=1

ms+(j0�s�1)(b+1)+i

(D.22),(D.34)
� b + 1 (D.36)

for j0 2 {j, j + 1, · · · , j + � � 1}. Since at is the sum of b binary elements, we have

1  at  b, 8t 2 {0, 1, · · · , �} (D.37)
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from (D.36). Now define a message vector m0 2 M (q)
gather,overlap satisfying the followings: the

corresponding assignment vector is

(a0
0, a

0
1, · · · , a0

�) =

⇢
(1, b, 1, b, · · · , 1, b), if � is odd
(1, b, 1, b, · · · , 1), otherwise,

(D.38)

for a0
l =

Pb
i=1 m0

s+(j�s�1+l)(b+1)+i, and the elements m0
i for i 2 [s] is m0

i = 1{iimax} where

imax = n�1
2 �

P�
l=0 a0

l  s. Then, we have

v(m) �
�X

l=0

al

(D.36),(D.37)
�

�X

l=0

a0
l

(D.38)
= v(m0) (D.39)

for arbitrary m 2 M (q)
gather,overlap. Moreover, among � � q, setting � = q minimizes v(m0), having

the optimum value of

v⇤q
(a)
= v(m0)

(D.38)
=

(P q+1
2

i=1 (1 + b), if q is odd
1 +

P q
2
i=1(1 + b), otherwise

(b)
�
⇢

1 + b + 2( q+1
2 � 1) = b + q, if q is odd

1 + (1 + b) + 2( q2 � 1) = b + q, otherwise

where (a) is from (D.39) and Lemma D.2, and (b) is from b � 1. Combining this with the definition
of v⇤q in (D.15) proves (D.14). This completes the proofs for (D.8) and (D.6). Thus, the data allocation
matrix G in Algorithm 1 perfectly tolerates b Byzantines. From Fig. 3, the required redundancy of
this code is

r =
s + (2b + 1)L + n(n � s � L)

n

(a)
=

n � (2b + 1)

2n
+

2b + 1

n
L +

✓
n + (2b + 1)

2
� L

◆

=
n + (2b + 1)

2
�
✓

L � 1

2

◆
n � (2b + 1)

n
,

where Eq.(a) is from the definition of s in Algorithm 1.

E Proof of Lemmas and Propositions

E.1 Proof of Lemma 1

We start from finding the estimation error qk|ni
of an arbitrary node i having ni data partitions.

Lemma E.1 (conditional local error). Suppose ni data partitions are assigned to a Byzantine-free
node i. Then, the probability of this node transmitting a wrong sign to PS for coordinate k is bounded
as

qk|ni
= P(ci,k 6= sign(gk)|ni)  exp (�niS

2
k/{2(S2

k + 4)}). (E.1)

This lemma is proven by applying Hoeffding’s inequality for binomial random variable, as shown in
Section E.3 of the Supplementary Materials. The remark below summaries the behavior of the local
estimation error as the number of data partitions assigned to a node increases.

Remark 6. The error bound in Lemma E.1 is an exponentially decreasing function of ni. This implies
that as the number of data partitions assigned to a node increases, it is getting highly probable
that the node correctly estimates the sign of true gradient. This supports the experimental results in
Section 4 showing that random Bernoulli codes with a small amount of redundancy (e.g. E [r] = 2, 3)
are enough to enjoy a significant gap compared to the conventional SignSGD-MV [6] with r = 1.

Note that ni ⇠ B(n, p) is a binomial random variable. Based on the result of Lemma E.1, we
obtain the local estimation error qk by averaging out qk|ni

over all realizations of ni. Define
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" = p?/2 =
p

C log(n)/n. Then, we calculate the failure probability of node i as

qk = P(ci,k 6= sign(gk)) =
nX

ni=0

P(ni)P(ci,k 6= sign(gk)
�� ni)

=
X

ni:|ni�np|�n"

P(ni)P(ci,k 6= sign(gk)
�� ni) +

X

ni:|ni�np|<n"

P(ni)P(ci,k 6= sign(gk)
�� ni)

(a)


X

ni:|ni�np|�n"

P(ni) + P(ci,k 6= sign(gk)
�� ni = n(p � "))

(b)
 2e�2"2n + e

�n(p�")
S2
k

2(S2
k
+4)  2

n2C
+ e

�
p

Cn log(n)
S2
k

2(S2
k
+4)  q?k,

where (a) is from the fact that the upper bound in (E.1) is a decreasing function of ni, and (b) holds
from Lemma E.1 and Lemma C.5, the Hoeffding’s inequality on the binomial distribution.

E.2 Proof of Lemma 2

Let an attack vector � and an attack function f�(·) given. Consider an arbitrary m 2 M+. From the
definitions of µ and µ̂, we have µ = µ̂ iff f�(�(m)) 2 Y +. Similarly, for an arbitrary m 2 M�,
we have µ = µ̂ iff f�(�(m)) 2 Y �. Thus, from the definitions of Y + and Y �, the sufficient and
necessary condition for b�Byzantine tolerance can be expressed as follows.
Proposition 2. The perfect b�Byzantine tolerance condition is equivalent to the following: 8� 2
Bb, 8f� 2 F�,

⇢
kf�(�(m))k0 >

⌅
n
2

⇧
, 8m 2 M+

kf�(�(m))k0 
⌅
n
2

⇧
, 8m 2 M� (E.2)

The condition stated in Proposition 2 can be further simplified as follows.
Proposition 3. The perfect b�Byzantine tolerance condition in Proposition 2 is equivalent to

⇢
k�(m)k0 >

⌅
n
2

⇧
+ b, 8m 2 M+

k�(m)k0 
⌅
n
2

⇧
� b, 8m 2 M� (E.3)

Proof. Consider arbitrary m 2 M�. We want to prove that

8� 2 Bb, 8f� 2 F�, kf�(�(m))k0 
jn

2

k
(E.4)

is equivalent to

k�(m)k0 
jn

2

k
� b. (E.5)

First, we show that (E.5) implies (E.4). According to Lemma C.1 kf�(�(m)) � �(m)k0  b holds
for arbitrary � 2 Bb and arbitrary f� 2 F�. Thus,

kf�(�(m))k0  kf�(�(m)) � �(m)k0 + k�(m)k0  b +
⇣jn

2

k
� b
⌘

=
jn

2

k

holds for 8� 2 Bb, 8f� 2 F�, which completes the proof. Now, we prove that (E.4) implies (E.5),
by contra-position. Suppose k�(m)k0 >

⌅
n
2

⇧
� b. We divide the proof into two cases. The first

case is when k�(m)k0 > n � b. In this case, we arbitrary choose �⇤ 2 Bb and select the identity
mapping f⇤

�⇤ : c 7! y such that yj = cj for all j 2 [n]. Then, kf⇤
�⇤(�(m))k0 = k�(m)k0 >

n � b � n � bn/2c � bn/2c. Thus, we can state that

9�⇤ 2 Bb, 9f⇤
�⇤ 2 F�⇤ such that kf⇤

�⇤(�(m))k0 
jn

2

k

when k�(m)k0 > n � b, which completes the proof for the first case. Now consider the second
case where bn/2c � b < k�(m)k0  n � b. To begin, denote �(m) = c = [c1, c2, · · · , cn]. Let
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S = {i 2 [n] : ci = 0}, and select �⇤ 2 Bb which satisfies6 {i 2 [n] : �⇤
i = 1} ✓ S. Now define

f⇤
�⇤(·) as f⇤

�⇤(�(m)) = �(m) � �⇤. Then, we have

kf⇤
�⇤(�(m))k0 = k�(m)k0 + k�⇤k0 >

jn

2

k
� b + b =

jn

2

k
.

Thus, the proof for the second case is completed, and this completes the statement of (E.3) for
arbitrary m 2 M�. Similarly, we can show that

8� 2 Bb, 8f� 2 F�, kf�(�(m))k0 >
jn

2

k

is equivalent to k�(m)k0 >
⌅
n
2

⇧
+ b for arbitrary m 2 M+. This completes the proof.

Now, we further reduce the condition in Proposition 3 as follows.
Proposition 4. The perfect b�Byzantine tolerance condition in Proposition 3 is equivalent to

k�(m)k0 
jn

2

k
� b, 8m 2 M� (E.6)

Proof. All we need to prove is that (E.6) implies (E.3). Assume that the mapping � satisfies
(E.6). Consider an arbitrary m0 2 M+ and denote m0 = [m0

1, m
0
2, · · · , m0

n]. Define m =
[m1, m2, · · · , mn] such that m0

i � mi = 1 for all i 2 [n]. Then, we have m 2 M� from the
definitions of M+ and M�. Now we denote �(m) = c = [c1, c2, · · · , cn] and �(m0) = c0 =
[c01, c

0
2, · · · , c0n]. Then, cj � c0j = 1 holds for all j 2 [n] since Ej(·) is a majority vote function7. In

other words, k�(m)k0 + k�(m0)k0 = n holds. Thus, if a given mapping � satisfies k�(m)k0 
bn/2c � b for all m 2 M�, then k�(m0)k0 � n � (bn/2c � b) = dn/2e + b > bn/2c + b holds
for all m 2 M+, which completes the proof.

In order to prove Lemma 2, all that remains is to prove that (E.6) reduces to
bn/2cX

v=1

|Sv(m)|  bn/2c � b 8m 2 Mbn/2c. (E.7)

Recall that �(m) = c = [c1, c2, · · · , cn] where cj = maj({mi}i2Pj ) and Pj = {i 2
[n] : Gji = 1}. Moreover, we assumed that |Pj | = kG(j, :)k0 is an odd number. Thus,
cj = 1{kG(j,:)k0+1  2mTG(j,:)}, and the set [n] = {1, 2, · · · , n} can be partitioned as [n] =
S1 [ S2 [ · · · [ Sbn/2c+1 where Sv := {j 2 [n] : kG(j, :)k0 = 2v � 1}. Therefore, for a given
m 2 M�, we have

k�(m)k0 =
nX

j=1

cj =

bn/2c+1X

v=1

|{j 2 Sv : cj = 1}|

=

bn/2c+1X

v=1

����

⇢
j 2 Sv : mTG(j, :) � kG(j, :)k0 + 1

2
+ 1 = v

����� =
bn/2c+1X

v=1

|Sv(m)| .

Note that Sv(m) for v = bn/2c + 1 reduces to

Sbn/2c+1(m) = {j 2 [n] : kG(j, :)k0 = 2(bn/2c � 1) + 1,mTG(j, :) � bn/2c + 1} = ?
since m 2 M�. Thus, combining the two equations above, we obtain the following.
Proposition 5. The perfect b�Byzantine tolerance condition in Proposition 4 is equivalent to

bn/2cX

v=1

|Sv(m)| 
jn

2

k
� b 8m 2 M�,

or equivalently,
bn/2cX

v=1

|Sv(m)| 
jn

2

k
� b 8m 2 Mt, 8t = 0, 1, · · · , bn/2c . (E.8)

6We can always find such �⇤ since |S| � b due to the setting of k�(m)k0  n� b.
7Recall that cj = Ej({mi}i2Pj ) = maj({mi}i2Pj ) and c0j = maj({m0

i}i2Pj ). Thus, m0
i �mi = 1 for

all i 2 [n] implies that cj � c0j = 1 holds for all j 2 [n].
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Now, we show that (E.8) is equivalent to (E.7). We can easily check that the former implies the latter,
which is directly proven from the statements. Thus, all we need to prove is that (E.7) implies (E.8).
First, when t = 0, note that |Sv(m)| = 0 for 8m 2 M0, 8v 2 {1, 2, · · · , bn/2c}, which implies
that (E.8) holds trivially. Thus, in the rest of the proof, we assume that t > 0.

Consider an arbitrary t 2 {1, 2, · · · bn/2c} and an arbitrary m 2 Mt. Denote m = ei1 + ei2 +
· · · + eit where e1 = [1, 0, · · · , 0], e2 = [0, 1, 0, · · · , 0], and en = [0, · · · , 0, 1]. Moreover,
consider an arbitrary m0 2 Mbn/2c which satisfies m0

i = 1 for i = i1, i2, · · · , it. Denote m0 =
ei1 + · · · + eit + ej1 + · · · + ejbn/2c�t

. Then, (m0 �m)TG(j, :) � 0 holds for all j 2 [n], which
implies Sv(m) ✓ Sv(m0) for all v = 1, 2, · · · , bn/2c. Thus, we have |Sv(m)|  |Sv(m0)| for
all v 2 {1, 2, · · · , bn/2c}, which implies

Pbn/2c
v=1 |Sv(m)| 

Pbn/2c
v=1 |Sv(m0)|. Since this holds for

arbitrary m0 2 Mbn/2c, m 2 Mt, and t 2 {1, 2, · · · , bn/2c}, we can conclude that (E.7) implies
(E.8). All in all, (E.8) is equivalent to (E.7). Combining this with Propositions 2,3, 4 and 5 completes
the proof of Lemma 2.

E.3 Proof of Lemma E.1

From Lemmas 1 and C.4, we have

q(idv)k = P(sign(g̃(j)k ) 6= sign(gk)) 
(

2
9

1
S2
k

if Sk > 2p
3

1
2 � Sk

2
p
3

otherwise
(E.9)

for arbitrary j 2 [n], k 2 [d] where Sk = |gk|
�̄k

is defined in Definition 1. Denote the set of data
partitions assigned to node i by Pi = {j1, j2, · · · , jnk}. Define a random variable Xs as

Xs = 1
sign(g̃(js)

k )=sign(gk)
.

Then, from the definition of q(idv)k in (E.9), we have P(Xs = 1) = p(idv)k := 1 � q(idv)k , and
P(Xs = 0) = q(idv)k . Recall that ci,k = maj{sign(g̃(j)k )}j2Pi . By using a new random variable
defined as X :=

Pni

s=1 Xs, the failure probability of node i estimating the sign of gk is represented
as

P(ci,k 6= sign(gk)|ni) = P(X  ni

2
) = P(X � nip

(idv)
k  �ni(�

1

2
+ p(idv)k ))

(a)
 e�2(� 1

2+p(idv)
k )2ni

(b)
 e

�ni
S2
k

2(S2
k
+4)

where (a) is from Lemma C.5 and (b) is from the fact that 1

4
⇣
� 1

2+p(idv)
k

⌘2 � 1  4
S2
k

, which is shown

as below. Note that

�1

2
+ p(idv)k =

1

2
� q(idv)k �

(
1
2 � 2

9
1
S2
k

if Sk > 2p
3

Sk

2
p
3

otherwise

When Sk  2p
3

, we have 1

4
⇣
� 1

2+p(idv)
k

⌘2 � 1  3
S2
k
� 1 < 4

S2
k

. For the case of Sk > 2p
3

, we have

1

4
⇣
� 1

2 + p(idv)k

⌘2 � 1  1

S2
k

8
9 � 16

81
1
S2
k

1 � 8
9

1
S2
k

+ 16
81

1
S4
k

<
1

S2
k

8
9

1 � 8
9

1
S2
k

<
4

S2
k

where the last inequality is from the condition on Sk. This completes the proof of Lemma E.1.

E.4 Proof of Proposition 1

Let u(j)
k = g̃(j)k � gk. From the definition of g̃(j)k , we have Y = Bu(j)

k = B(g̃(j)k � gk) =P
x2Bj

uk(x). From Lemma C.2, fY = conv {fuk(x)}x2Bj . Since uk(x) are zero-mean, symmetric,

and unimodal from Assumption 4, Lemma C.3 implies that Y (and thus u(j)
k ) is also zero-mean,

symmetric, and unimodal. Therefore, g̃(j)k = gk + u(j)
k is unimodal and symmetric around the mean

gk. The result on the variance of g̃(j)k is directly obtained from the independence of g̃k(x) for different
x 2 Bj .
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