A Appendix

Proof of Lemma 3.2. Consider a dual space G: a set of functions g, : co®(H) — ) defined as
G:(f) = f(x) foreach f = MAJ(hy,...,h;) € co®(H) and each z € X. It follows by definition
of dual VC dimension that ve(G) = ve*(co(#)). Similarly, define another dual space G: a set of
functions ¢g : H — ) defined as g(z) = h(z) for each h € H and each z € X. We know that
ve(G) = ve*(H) = d*. Observe that by definition of G and G, we have that for each 2 € X" and each
f=MAJ(hy,...,hy) € co¥(H),
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By the Sauer-Shelah Lemma applied to dual class G, for any set H = {h1, ..., h,} C H, the number
of possible behaviors

<d*

Glarl = | {(ga b - go(ha)) 2 € X} < ( " ) 3

Consider aset ' = {f1,..., fm} C cof(H), the number of possible behaviors can be upperbounded
as follows:

Glr| =
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where (i) follows from observing that each expanded vector (g, (h}), ..., g.(hF))™, € Y™ can
map to at most one vector (s1gn (Zi:l gx(hi)) ,. .., sign (Zi:l gt(hl)>) € Y™, and (i) follows
from Equation 3. Observe that if ’Q_ | F’ < 2™, then by definition, F is not shattered by G, and this

implies that ve(G) < m. Thus, to conclude the proof, we need to find the smallest m such that
(Z1) < 2™ Tt suffices to check that m = O(d" log k) satisfies this condition. O

Lemma A.1 (Montasser et al. [2019]). For any k € N and fixed function ¢ : (X x Y)*
VX, for any distribution P over X x Y and any m € N, for S = {(z1,y1),-- -, (Tm,Ym)} iid
P-distributed random variables, with probability at least 1 — 6, if Jiq, ..., i € {1,...,m} s.t.

Ru(d((iys Yin)s - - (i, iy )); S) = 0, then

1

RM(¢((xi17yi1)7"~7(xikayik));P) < m—k

(kIn(m) + In(1/5)).

Proof of Theorem 3.5. We begin with describing the construction of the adversary U. Let m € N; we
will construct U with || = 2™, supposing |X| > 2(2;0) +210m Tet Z ={z,...,2000m} C X
be a set of 2% unique points from X. For each subset L C Z where |L| = 2™, pick a unique pair
zf,z;, € X\ Z and define U(x}) = U(z}) = L. That s, for every choice L of 2™ perturbations
from Z, there is a corresponding pair 2}, 2 where U(x]) = U(x,) = L. For any pointz € X' \ Z
that is remaining, define U(x) = {}.

Let B be an arbitrary reduction algorithm, and let € > 0 be the error requirement. We will now
describe the construction of the target class C . The target class C will be constructed randomly.
Namely, we will first define a labeling i : Z — Y on the perturbations in Z that is positive on the

first half of Z and negative on the second half of Z: lNL(zl) =+1if¢ < % and iL(Z,) =—-1if
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1> QT Divide the positive/negative halves into groups of size 2":

{first 2™ positives}, . .., {last 2" positives} | {first 2" negatives}, ..., {last 2™ negatives} .

+ + - -
Gy 29m—1 Gy GQQm 1

Let ¢/ = /2. The target concept h* : X — ) is generated by randomly flipping the la-
bels of an ¢’ fraction of the points in each group G, ..., G;},m,l from positive to negative
and randomly flipping the labels of an ¢ fraction of the points in each group G ,...,Goons

from negative to positive. This defines h* on Z; then for every pair z7, 2~ € X \ Z where
U(xT) = U(x™) # {}, define h*(z7) = +1 and h*(z~) = —1. Once h* is generated,
we define the distribution Dy~ over X' x ) that will be used in the lower bound by swapping
the ¢’ fractions of points with the flipped labels in each pair (G{,G7),..., (G;m,l,G;m,l)
which defines new positive/negative pairs: (G(h*){, G(h*)7),s - (G(R*) o1, G(R*) o). Let
zf,_ =UYG(h*)])and _,x; = U (G(h*)]) for each i € [29™~1] (4~! returns a pair of
points). Observe that by definition of h* on X'\ Z, we have that h*(z;") = +1 and h*(z; ) = —1
since h*(z) = +1Vz € G(h*)] and h*(z) = —1Vz € G(h*); . Let Dy« be a uniform distribution

over ($T7 +1)) (:Cl 7_1)) .. ( 29771—1)+1)a (x;9n1—17 _1)

Let T < % Define a randomly-constructed target class C = {hq,...,hr, hry1} where
hry1 = h* and hy,ho, ..., hy are generated according the following process: If ¢ = 1, then

hy := h (augmented to all of X by letting h(x) = h*(z) forall z € X\ Z). Fort > 2, let
DIS; 1 ={z € Z: hy_1(z) # h*(z)}, and construct h; by flipping a uniform randomly-selected
1 — ¢’ fraction of the labels of h; 1 in G N DIS;_; and 1 — ¢’ fraction of the labels of h;_; in
G; NDIS;_; for each i € [2"71]. Observe that by construction, A1, ..., hr satisfy the property
that they agree with h* on X' \ Z, i.e. hi(z) = h*(x) foreacht < T andeachz € X'\ Z.

We now state a few properties of the randomly-constructed target class C that we W111 use in the
remainder of the proof First, observe that by definition of DIS; for ¢ < T, we have that G NDISy C
GfE NDISy_; C---C GzjE N DIS; foreach 1 < i < 29"~1 In addition,

|GE NDIS,| > £'|GE NDIS, 4| foreach 1 <i < 291,

By the random process generating h*, we also know that |G;t N DIS;| > &'2™. Combined with the
above, this implies that:

|GE N DISy| > £'Tom foreach 1 <i < 29m~1,

So, for T' < we are guaranteed that |G N DISy| > 1 foreach 1 <4 < 291,

lo g(2/€) ’

We now describe the construction of a PAC learner A with vc(A) = 1 for the randomly gen-
erated concept h* above; we assume that A knows C (but of course, B does not know C).

Algorithm 2: Non-Robust PAC Learner A

Input: Distribution P over X.

Output: h; for the smallest s € [T with errp(hg, h*) < e (or outputting hr1 = h* if no such
s exists).

First, we will show that vc(A) = 1. By definition of A, it suffices to show that vc(C) =
ve({h*, h1,...,hr}) = 1. By definition of h* and hy, it is easy to see that there is a z € Z where
h*(z) # h1(z), and thus ve(C) > 1. Observe that by construction, each predictor in hq, ..., hy
operates as a threshold in each group Gf, Gy,..., G;Z,,,,L,l ; Gom—1 (ordered according to the order
in which the labels are flipped in the A1, ..., hp sequence). As a result, each x € X has its label
flipped at most once in the sequence (hy(z), ..., hr(x), h*(z)). This is because once the ground-
truth label of x, h*(x), is revealed by some h; (i.e., hy(x) = h*(z)), all subsequent predictors hy/
satisfy hy (z) = h*(x). Thus, for any two points z,z’ € X, the number of possible behaviors
{(h(2),h(z")) : h € C}| < 3. Therefore, C cannot shatter two points. This proves that vc(C) < 1.

Analysis Suppose that we run the reduction algorithm B with non-robust learner .4 for 7" rounds to
obtain predictors hy, = A(P1),...,hsy = A(Pr). We will show that Prp- [sp < T|S] > 0,
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meaning that with non-zero probability learner .4 will not reveal the ground-truth hypothesis
h*. For t < T, let E; denote the event that errp,(hs, ,+1,h*) < e. When condition-
ing on S, sq,.. st 1, observe that by construction of the randomized hypothes1s class C, for
each i < 99m—1 guch that {(z;7,-1),(z],+1)} NS = 0, and each z € G N DIS,, ,
Pryp« [h*(2) # hs,_,+1(2)[S, 51, ..., 5¢-1] <& =e/2. It follows then by the law of total probabil-
ity that for any distribution P, constructed by .A:

}ILE* [errpt (Bsy_y4+1, 0|5, 815+ -y St—l] <

w\m

By Markov’s inequality, it follows that
]i:z)’}‘ [Et|Sv 81505 Stfl] = ]i:z)’}‘ [errpt (hSt—1+17 h*) > E‘Sa 815005 stfl]

< Ej« [errPt(hs,,_1+17 h*)|S, 81,y St_l} <
€

NN

By law of total probability,

T
1
Pr[sr < TIS] > Pr[B1[S] x Pr[EolS. Er] x -+~ x Pr[Ep|S. Br..... Ery] > (2> >0,

To conclude the proof, we will show that if the reduction algorithm B sees at most 1/2 of the
support of distribution Dp through a training set S and makes only 7" < oracle calls to A,

10g(2/ €)
then it will likely fail in robustly learning h*. For each i < 2°™~!, conditioned on the event that
{(z7,-1),(z},+1)} NS = 0, and conditioned on hs,, ..., hy,, there is a z € Z that is equally
likely to be in U(x; ) or U(z]). To see why such a point exists, we first describe an equivalent
distribution generatmg h* h1, ..., hr. Foreach i < 29"~ randomly select a 2¢’ fraction of points
from G;" and a 2¢’ fraction of points from G;. Then, randomly pair the points in each 2¢’ fraction
to get £/2™ pairs z;, z; for each Gli. For each pair z;, 2} flip a fair coin ¢;: if ¢; = 1, 2;’s label
gets flipped and otherwise if ¢; = 0 then z}’s label gets flipped. This is equivalent to generating h*
by flipping the labels of a uniform randomly-selected ¢ fraction of points in each G;*L as originally
described, but is helpful book-keeping that simplifies our analysis. In addition, hq, ..., hy can be
generated in a similar fashion. Since T' < ﬁ, we are guaranteed that |Gi n DISST\ > 1. By
definition of DIS,,, this implies that that there is a pair of points z;, 2} in each GiﬂE where each
hs,(z;) = hg, (%)) for t < T but h*(z;) # h*(z}) (i.e., each h,, never reveals the ground-truth label
for at least one pair). And then in the end, if {(z;, —1), (z;",+1)} NS = 0, B will make some
prediction on z;, and the posterior probability of it being wrong is 1/2.

More formally, for any training dataset S' ~ D‘ | where |S| < 29m=3 any hy,,...,hs, returned by

A where T' < log(2 72y and any predictor f : X — Y that is picked by B:

1
@[Ru(f;Dh*)S7hS17"'ah ]>E 99m Z sup ]l[f()#y] Sm"'ahsT
h h 2 z€U(x)
(z,y)¢5,
(z,y)Esupp(Dp)
29711 1
29m Z Pr[((z],+1),(z;,—1) ¢ 5) A
(Fz eU(a)) st f(2) #+1V Iz €U(z;) st f(z) # —1) |S, hy,,.. .,hsT]
2L 1
20m 9 4’

This implies that, for any B limited to n < 29™~3 training examples and 7' < W queries,
2
there exists a deterministic choice of h* and hq, ..., hr, and a corresponding learner A that is a
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PAC learner for {h*} using hylpothesis class {h*, hq,...,hr} of VC dimension 1, such that, for
S ~ Dy, Es[Ry(f; Dn-)] > 7. O

Proof sketch of Claim 4.2. Let I3 be an arbitrary reduction algorithm. Let 29, z; € X', and k € N.
Pick arbitrary points Z = {zy,..., 200} € X. Let X = {xg, 21} U Z. Let b € {0,1}*" be a bit

string drawn uniformly at random from the set {b € {0, 1}% iy bi= k}, think of this as a random

partition of Z into two equal sets Z, and Z. For each y € {0, 1}, define U () to include z,, and
all perturbations z € Z,,. Also, foreach z € Z define U, (z) = {z}. Similarly, define target class Cy
to include only a single hypothesis ¢, where ¢, (U(xo)) = 0 and ¢, (U (1)) = 1. We will consider an
ERM that uses the set of thresholds Hy = {x — 1[¢(x) > 0] : § € R} as its hypothesis class, where
¢ is a random embedding such that for each zy € Uy (xo) and each z1 € Up(x1): ¢(20) < ¢(21); this
guarantees that the random hypothesis ¢ is realized by some i € H,. On any input L C X x {0,1},
we define the ERM to return the earliest possible threshold that reveals as few 0’s as possible.

Since algorithm B only sees training data S = {(zo, 0), (21, 1)} as its input, by picking b uniformly
at random, BB has no way of knowing which perturbations belong to U (z() and which belong to
U(z1), and therefore its forced to call the mistake oracle Oy at least k times. The ERM oracle is
designed such that it will reveal as little information about this as possible.

Suppose that we run algorithm  for 7" rounds, where in each round ¢ < T, B maintains a predictor
fi + X — {0, 1} that determines that labeling of x¢, z1 and the set of perturbations Z. We will show
that, in expectation over the random choice of b and ¢, in order for the final predictor f7 outputted by
B to have robust loss zero on S, i.e. Ry, (fr) = 0, the number of rounds 7" needs to be at least k.

On each round ¢t < T, B is allowed to:

1. Query the mistake oracle Oy, with a query consisting of some predictor g; : X — {0,1}
and a point (z,y) € X x {0,1}.
2. Query the ERM oracle with a dataset L; C X x {0,1}.

Let My = > .., 1[fi(2) # c(2)] be the number of mistakes at round ¢, and let H; =
{95, (x5, 95), L;j} -, denote the history of queries. Then, observe that

b% [My|My_1,Hy 1] > My_y — 1.
This is because oracle Oy, reveals the ground truth label of at most 1 point at round ¢, and the ERM
will move the threshold by at most one position. This implies that Ey, 4 [My|My, Ho) > Mo —T. We
can further condition on the event that M, > k which has non-zero probability (since b is picked
uniformly at random). This implies, by the probabilistic method, that there exists b, ¢ such that
forT < k —1, Mp > 1. Therefore, by definition of My, fr is not be robustly correct on S for
T<k-1 O

Proof of Theorem 4.4. Let U be an arbitrary adversary and Oy, its corresponding mistake oracle. Let
C C Y¥ be an arbitrary target class, and A an online learner for C with mistake bound M 4 < oo.
We assume w.l.0.g. that the online learner A is conservative, meaning that it does not update its state
unless it makes a mistake. Algorithm 3 in essence is a standard conversion of a learner in the mistake
bound model to a learner in the PAC model (see e.g. Balcan [2010]):

Algorithm 3: Robust Learner with a Mistake Oracle.

Input: S = {(21,91),..., (@m,¥Ym)}, &, 9, black-box access to a an online learner .4, black-box
access to a mistake oracle Oy
1 Initialize hg = A().
2 fori < mdo
3 Certify the robustness of k on (x;, y;) by asking the mistake oracle Oy,.

4 If h; is not robust on (z;, y; ), update h; by running A on (z, y; ), where z is the perturbation
returned by Oy,.
5 Break when h; is robustly correct on a consecutive sequence of length % log (A—gf‘—)

Output: h;.
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Analysis Let D be an arbitrary distribution over X" x ) that is robustly realizable with some concept
c € Cie., Ry(c; D) = 0. Fix £,6 € (0,1) and a sample size m = 2424 Jog (244,

Since online learner A has a mistake bound of M4, Algorithm 3 will terminate in at most
% log (MTA) steps of certification, which of course is an upperbound on the number of calls
to the mistake oracle Oy, and the number of calls to the online learner A.

It remains to show that the output of Algorithm 3, the final predictor h, has low robust risk Ry, (h; D).
Throughout the runtime of Algorithm 3, the online learner can generate a sequence of at most M 4 + 1
predictors. There’s the initial predictor from Step 1, plus the M 4 updated predictors corresponding
to potential updates by online learner .A. Observe that the probability that the final & has robust risk
more than €

1 Ma+1
Pr [Re(hiD)>e] < Pr [ €[Ma+1] st Ru(hy; D) ><] < (Ma+1)(1 - eyt les(47) o5

Therefore, with probability at least 1 — § over S ~ D™, Algorithm 3 outputs a predictor ~ with
robust risk Rys(h; D) < e. Thus, Algorithm 3 robustly PAC learns C w.r.t. adversary U. O
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