
A Appendix

Proof of Lemma 3.2. Consider a dual space Ḡ: a set of functions ḡx : cok(H) → Y defined as
ḡx(f) = f(x) for each f = MAJ(h1, . . . , hk) ∈ cok(H) and each x ∈ X . It follows by definition
of dual VC dimension that vc(Ḡ) = vc∗(cok(H)). Similarly, define another dual space G: a set of
functions g : H → Y defined as g(x) = h(x) for each h ∈ H and each x ∈ X . We know that
vc(G) = vc∗(H) = d∗. Observe that by definition of G and Ḡ, we have that for each x ∈ X and each
f = MAJ(h1, . . . , hk) ∈ cok(H),

ḡx(f) = f(x) = MAJ(h1, . . . , hk)(x) = sign

(
k∑
i=1

hi(x)

)
= sign

(
k∑
i=1

gx(hi)

)
.

By the Sauer-Shelah Lemma applied to dual class G, for any set H = {h1, . . . , hn} ⊆ H, the number
of possible behaviors

|G|H | := | {(gx(h1), . . . , gx(hn)) : x ∈ X} | ≤
(

n

≤ d∗

)
. (3)

Consider a set F = {f1, . . . , fm} ⊆ cok(H), the number of possible behaviors can be upperbounded
as follows:∣∣Ḡ|F ∣∣ = |{(ḡx(f1), . . . , ḡx(fm)) : x ∈ X}|

=
∣∣{(ḡx(MAJ(h11, . . . , h

k
1)), . . . , ḡx(MAJ(h1m, . . . , h

k
m))) : x ∈ X

}∣∣
=
∣∣∣{(sign

(∑k
i=1 gx(hi)

)
, . . . , sign

(∑k
i=1 gx(hi)

))
: x ∈ X

}∣∣∣
(i)

≤
∣∣{(gx(h11), . . . , gx(hk1), gx(h12), . . . , gx(hk2), . . . , gx(h1m), . . . , gx(hkm)) : x ∈ X

}∣∣
(ii)

≤
(
mk

≤ d∗

)
,

where (i) follows from observing that each expanded vector (gx(h1i ), . . . , gx(hki ))mi=1 ∈ Ymk can

map to at most one vector
(

sign
(∑k

i=1 gx(hi)
)
, . . . , sign

(∑k
i=1 gx(hi)

))
∈ Ym, and (ii) follows

from Equation 3. Observe that if
∣∣Ḡ|F ∣∣ < 2m, then by definition, F is not shattered by Ḡ, and this

implies that vc(Ḡ) < m. Thus, to conclude the proof, we need to find the smallest m such that(
mk
≤d∗
)
< 2m. It suffices to check that m = O(d∗ log k) satisfies this condition.

Lemma A.1 (Montasser et al. [2019]). For any k ∈ N and fixed function φ : (X × Y)k →
YX , for any distribution P over X × Y and any m ∈ N, for S = {(x1, y1), . . . , (xm, ym)} iid
P -distributed random variables, with probability at least 1 − δ, if ∃i1, . . . , ik ∈ {1, . . . ,m} s.t.
R̂U (φ((xi1 , yi1), . . . , (xik , yik));S) = 0, then

RU (φ((xi1 , yi1), . . . , (xik , yik));P ) ≤ 1

m− k
(k ln(m) + ln(1/δ)).

Proof of Theorem 3.5. We begin with describing the construction of the adversary U . Let m ∈ N; we
will construct U with |U| = 2m, supposing |X | ≥ 2

(
210m

2m

)
+ 210m. Let Z = {z1, . . . , z210m} ⊂ X

be a set of 210m unique points from X . For each subset L ⊂ Z where |L| = 2m, pick a unique pair
x+L , x

−
L ∈ X \ Z and define U(x+L) = U(x−L ) = L. That is, for every choice L of 2m perturbations

from Z, there is a corresponding pair x+L , x
−
L where U(x+L) = U(x−L ) = L. For any point x ∈ X \Z

that is remaining, define U(x) = {}.
Let B be an arbitrary reduction algorithm, and let ε > 0 be the error requirement. We will now
describe the construction of the target class C . The target class C will be constructed randomly.
Namely, we will first define a labeling h̃ : Z → Y on the perturbations in Z that is positive on the
first half of Z and negative on the second half of Z: h̃(zi) = +1 if i ≤ 210m

2 , and h̃(zi) = −1 if
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i > 210m

2 . Divide the positive/negative halves into groups of size 2m:

{first 2m positives}︸ ︷︷ ︸
G+

1

, . . . , {last 2m positives}︸ ︷︷ ︸
G+

29m−1

∣∣∣ {first 2m negatives}︸ ︷︷ ︸
G−1

, . . . , {last 2m negatives}︸ ︷︷ ︸
G−

29m−1

.

Let ε′ = ε/2. The target concept h∗ : X → Y is generated by randomly flipping the la-
bels of an ε′ fraction of the points in each group G+

1 , . . . , G
+
29m−1 from positive to negative

and randomly flipping the labels of an ε′ fraction of the points in each group G−1 , . . . , G
−
29m−1

from negative to positive. This defines h∗ on Z; then for every pair x+, x− ∈ X \ Z where
U(x+) = U(x−) 6= {}, define h∗(x+) = +1 and h∗(x−) = −1. Once h∗ is generated,
we define the distribution Dh∗ over X × Y that will be used in the lower bound by swapping
the ε′ fractions of points with the flipped labels in each pair (G+

1 , G
−
1 ), . . . , (G+

29m−1 , G
−
29m−1)

which defines new positive/negative pairs: (G(h∗)+1 , G(h∗)−1 ), . . . , (G(h∗)+29m−1 , G(h∗)−29m−1). Let
x+i , _ = U−1(G(h∗)+i ) and _, x−i = U−1(G(h∗)−i ) for each i ∈ [29m−1] (U−1 returns a pair of
points). Observe that by definition of h∗ on X \ Z, we have that h∗(x+i ) = +1 and h∗(x−i ) = −1
since h∗(z) = +1∀z ∈ G(h∗)+i and h∗(z) = −1∀z ∈ G(h∗)−i . Let Dh∗ be a uniform distribution
over (x+1 ,+1), (x−1 ,−1), . . . , (x+29m−1 ,+1), (x−29m−1 ,−1).

Let T ≤ log 2m

log(1/ε′) . Define a randomly-constructed target class C = {h1, . . . , hT , hT+1} where
hT+1 = h∗ and h1, h2, . . . , hT are generated according the following process: If t = 1, then
h1 := h̃ (augmented to all of X by letting h̃(x) = h∗(x) for all x ∈ X \ Z). For t ≥ 2, let
DISt−1 = {z ∈ Z : ht−1(z) 6= h∗(z)}, and construct ht by flipping a uniform randomly-selected
1 − ε′ fraction of the labels of ht−1 in G+

i ∩ DISt−1 and 1 − ε′ fraction of the labels of ht−1 in
G−i ∩ DISt−1 for each i ∈ [29m−1]. Observe that by construction, h1, . . . , hT satisfy the property
that they agree with h∗ on X \ Z, i.e. ht(x) = h∗(x) for each t ≤ T and each x ∈ X \ Z.

We now state a few properties of the randomly-constructed target class C that we will use in the
remainder of the proof. First, observe that by definition of DISt for t ≤ T , we have thatG±i ∩DIST ⊆
G±i ∩DIST−1 ⊆ · · · ⊆ G±i ∩DIS1 for each 1 ≤ i ≤ 29m−1. In addition,

|G±i ∩DISt| ≥ ε′|G±i ∩DISt−1| for each 1 ≤ i ≤ 29m−1.

By the random process generating h∗, we also know that |G±i ∩DIS1| ≥ ε′2m. Combined with the
above, this implies that:

|G±i ∩DIST | ≥ ε′
T

2m for each 1 ≤ i ≤ 29m−1.

So, for T ≤ log 2m

log(2/ε) , we are guaranteed that |G±i ∩DIST | ≥ 1 for each 1 ≤ i ≤ 29m−1.

We now describe the construction of a PAC learner A with vc(A) = 1 for the randomly gen-
erated concept h∗ above; we assume that A knows C (but of course, B does not know C).

Algorithm 2: Non-Robust PAC Learner A
Input: Distribution P over X .
Output: hs for the smallest s ∈ [T ] with errP (hs, h

∗) ≤ ε (or outputting hT+1 = h∗ if no such
s exists).

First, we will show that vc(A) = 1. By definition of A, it suffices to show that vc(C) =
vc({h∗, h1, . . . , hT }) = 1. By definition of h∗ and h1, it is easy to see that there is a z ∈ Z where
h∗(z) 6= h1(z), and thus vc(C) ≥ 1. Observe that by construction, each predictor in h1, . . . , hT
operates as a threshold in each group G+

1 , G
−
1 , . . . , G

+
29m−1 , G

−
29m−1 (ordered according to the order

in which the labels are flipped in the h1, . . . , hT sequence). As a result, each x ∈ X has its label
flipped at most once in the sequence (h1(x), . . . , hT (x), h∗(x)). This is because once the ground-
truth label of x, h∗(x), is revealed by some ht (i.e., ht(x) = h∗(x)), all subsequent predictors ht′
satisfy ht′(x) = h∗(x). Thus, for any two points z, z′ ∈ X , the number of possible behaviors
|{(h(z), h(z′)) : h ∈ C}| ≤ 3. Therefore, C cannot shatter two points. This proves that vc(C) ≤ 1.

Analysis Suppose that we run the reduction algorithm B with non-robust learner A for T rounds to
obtain predictors hs1 = A(P1), . . . , hsT = A(PT ). We will show that Prh∗ [sT ≤ T |S] > 0,
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meaning that with non-zero probability learner A will not reveal the ground-truth hypothesis
h∗. For t ≤ T , let Et denote the event that errPt(hst−1+1, h

∗) ≤ ε. When condition-
ing on S, s1, . . . , st−1, observe that by construction of the randomized hypothesis class C, for
each i ≤ 29m−1 such that {(x−i ,−1), (x+i ,+1)} ∩ S = ∅, and each z ∈ G±i ∩ DISst−1

:

Prh∗
[
h∗(z) 6= hst−1+1(z)|S, s1, . . . , st−1

]
≤ ε′ = ε/2. It follows then by the law of total probabil-

ity that for any distribution Pt constructed by A:

E
h∗

[
errPt(hst−1+1, h

∗)|S, s1, . . . , st−1
]
≤ ε

2
.

By Markov’s inequality, it follows that

Pr
h∗

[
Ēt|S, s1, . . . , st−1

]
= Pr

h∗

[
errPt(hst−1+1, h

∗) > ε|S, s1, . . . , st−1
]

≤
Eh∗

[
errPt(hst−1+1, h

∗)|S, s1, . . . , st−1
]

ε
≤ 1

2
.

By law of total probability,

Pr
h∗

[sT ≤ T |S] ≥ Pr
h∗

[E1|S]× Pr
h∗

[E2|S,E1]× · · · × Pr
h∗

[ET |S,E1, . . . , ET−1] ≥
(

1

2

)T
> 0.

To conclude the proof, we will show that if the reduction algorithm B sees at most 1/2 of the
support of distribution Dh∗ through a training set S and makes only T ≤ log 2m

log(2/ε) oracle calls to A,
then it will likely fail in robustly learning h∗. For each i ≤ 29m−1, conditioned on the event that
{(x−i ,−1), (x+i ,+1)} ∩ S = ∅, and conditioned on hs1 , . . . , hsT , there is a z ∈ Z that is equally
likely to be in U(x−i ) or U(x+i ). To see why such a point exists, we first describe an equivalent
distribution generating h∗, h1, . . . , hT . For each i ≤ 29m−1 randomly select a 2ε′ fraction of points
from G+

i and a 2ε′ fraction of points from G−i . Then, randomly pair the points in each 2ε′ fraction
to get ε′2m pairs zi, z′i for each G±i . For each pair zi, z′i flip a fair coin ci: if ci = 1, zi’s label
gets flipped and otherwise if ci = 0 then z′i’s label gets flipped. This is equivalent to generating h∗

by flipping the labels of a uniform randomly-selected ε fraction of points in each G±i as originally
described, but is helpful book-keeping that simplifies our analysis. In addition, h1, . . . , hT can be
generated in a similar fashion. Since T ≤ log 2m

log(2/ε) , we are guaranteed that |G±i ∩DISsT | ≥ 1. By
definition of DISsT , this implies that that there is a pair of points zi, z′i in each G±i where each
hst(zi) = hst(z

′
i) for t ≤ T but h∗(zi) 6= h∗(z′i) (i.e., each hst never reveals the ground-truth label

for at least one pair). And then in the end, if {(x−i ,−1), (x+i ,+1)} ∩ S = ∅, B will make some
prediction on zi, and the posterior probability of it being wrong is 1/2.

More formally, for any training dataset S ∼ D|S|h∗ where |S| ≤ 29m−3, any hs1 , . . . , hsT returned by
A where T ≤ log 2m

log(2/ε) , and any predictor f : X → Y that is picked by B:

E
h∗

[RU (f ;Dh∗)|S, hs1 , . . . , hsT ] ≥ E
h∗

 1

29m

∑
(x,y)/∈S,

(x,y)∈supp(Dh∗ )

sup
z∈U(x)

1[f(z) 6= y]

∣∣∣∣∣S, hs1 , . . . , hsT


=
1

29m

29m−1∑
i=1

Pr
h∗

[(
(x+i ,+1), (x−i ,−1) /∈ S

)
∧

(
∃z ∈ U(x+i ) s.t. f(z) 6= +1 ∨ ∃z ∈ U(x−i ) s.t. f(z) 6= −1

) ∣∣∣∣∣S, hs1 , . . . , hsT
]

≥ 29m−1

29m
1

2
=

1

4
.

This implies that, for any B limited to n ≤ 29m−3 training examples and T ≤ m
log2(2/ε)

queries,
there exists a deterministic choice of h∗ and h1, . . . , hT , and a corresponding learner A that is a
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PAC learner for {h∗} using hypothesis class {h∗, h1, . . . , hT } of VC dimension 1, such that, for
S ∼ Dn

h∗ , ES [RU (f ;Dh∗)] ≥ 1
4 .

Proof sketch of Claim 4.2. Let B be an arbitrary reduction algorithm. Let x0, x1 ∈ X , and k ∈ N.
Pick arbitrary points Z = {z1, . . . , z2k} ⊆ X . Let X = {x0, x1} ∪ Z. Let b ∈ {0, 1}2k be a bit
string drawn uniformly at random from the set

{
b ∈ {0, 1}2k :

∑
i bi = k

}
, think of this as a random

partition of Z into two equal sets Z0 and Z1. For each y ∈ {0, 1}, define Ub(xy) to include xy and
all perturbations z ∈ Zy. Also, foreach z ∈ Z define Ub(z) = {z}. Similarly, define target class Cb
to include only a single hypothesis cb where cb(U(x0)) = 0 and cb(U(x1)) = 1. We will consider an
ERM that uses the set of thresholdsHφ = {x 7→ 1[φ(x) ≥ θ] : θ ∈ R} as its hypothesis class, where
φ is a random embedding such that for each z0 ∈ Ub(x0) and each z1 ∈ Ub(x1): φ(z0) < φ(z1); this
guarantees that the random hypothesis cb is realized by some h ∈ Hφ. On any input L ⊆ X ×{0, 1},
we define the ERM to return the earliest possible threshold that reveals as few 0’s as possible.

Since algorithm B only sees training data S = {(x0, 0), (x1, 1)} as its input, by picking b uniformly
at random, B has no way of knowing which perturbations belong to U(x0) and which belong to
U(x1), and therefore its forced to call the mistake oracle OU at least k times. The ERM oracle is
designed such that it will reveal as little information about this as possible.

Suppose that we run algorithm B for T rounds, where in each round t ≤ T , B maintains a predictor
ft : X → {0, 1} that determines that labeling of x0, x1 and the set of perturbations Z. We will show
that, in expectation over the random choice of b and φ, in order for the final predictor fT outputted by
B to have robust loss zero on S, i.e. RUb(fT ) = 0, the number of rounds T needs to be at least k.

On each round t ≤ T , B is allowed to:

1. Query the mistake oracle OU with a query consisting of some predictor gt : X → {0, 1}
and a point (x, y) ∈ X × {0, 1}.

2. Query the ERM oracle with a dataset Lt ⊆ X × {0, 1}.

Let Mt =
∑
z∈Z 1[ft(z) 6= cb(z)] be the number of mistakes at round t, and let Ht =

{gj , (xj , yj), Lj}j≤t denote the history of queries. Then, observe that

E
b,φ

[Mt|Mt−1, Ht−1] ≥Mt−1 − 1.

This is because oracle OU reveals the ground truth label of at most 1 point at round t, and the ERM
will move the threshold by at most one position. This implies that Eb,φ[MT |M0, H0] ≥M0 − T . We
can further condition on the event that M0 ≥ k which has non-zero probability (since b is picked
uniformly at random). This implies, by the probabilistic method, that there exists b, φ such that
for T ≤ k − 1, MT ≥ 1. Therefore, by definition of MT , fT is not be robustly correct on S for
T ≤ k − 1.

Proof of Theorem 4.4. Let U be an arbitrary adversary and OU its corresponding mistake oracle. Let
C ⊆ YX be an arbitrary target class, and A an online learner for C with mistake bound MA < ∞.
We assume w.l.o.g. that the online learner A is conservative, meaning that it does not update its state
unless it makes a mistake. Algorithm 3 in essence is a standard conversion of a learner in the mistake
bound model to a learner in the PAC model (see e.g. Balcan [2010]):

Algorithm 3: Robust Learner with a Mistake Oracle.
Input: S = {(x1, y1), . . . , (xm, ym)}, ε, δ, black-box access to a an online learner A, black-box

access to a mistake oracle OU
1 Initialize h0 = A(∅).
2 for i ≤ m do
3 Certify the robustness of h on (xi, yi) by asking the mistake oracle OU .
4 If ht is not robust on (xi, yi), update ht by running A on (z, yi), where z is the perturbation

returned by OU .
5 Break when ht is robustly correct on a consecutive sequence of length 1

ε log
(
MA
δ

)
.

Output: ht.
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Analysis LetD be an arbitrary distribution over X ×Y that is robustly realizable with some concept
c ∈ C,i.e., RU (c;D) = 0. Fix ε, δ ∈ (0, 1) and a sample size m = 2MAε log

(
MA
δ

)
.

Since online learner A has a mistake bound of MA, Algorithm 3 will terminate in at most
MA
ε log

(
MA
δ

)
steps of certification, which of course is an upperbound on the number of calls

to the mistake oracle OU , and the number of calls to the online learner A.

It remains to show that the output of Algorithm 3, the final predictor h, has low robust risk RU (h;D).
Throughout the runtime of Algorithm 3, the online learner can generate a sequence of at most MA+ 1
predictors. There’s the initial predictor from Step 1, plus the MA updated predictors corresponding
to potential updates by online learner A. Observe that the probability that the final h has robust risk
more than ε

Pr
S∼Dm

[RU (h;D)>ε] ≤ Pr
S∼Dm

[∃j∈ [MA+1] s.t. RU (hj ;D)>ε]≤(MA+1)(1− ε)
1
ε log

(
MA+1

δ

)
≤δ.

Therefore, with probability at least 1 − δ over S ∼ Dm, Algorithm 3 outputs a predictor h with
robust risk RU (h;D) ≤ ε. Thus, Algorithm 3 robustly PAC learns C w.r.t. adversary U .
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