
Black-Box Optimization with Local Generative Surrogates
Supplementary Material

A Surrogates Implementation Details

A.1 GAN Implementation

For the training of the GANs we have used conditional generative network, with three hidden layers
of size 100 and conditional discriminative network with two hidden layers of size 100. For all the
hidden layers except the last one we have used tanh activation. For the last hidden layer leaky_relu
was used. The conditioning is performed via concatenating the input noise z with input parameters
ψ. The learning rate and batch size is set to 0.0008 and 512 correspondingly. We have used the idea
from the [57] to adjust the learning rate and a batch size for optimal training speed and performance.
We have used Adam optimizer for both discriminator and generator with β1 = 0.5, β2 = 0.999. We
have trained GAN only for 15 epochs for all the experiments. The number of discriminator updates
per one generator update is nd = 5. In case of the Cramer GAN [8] we have used gradient penalty
with λ = 10, discriminator output size equal to 256 and the number of discriminator updates nd is
set to 1.

A.2 FFJORD Implementation

Training procedure and architecture of FFJORD model [23] were fixed for all experiments. We
have used two hidden layers with 32 neurons each. The learning rate and batch size are set to 10−3

and 262144 respectively. It was trained with SWATS optimizer [33] until convergence, i.e. until
log-likelihood is no longer improves for more than 200 epochs. For all hidden layers tanh was used
as nonlinearity, batch normalization lag were set to 103 and fixed_adam were used as ODE solver.
Usage of adaptive ODE solver and/or more elaborate choice of architecture probably could improve
performance of the algorithm, but, firstly, it is out of the scope of our work, and, secondly, we were
aiming to show that even without tuning for specific problem algorithm could shows performance
comparable with recent works.

Original version of FFJORD does not have a support of conditional input. To address this issue
we rewrote one of the base layers that were used in FFJORD library. We have added additional
two-layers network with hidden dimensionality equal 8 that takes as an input conditional information
and injects it in base layer output as an additive bias term.

A.3 Monitoring quality of the surrogate

During optimization we are constantly monitoring various statistics between samples from simulator
and surrogate. The example of such statistics is presented in Fig 6. This is done to ensure that the
surrogate learn a meaningful approximation of the simulator on each iteration of optimization and if
this is not the case, the user can further tune the model.
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Figure 6: An example of monitored statistics during surrogate training for one iteration of optimization.
Left to right: Jensen–Shannon divergence, Kolmogorov–Smirnov statistic, difference between order
one, two and three moment of the distributions from simulator and surrogate.
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B Bias of the estimator

The gradient bias is calculated per component of the gradient vector, i.e., if ψ ∈ Rd, then we present
bias per component of this vector at each point of the optimization step. We calculate bias vector as
follows:

Algorithm 2 Procedure to estimate the bias of
the L-GSO
Require: number N of ψ, number M of x for

surrogate training, number R of gradient es-
timates at point ψt, trust region Uε, size of
the neighborhood ε, Euclidean distance d

1: for t = 1, . . . , T do
2: b← Ø
3: for r = 1, . . . , R do
4: Sample ψi in the region Uψtε ,

i = 1, . . . , N
5:6: Sample training data (yij ,x

i
j ,ψi),

j = 0, . . . ,M
7:8: Train generative model Sθ(zl,xl,ψl),

zl ∼ N (0, 1), l = 1, . . . ,MN
9:10: Compute∇ψ|ψt E[R(ȳ)] from surro-

gate
11: br ← ∇ψ|ψtR(y)−∇ψ|ψt E[R(ȳ)]
12: end for
13: biast = 1

R

∑R
r=1 br

14: variancet = 1
R−1

∑R
r=1(br − biast)

2

15: end for
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Figure 7: The bias (solid line) and one standard
deviation (shaded region) of the GAN based L-
GSO gradient estimate for all dimensions ofψ of
the 10D Rosenbrock problem is shown as a func-
tion of the training step. The gray histograms
shows the empirical distribution of bias averaged
over all training iterations.

The bias and variance for all parameters in the 10 dimensional Rosenbrock problem are presented in
the Figure 7.

C Optimization Implementation Details

Throughout all the experiments Adam [34] optimizer with default hyperparameters and learning rate
equal 10−1 was used to perform update of the ψ parameters.

Latin Hypercube sampling window of size ε = 0.2 was used for the “Rosenbrock”, “Submani-
fold Rosenbrock”, “Nonlinear Submanifold Hump”, and “Neural Network Weights Optimization”
problems, ε = 0.5 was used for “Three Hump” problem.

C.1 Procedure For Mixing Matrix Generation

10-dimensional mixing matrix A could be generated with the following Python code:

import numpy as np
def generate_orthogonal(in_dim , out_dim , seed =1337):

assert in_dim > out_dim
mixing_covar , _ = np.linalg.qr(np.random.randn(n_dim ,out_dim ))
return mixing_covar

C.2 Procedure For Initialization of Neural Network For Boston Regression Problem

Neural network for Boston regression problem initialized as a two-layer network with tanh-
nonlinearity with predefined weights, using PyTorch.
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import torch
from torch import nn
def make_boston_net ():

torch.manual_seed (1337)
net = nn.Sequential(
nn.Linear (13, 6),
nn.Tanh(),
nn.Linear(6, 1)
)
initial_weights = torch.tensor(

[0.0215 , 0.0763 , 0.0879 , 0.0102 ,
0.095, 0.0508 , 0.088, 0.101 ,
0.0782 , 0.0684 , 0.0658 , 0.0509 ,
0.0207 , 0.0618 , 0.0756 , 0.00784 ,
0.0968 , 0.0685 , 0.0113 , 0.0745 ,
0.00154 , 0.0772 , 0.0472 , 0.000906 ,
0.0723 , 0.0779 , 0.0594 , 0.0785 ,
0.0918 , 0.0634 , 0.0853 , 0.105 ,
0.00407 , 0.0789 , 0.0035 , 0.0581 ,
0.0375 , 0.0632 , 0.0669 , 0.00293 ,
0.0901 , 0.0208 , 0.0388 , 0.0893 ,
0.00104 , 0.0598 , 0.0745 , 0.08,
0.0283 , 0.0106 , 0.0371 , 0.0667 ,
0.0331 , 0.0356 , 0.0661 , 0.0554 ,
0.084, 0.0398 , 0.00286 , 0.0281 ,
0.0246 , 0.0208 , 0.0358 , 0.033 ,
0.0421 , 0.0505 , 0.00544 , 0.0269 ,
0.00527 , 0.0569 , 0.00538 , 0.0786 ,
0.102, 0.0452 , 0.0444 , 0.105 ,
0.0765 , 0.0689 , 0.0249 , 0.0933 ,
0.037, 0.0762 , 0.0882 , 0.0505 ,
0.0688 , 0.0666 , 0.101, 0.0857 ,
0.0488 , 0.0303 , 22.5328])

net [0]. weight.data = initial_weights [: 6 * 13]. view(6, 13).detach
().clone ().float()

net [0]. bias.data = initial_weights [6 * 13: 6 * 13 + 6]. view (6).
detach ().clone().float()

net [2]. weight.data = initial_weights [6 * 13 + 6: 6 * 13 + 6 + 6].
view(1, 6).detach ().clone ().float()

net [2]. bias.data = initial_weights [6 * 13 + 6 + 6: 6 * 13 + 6 + 6
+ 1]. view (1).detach ().clone().float ()

net.requires_grad_(False)
return net

C.3 Numerical Derivatives

To obtain numerical derivatives ofR we are using central difference scheme:

f ′ψi ≈
(
R̄(ψ1, . . . , ψi + ε, . . . , ψp)− R̄(ψ1, . . . , ψi − ε, . . . , ψp)

)
/2ε, (7)

Where, R̄ = 1
N

N∑
i=1

R(F (zi, xi;ψ)), xi ∼ p(X), zi ∼ p(Z). For all experiments we set ε = 0.1.

We can not use small ε due to the stochastic nature of R̄ (see appendix E, where we compare results
with different values of ε).

D Details of the Physics Problem

Muons are bent by the magnetic field and simultaneously experience stochastic scattering as they
pass through the magnet which causes random variations in their trajectories. The coordinates
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Table 1: Comparison of the optima, obtained by L-GSO and Bayesian optimization for the physics
problem.

Algorithm Objective value Magnet length (m) Magnet weight (kt)

L-GSO ∼ 2200 33.39 1.05
BO ∼ 3000 35.44 1.27
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Figure 8: The x-z axes and y-z axes profiles of
the magnet system (the post optimization shape
is shown). Animation of optimization process is
available at https://doi.org/10.6084/m9.
figshare.11778684.v1.

200 0 200
X, cm

400

200

0

200

400

Y,
 c

m

200

400

600

800

1000

1200

1400

1600

200 0 200
X, cm

400

200

0

200

400

Y,
 c

m

2500

5000

7500

10000

12500

15000

17500

Figure 9: Muon hits distribution in the detec-
tion apparatus (depicted as red contour) obtained
by Bayesian optimization (Left) and by L-GSO
(Right), showing better distribution. Color repre-
sents number of the hits in a bin.

perpendicular to incoming direction (the z-axis in Figure 8) are recorded. The loss function is
constructed in such a way that muons with positive charge should be swept by the magnet along the
negative x-direction while those with negative charge should be swept to the positive x-direction.
Overall the loss encourages muons to be bent outside of the detector area (red lines in Figure 9). The
magnet is constructed from six trapezoidal shapes with gaps each of which is described by seven
parameters, as presented in Figure 8. Thus, for this task ψ ∈ R42. Mathematically, formulation is
X = {P, φ, θ,Q,C}, X ∈ R7, y ∼ R2 where y is a simulator output representing hit coordinates in
the sensitive detector. X is sampled from empirical distribution H (histogram), produced upfront. To
make our optimization comparable with previously applied BO optimization, during optimization we
have been working with subsample of H of size of order of O(500, 000) events, same as in case of
BO application. The objective function value reported in the Figure 5 is calculated on this sample. To
perform cross-validation of the obtained optima, we run physics simulation on the largest available
sample, which does not contain samples from H . We have also validated the BO optima on the same
available sample. The comparison is presented in Table 1. Both BO and L-GSO have been compared
on the simplified geometry of the experiment. The distributions of muons in the detection apparatus
obtained by L-GSO is compared with BO optimization in Figure 9.

E Grid Search of Optimal Parameters

E.1 Grid Search Hyperparameters For L-GSO

We have optimized crucial hyperparameters of L-GSO, such as learning rate, size of the sampling
neighborhood ε and the number of samples of ψ in this neighborhood with grid search. The grid
search for Three hump and Rosenbrock problem is presented in Figure 10a, 10b. As it can be seen,
for both problems best quality is obtained when number of samples is approximately equal to the
dimensionality of the problem and when learning rate is close to 0.1. We found that learning rate 0.1
is optimal for all the toy problems under consideration. Thus, we have fixed it to be 0.1 for other
grid search experiments. In the Figure 11a, 11b we present the grid search for 100 dimensional
Degenerate Rosenbrock problem for number of samples per iteration and size of the neighborhood.
We found that L-GSO is very sensitive to the size of the neighborhood ε, whereas surprisingly robust
to the number of samples, as it is seen in Figure 11a.
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(a) (b)

Figure 10: Grid search of learning rate and number of samples for L-GSO. Color represents final
quality for Three hump problem (Left) and for Rosenbrock problem (Right).

(a) Final value of objective function R of L-GSO for
100 dimensional Degenerate Rosenbrock problem.

(b) Number of samples (calls of the simulator) needed
by L-GSO to converge to final value of objective funci-
ton.

Figure 11

E.2 Grid Search Hyperparameters For Numerical Differentiation

We performed grid search over the order of numerical scheme n and step size h for numerical
optimization for all four toy problems. As an example, the results for the toys problems are presented
in Figure 12a, 12b, 13a, 13b, 14a, 14b.
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(a) Final value if objective function R of numerical
differentiation for hump problem.

(b) Number of samples(calls to the simulator) needed
by numerical differences to converge.

Figure 12
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(a) Final value if objective functionR of numerical
differentiation for 10-dim Rosenbrock problem.

(b) Number of samples(calls of the simulator) needed
by numerical differentiation to converge.

Figure 13
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(a) Final value if objective functionR of numerical
differentiation for 100-dim Degenerate Rosenbrock
problem.

(b) Number of samples(calls of the simulator) needed
by numerical differentiation to converge.

Figure 14
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