
We thank all the reviewers for their careful reviews. All minor issues will be fixed in the text and more insight into1

knowledge compilation will be given. Detailed replies follow.2

Common concerns. Novelty wrt Xu et al 2018: We: 1) Studied the limitations of GANs in constrained settings;3

2) Showed how CANs and the SL follow naturally from introducing constraints into the discriminator of GANs; 3)4

Extended this setup to conditional CANs; 4) Provided a practical implementation with an effective approximate solution5

for constraints that cannot be evaluated efficiently; 5) Evaluated the utility of the proposed techniques on representative6

tasks of practical interest. None of these follow trivially from Xu et al. Knowlege compilation: Roughly speaking, KC7

leverages distributivity to rewrite the polynomial in Eq. 9 so to speed up evaluation. This is achieved by identifying8

shared sub-computations and compactly representing the factorized problem using a DAG. Target representations for9

the DAG (OBDDs, DNNFs, . . . ) differ in succinctness and enable different polytime (in the size of the DAG) operations.10

We reuse existing KC techniques, in particular by compiling the polynomial in Eq. 9 into a Sentential Decision Diagram11

(SDD) that enables efficient WMC and therefore exact probabilistic computation. SL decreases the validity of molecules:12

In molecule generation, validity is encouraged using the reward-based approach of MolGANs, not the SL. The SL is13

used instead to improve diversity (using cond. constraints that encourage generating different mixtures of chemical14

elements). As a result diversity increases (91% to 98.98%) and so does uniqueness (2.4 to 2.5). Validity drops a little15

(97.4% to 96.6%) because the SL pushes a competing objective. This is expected. We will clarify this in the discussion.16

Reviewer 1. Unnecessary theory: Cor. 1 and Prop. 1 serve to position CANs relative to GANs. We will trim the17

most obvious steps. Evaluating the SL: The SL measures the mass allocated by Pg to configurations that violate the18

constraints and it can be evaluated exactly and efficiently using KC. No sampling is needed. The cost of KC, which is19

performed once before training, can be reduced by simplifying the space of binary variables using φ. Link to IPMs:20

Thank you, we were not aware of this link. We will cite the relevant papers. Evidence for conditional CANs: The21

increase in diversity in molecule generation is obtained by turning on/off generation of specific atoms (e.g., chlorine)22

using cond. CANs. This serves as validation for the approach. We will add per-atom statistics in the Supp. Mat.23

Schedule of λ: In level generation, λ is increased as explained in lines 236 and 263. In molecule generation, λ = 0.924

as the SL is not used for validity, so a constant value is enough in practice. Will report in the text. 5 repeats: Good25

point. The values we reported are the average over 5 runs for mario and 8 for molecules. The unreported std. devs. are26

small, around 2–3% for avg. validity of 96.6%. We did not report std. devs. as we couldn’t get them for CMA-ES27

due to time constraints. We will amend this. Relation to extra papers [1]-[3]: Thanks for pointing out the works on28

resampling strategies. We will mention them clarifying the differences wrt to CANs. In particular: CANs are not29

learned using maximum likelihood, so [1] does not apply; [3] assumes absolutely continuous distributions and corrects30

the predictions using pointwise estimates, while CANs focus on discrete probabilistic models and use the SL, which is31

neither an estimate nor pointwise. [2] is more closely related: in a sense, CAN generators act like proposal distributions32

for rejection sampling wrt the constraint, which is however given and fixed.33

Reviewer 2. Please see the common concerns above.34

Reviewer 3. Why Eq. 9?: Eq 9 shows that Pg(ψ) is a polynomial and thus differentiable, enabling end-to-end training.35

The negative logarithm appears in Eq. 7, we amended the text. Relation to EBGANs: True, constraints can be introduced36

as energy functions into EBGANs, but they must be made differentiable first. There are many ways to do so (e.g.,37

using fuzzy logic, as discussed in lines 133–140). However, only the SL is probabilistically sound and semantic (i.e.,38

its value does not depend on the encoding of the constraint, see Figure 1). Also, the SL can be evaluated exactly; no39

sampling is required. Relation to [15]: This work is complementary to ours as it implements a constraint learning40

component (using inverse reinforcement learning) rather than a constraint enforcing loss term, and it is useful when41

constraints are unknown or cannot be explicitly encoded (see our discussion in related work). Indeed we showed in the42

molecule generation experiment how to combine the advantages of constraint learning (using reinforcement learning)43

with constraint enforcement.44

Reviewer 4. Learning from invalid examples: Good point. Experiments with noisy data will be carried out in a future45

study. These are not strictly necessary to highlight the benefits of CANs. Non-approximable constraints: Correct,46

some constraints are too hard for both KC and for neural net approximation. However, this issue is not specific to47

CANs and indeed it affects all approaches to learning under constraints (generative or not). Generated objects must48

be filtered: Precisely. So long as the constraints are Boolean (or discrete), checking validity of a configuration is49

polynomial, so this is not an issue. We will clarify this. Embedding function is unclear: The embedding function φ50

extracts Boolean features/variables to which the constraints are then applied. In many cases φ is the identity map. We51

will clarify this. More baselines: For level generation, we compared against GAN + CMA-ES which was the SotA52

when we ran the experiments (and until very recently). MolGAN is also a very respectable method. Still, our goal is not53

to challenge the SotA but rather to show that CANs lead to clear improvements in many settings and for many tasks54

(e.g., increasing validity, improving diversity). Also, we did not tweak CANs for specific domains, although this would55

improve performance. We defer a detailed study of CANs to specific domains (especially level design) to future work.56


