
Recovery of sparse linear classifiers from mixture of responses
Supplementary Material

A Missing Proofs from Section 4
Proof of Lemma 5. The proof of the lemma follows from a simple application of Chernoff bound.

Let {yi}Ti=1 be the set of responses obtained by querying the oracle repeatedly T times with vector
v. Let Z =

P
i 1[y

i
= +1], and therefore EZ =

T⇥poscount

` .

Note that Algorithm 1 makes a mistake in estimating poscount only if

|Z � T ⇥ poscount

`
| � T

2`
.

Since the responses in each batch are independent, using Chernoff bound [6], we get an upper bound
on the probability that Algorithm 1 makes a mistake in estimating poscount as

Pr

⇣
|Z � EZ| � T

2`

⌘
 2e�

T
2`2 .

The same argument and conclusion holds for observing the negcount of the query vector as well.
Also, since nzcount = T�(poscount+negcount), using union bound, it follows that ˆ

nz 6= nzcount

with probability at most 4e�
T

2`2 .

Proof of Lemma 9. We give a non-constructive proof for the existence of (r, t)� CFF of size n and
alphabet m = O(tr+1

log n). Recall that a family of sets F = {H1,H2, . . . ,Hn} where each
Hi ✓ [m] is an (r, t)� CFF if the following holds: for all distinct j0, j1, . . . , jt+r�1 2 [n], it is the
case that \

p2{0,1,...,r�1}

Hjp 6✓
[

q2{r,r+1,...,t+r�1}

Hjq .

Since PUFF is a special case of (r, t)� CFF for r = 2, this result holds for PUFF as well.

Consider a matrix G of size m ⇥ n where each entry is generated independently from a
Bernoulli(p) distribution with p as a parameter. Consider a distinct set of t + r indices
j0, j1, . . . , jt+1, . . . , jk+r�1 2 [n]. For a particular row of the matrix G, the event that there exists
a 1 in the indices j0, j1, . . . , jr�1 and 0 in the indices jr, jr+1, . . . , jt+r�1 holds with probability
pr(1�p)t. Therefore, for a fixed row, this event does not hold with probability 1�pr(1�p)t and the
probability that for all the rows the event does not hold is (1�pr(1�p)t)m. Notice that the number
of such possible sets of t+ r columns is

�
n

t+r

��
t+r
r

�
. By taking a union bound, the probability (Pe)

that the event does not hold for all the rows for at least one set of t+ r indices is

Pe 
✓

n

t+ r

◆✓
t+ r

r

◆�
1� pr(1� p)t

�m

Since we want to minimize the upper bound, we want to maximize pr(1�p)t. Substituting p =

1
t+1 ,

we get that

pr(1� p)t =
⇣ t

t+ 1

⌘t

· 1

(t+ 1)

r
>

1

e(t+ 1)

r
.

Further, using the fact that
�
n
t

�


⇣
en
t

⌘t

, we obtain

Pe 
(en)t+r

(t+ r)t

⇣
1� 1

e(t+ 1)

r

⌘m

 (en)t+r

(t+ r)t
exp

⇣
� m

e(t+ 1)

r

⌘
< ↵

for some very small number ⌘. Taking log on both sides and after some rearrangement, we obtain

m > e(t+ 1)

r
⇣
(t+ r) log

en

t+ r
+ r log(t+ r) + log

1

⌘

⌘
.

Hence, using m = O(tr+1
log n), the event holds for at least one row for every set of t+ r indices

with high probability. Therefore, with high probability, the family of sets F = {H1,H2, . . . ,Hn}
corresponding to the rows of G is a (r, t)� CFF.

12

B Two-stage Approximate Recovery
In this section, we prove the helper Lemmas 10 and 11 to compete the proof of Theorem 1 and
also present the proof of Theorem 2. The two stage approximate recovery algorithm, as the name
suggests, proceeds in two sequential steps. In the first stage, we recover the support of all the `
unknown vectors (presented in Algorithm 2 in Section 5). In the second stage, we use these deduced
supports to approximately recover the unknown vectors (Algorithm 5 described in Section B.2).
B.1 Support recovery (Missing proofs from Section 5)
Compute |S(i)| using Algorithm 3. First, we show how to compute |S(i)| for every index i 2 [n].
Let F = {H1,H2, . . . ,Hn} be a (d, `k, 0.5)-RUFF of size n over alphabet [m]. Construct the
binary matrix A 2 {0, 1}m⇥n from F , as Ai,j = 1 if and only if i 2 Hj . Each column j 2 [n] of
A is essentially the indicator vector of the set Hj . We use the rows of matrix A as query vectors to
compute |S(i)| for each i 2 [n]. For each such query vector v, we compute the nzcount(v) using
Algorithm 1 with batchsize T = O(`2 log `kn). The large value of T ensures that the estimated
nzcount is correct for all the queries with very high probability.

For every h 2 {0, . . . , `}, let bh 2 {0, 1}m be the indicator of the queries that have nzcount at least
h. We show in Lemma 10 that the set of columns of A that have large intersection with b

h, exactly
correspond to the indices i 2 [n] that satisfy |S(i)| � h. This allows us to recover |S(i)| exactly for
each i 2 [n].

Algorithm 3 COMPUTE–|S(i)|
Require: Construct binary matrix A 2 {0, 1}m⇥n from (d, `k, 0.5)�RUFF of size n over alphabet

[m], with m = c1`2k2 log n and d = c2`k log n.
1: Initialize b

0, b1, b2, . . . , b` to all zero vectors of dimension m.
2: Let batchsize T = 4`2 logmn.
3: for i = 1, . . . ,m do
4: Set w := nzcount(A[i]) (obtained using Algorithm 1 with batchsize T .)
5: for h = 0, 1, . . . , w do
6: Set bhi = 1.
7: end for
8: end for
9: for h = 0, 1, . . . , ` do

10: Set Ch = {i 2 [n] | |supp(bh) \ supp(Ai)| � 0.5d}.
11: end for
12: for i = 1, 2, . . . , n do
13: Set |S(i)| = h if i 2 {Ch \ Ch+1} for some h 2 {0, 1, . . . , `� 1}.
14: Set |S(i)| = ` if i 2 C`
15: end for

Proof of Lemma 10. Since A has m = O(`2k2 log n) distinct rows, and each row is queried T =

O(`2 log(mn)) times, the total query complexity of Algorithm 3 is O(`4k2 log(`kn) log n).

To prove the correctness, we first see that the nzcount for each query is estimated correctly using
Algorithm 1 with overwhelmingly high probability. From Lemma 5 with T = 4`2 log(mn), it
follows that each nzcount is estimated correctly with probability at least 1 � 1

mn2 . Therefore, by
taking a union bound over all rows of A, we estimate all the counts accurately with probability at
least 1� 1

n2 .

We now show, using the properties of RUFF, that |supp(bh) \ supp(Ai)| � 0.5d if and only if
|S(i)| � h, for any 0  h  `.

Let i 2 [n] be an index such that |S(i)| � h, i.e., there exist at least h unknown vectors that
have a non-zero entry in their ith coordinate. Also, let U := [i2[`]supp(�

i
) denote the union

of supports of all the unknown vectors. Since each unknown vector is k-sparse, it follows that
|U |  `k. To show that |supp(bh) \ supp(Ai)| � 0.5d, consider the set of rows of A indexed
by W := {supp(Ai) \ [j2U\{i}supp(Aj)}. Since A is a (d, `k, 0.5) � RUFF, we know that
|W | � 0.5d. We now show that bht = 1 for every t 2 W . This follows from the observation that

13

for t 2 W , and each unknown vector � 2 S(i), the query sign(hA[t],�i) = sign(�i) 6= 0. Since
|S(i)| � h, we conclude that nzcount(A[t]) � h, and therefore, bht = 1.

To prove the converse, consider an index i 2 [n] such that |S(i)| < h. Using a similar argument as
above, we now show that |supp(bh) \ supp(Ai)| < 0.5d. Consider the set of rows of A indexed
by W := {supp(Ai) \ [j2U\{i}supp(Aj)}. Now observe that for each t 2 W , and any unknown
vector � /2 S(i), the query sign(hA[t],�i) = 0. Therefore nzcount(A[t])  |S(i)| < h, and
b

h
t = 0 for all t 2 W . Since |W | � 0.5d, it follows that |supp(bh) \ supp(Ai)| < 0.5d.

For any 0  h  `, Algorithm 3. therefore correctly identifies the set of indices i 2 [n] such that
|S(i)| � h. In particular, the set Ch := {i 2 [n] | |S(i)| � h}. Therefore, the set Ch \ Ch+1 is
exactly the set of indices i 2 [n] such that |S(i)| = h.

Compute |S(i) [S(j)| using Algorithm 4. In this section we present an algorithm to compute
|S(i) [S(j)|, for every i, j 2 [n], using |S(i)| computed in the previous step. We will need an
`k�PUFF for this purpose. Let F = {H1,H2, . . . ,Hn} be the required `k�PUFF of size n over
alphabet m0

= O(`3k3 log n).

Construct a set of `+1 matrices B = {B(1), . . . ,B(`+1)} where, each B

(w) 2 Rm0⇥n, w 2 [`+1],
is obtained from the PUFF F in the following way: For every (i, j) 2 [m0

] ⇥ [n], set B(w)
i,j to be

a random number sampled uniformly from [0, 1] if i 2 Hj , and 0 otherwise. We remark that the
choice of uniform distribution in [0, 1] is arbitrary, and any continuous distribution works.

Since every B

(w) is generated identically, they have the exact same support, though the non-zero
entries are different. Also, by definition, the support of the columns of every B

(w) corresponds to
the sets in F .

Let U := [i2[`]supp(�
i
) denote the union of supports of all the unknown vectors. Since each

unknown vector is k-sparse, it follows that |U |  `k. From the properties of `k � PUFF, we know
that for any pair of indices (i, j) 2 U ⇥ U , the set (Hi \Hj) \

S
q2U\{i,j} Hq is non-empty. This

implies that for every w 2 [`+ 1], there exists at least one row of B(w) that has a non-zero entry in
the ith and jth index, and 0 in all other indices p 2 U \ {i, j}. In Algorithm 4 we use these rows as
queries to estimate their nzcount. In Lemma 11, we show that this quantity is exactly |S(i) [S(j)|
for that particular pair (i, j) 2 U ⇥ U .

Proof of Lemma 11. Computing each count requires O(T `) queries. Therefore, the total number
of oracle queries made by Algorithm 4 is at most O(m0T `) = O(`6k3 log(`kn) log n) for m0

=

O(`3k3 log n) and T = 10`2 log(nm0
). Also, observe that each nzcount is estimated correctly with

probability at least 1�O
�
1/`m0n2

�
. Therefore from union bound it follows that all the (`+ 1)m0

estimations of nzcount are correct with probability at least 1�O
�
1/n2

�
.

Recall that the set U denotes the union of supports of all the unknown vectors. This set is equivalent
to {i 2 [n] | |S(i)| > 0}. First, note that if |S(i)| = 0, there are no unknown vectors supported on
the ith index. Therefore, |S(i)[S(j)| = |S(j)|. Also, if i = j, then the computation of |S(i)[S(j)|
is trivial.

We now focus on the only non-trivial case when (i, j) 2 U ⇥ U and i 6= j. Since for every
w 2 [`+ 1], the support of the columns of B(w) are the indicators of sets in F , the PUFF property
implies that there exists at least one row (say, with index p 2 [m0

]) of every B

(w) which has a
non-zero entry in the ith and jth index, and 0 in all other indices q 2 U \ {i, j}, i.e.,

B

(w)
p,i 6= 0,B(w)

p,j 6= 0, and B

(w)
p,q = 0 for all q 2 U \ {i, j}.

To prove the correctness of the algorithm, we need to show the following:

|S(i) [S(j)| = max

w2[`+1]
{nzcount(B(w)

[p])}

First observe that using the row B

(w)
[p] as query will produce non-zero value for only those un-

known vectors � 2 S(i) [S(j). This establishes the fact that |S(i) [S(j)| � nzcount(B

(w)
[p]).

14

Algorithm 4 RECOVER–|S(i) [S(j)|
Require: |S(i)| for every i 2 [n].
Require: For every w 2 [`+1], construct B(w) 2 Rm0⇥n from `k�PUFF of size n over alphabet

m0
= c3`3k3 log n.

1: Let U := {i 2 [n] | |S(i)| > 0}
2: Let batchsize T = 10`2 log(nm0

)

3: for every p 2 [m0
] do

4: Let count(p) := maxw2[`+1]{nzcount(B(w)
[p])}

(obtained using Algorithm 1 with batchsize T).
5: end for
6: for every pair (i, j) 2 [n]⇥ [n] do
7: if i == j then
8: Set |S(i) [S(j)| = |S(i)|
9: else if i /2 U then

10: Set |S(i) [S(j)| = |S(j)|
11: else if j /2 U then
12: Set |S(i) [S(j)| = |S(i)|
13: else
14: Let p 2 [m0

] such that B(1)
p,i 6= 0, B(1)

p,j 6= 0, and B

(1)
p,q = 0 for all q 2 U \ {i, j}.

15: Set |S(i) [S(j)| = count(p).
16: end if
17: end for

To show the other side of the inequality, consider the set of (` + 1) 2-dimensional vectors obtained
by the restriction of rows B(w)

[p] to the coordinates (i, j),

{(B(w)
p,i ,B(w)

p,j) | w 2 [`+ 1]}.
Since these entries are picked uniformly at random from [0, 1], they are pairwise linearly inde-
pendent. Therefore, each � 2 S(i) [S(j) can have sign(hB(w)

[p],�i) = 0 for at most 1 of
the w queries. So by pigeonhole principle, at least one of the query vectors B

(w)
[p] will have

sign(hB(w)
[p],�i) 6= 0 for all � 2 S(i)[S(j). Hence, |S(i)[S(j)|  maxw{nzcount(B(w)

[p])}.

B.2 Approximate Recovery
Once we have the obtained the support of all unknown vectors, the task of approximate recovery can
be achieved using a set of Gaussian queries. Recall from Definition 4, a Gaussian query refers to
an oracle query with vector v = (v1, . . . ,vn) 2 Rn where each vi is sampled independently from
the standard Normal distribution, vi ⇠ N (0, 1). The use of Gaussian queries in the context of 1-bit
compressed sensing (` = 1) was studied by [19].
Lemma 12 ([19]). For any ✏ > 0, there exists an ✏-recovery algorithm to efficiently recover an
unknown vector in Rn using O

�
n
✏ log

n
✏

�
Gaussian queries.

In the current query model however, the approximate recovery is a bit intricate since we do not pos-
sess the knowledge of the particular unknown vector that was sampled by the oracle. To circumvent
this problem, we will leverage the special support structure of the unknown vectors. From Assump-
tion 1, we know that every unknown vector �t, t 2 [`], has at least one coordinate which is not
contained in the support of the other unknown vectors. We will denote the first such coordinate by
rep(�

t
). Define,

rep(�

t
) := minp{ p 2 supp(�

t
) \

[

q2[`]\{t}

supp(�

q
)} 2 [n].

For ✏-recovery of a fixed unknown vector �

t, we will use the set of representative coordinates
{rep(�t0

)}t0 6=t, to correctly identify its responses with respect to a set of Gaussian queries. In order
to achieve this, we first have to recover the sign of �t

rep(�t) for every t 2 [`], using an RUFF, which
is described in Algorithm 6.

15

Lemma 13. Algorithm 6 recovers sign(�t
rep(�t)) for all t 2 [`].

With the knowledge of all the supports, and the sign of every representative coordinate, we are now
ready to prove Theorem 2. The details are presented in the Algorithm 5.

Algorithm 5 ✏-RECOVERY, TWO STAGE

Require: Query access to oracle O.
Require: Assumption 1 to be true.

1: Estimate supp(�

t
) for all t 2 [`] using Algorithm 2.

2: Estimate sign(�

t
rep(�t)) for all t 2 [`] using Algorithm 6.

3: Let Inf be a large positive number.
4: Let batchsize T = 4`2 log(nk/✏).
5: for t = 1, . . . , ` do
6: for i = 1, . . . , ˜O(k/✏) do

7: Define v

t
j :=

⇢
Inf if j = rep(�

t0
), for some t0 6= t

N (0, 1) otherwise
8: Obtain poscount(v

t
) using Algorithm 1 with batchsize T .

9: Let pt := |{t0 6= t | sign(�t

0

rep(�t

0
)
) = +1}|

10: if poscount(vt
) 6= pt then

11: Set yti = +1.
12: else
13: Set yti = �1.
14: end if
15: end for
16: From {yt1, yt2, . . . , ytÕ(k/✏)

}, and supp(�

t
) recover ˆ

�

t by using Lemma 12.
17: end for
18: Return { ˆ

�

t, t 2 [`]}.

Proof of Theorem 2. For the ✏-recovery of a fixed unknown vector �t, t 2 [`], we will generate its
correct response with respect to a set of ˜O(k/✏) Gaussian queries using modified Gaussian queries.
A modified Gaussian query v

t for the t-th unknown vector, is a Gaussian query with a large positive
entry in the coordinates indexed by rep(�

t0
), for every t0 6= t.

Consider a fixed unknown vector �t. Let v 2 Rn be a Gaussian query, i.e., every entry of v is
sampled independently from N (0, 1). Algorithm 5 constructs a modified Gaussian query v

t from v

as follows:

v

t
j =

(
Inf if j = rep(�

t0
) for some t0 6= t

vj otherwise
.

From construction, we know that vt
j = vj for all j 2 supp(�

t
). Therefore,

hvt,�ti = hv,�ti and therefore sign(hvt,�ti) = sign(hv,�ti).
On the other hand, if Inf is chosen to be large enough,

sign(hvt,�t0i) = sign(�

t0

rep(�t0)
) 8t0 6= t,

since Inf · �t0

rep(�t0)
dominates the sign of the inner product. Note that in order to obtain an upper

bound on the value of Inf, we have to assume that the non-zero entries of every unknown vector have
some non-negligible magnitude (at least 1/poly(n)).

Note that the sign(�t0

rep(�t0)
) was already computed using Algorithm 6, and therefore, the response of

the modified Gaussian query with each �

t0 , t0 6= t is known. Now if poscount(vt
) is different from

the number of positive instances of sign(�t0

rep(�t0)
), t0 6= t, then it follows that sign(hvt,�ti) = +1.

From this we can successfully obtain the response of �t corresponding to a Gaussian query v.

16

Algorithm 5 simulates O(k/✏ · log(k/✏)) Gaussian queries for every �

t, t 2 [`] using the modified
Gaussian queries vt. Approximate recovery is then possible using Lemma 12 (restricted to the k-non
zero coordinates in the supp(�

t
)).

We now argue about the query complexity and the success probability of Algorithm 5.

For every unknown vector �t, t 2 [`], we simulate O(k/✏ · log(k/✏)) Gaussian queries. Simulating
each Gaussian query involves T = O(`2 log(nk/✏)) oracle queries to estimate the poscount. Note
that Algorithm 6 can be run simultaneously with Algorithm 3 since they use the same set of queries.
The sign recovery algorithm, therefore, does not increase the query complexity of approximate
recovery. The total query complexity of Algorithm 5 after the support recovery procedure is at most
O
�
(`3k/✏) log(nk/✏) log(k/✏)

�
.

From Lemma 5, each poscount is correct with probability at least 1 � O(✏/(n2k2)) and therefore
by a union bound over all the O(`k/✏ · log(k/✏)) poscount estimates, the algorithm succeeds with
probability at least 1�O(1/n).

Proof of Lemma 13. Consider the (d, `k, 0.5) � RUFF, F = {H1,H2, . . . ,Hn}, of size n over
alphabet m = O(`2k2 log n) used in Algorithm 3. Let A 2 {0, 1}m⇥n be the binary matrix con-
structed from the RUFF in a similar manner, i.e., Ai,j = 1 if and only if i 2 Hj . From the properties
of RUFF, we know that for every t 2 [`], there exists a row (indexed by i 2 [m]) of A such that
Ai,u(�t) 6= 0, and Ai,j = 0 for all j 2 U \ {u(�t

)}, where, U = [i2[`]supp(�
i
). Therefore, the

query with A[i] yields non-zero sign with only �

t. Since,

sign(hA[i],�ti) = sign(heu(�t),�
ti) = sign(�

t
u(�t))

sign(�

t
u(�t)) can be deduced.

Algorithm 6 COMPUTE–sign(�t
rep(�t))

Require: Binary matrix A 2 {0, 1}m⇥n from (d, `k, 0.5) � RUFF of size n over alphabet [m],
with m = O(`2k2 log n) and d = O(`k log n).

Require: rep(�

t
) 2 [n] for all t 2 [`].

1: Let batchsize T = 4`2 logmn.
2: Let U := [i2[`]supp(�

i
).

3: for t = 1, . . . , ` do
4: Let i 2 {supp(A

rep(�t)) \ [j2U\{rep(�t)}supp(Aj)}
5: if poscount(A[i]) > 0 (obtained using Algorithm 1 with batchsize T .) then
6: sign(�

t
rep(�t)) = +1.

7: else
8: sign(�

t
rep(�t)) = �1.

9: end if
10: end for

C Single stage process for ✏-recovery
The approximate recovery procedure (Algorithm 5), described in Section B.2, crucially utilizes the
support information of every unknown vector to design its queries. This requirement forces the
algorithm to proceed in two sequential stages.

In particular, Algorithm 5, with the knowledge of the support and the representative coordinates
of all the unknown vectors, designed modified Gaussian queries that in turn simulated Gaussian
queries for a fixed unknown vector. In this section, we achieve this by using the rows of a matrix
obtained from an (`, `k) � CFF. The property of the CFF allows us to simulate enough Gaussian
queries for every unknown vector without the knowledge of their supports. This observation gives
us a completely non-adaptive algorithm for approximate recovery of all the unknown vectors.

17

Consider a matrix A of dimension m⇥n constructed from an (`, `k)�CFF, F = {H1,H2, . . . ,Hn}
of size n over alphabet m, as follows:

Ai,j =

⇢
Inf if i 2 Hj

v ⇠ N (0, 1) otherwise
.

In Lemma 14, we show that for every unknown vector �t, there exists a row of A that simulates
the Gaussian query for it. Therefore, using ˜O(k/✏) independent blocks of such queries will ensure
sufficient Gaussian queries for every unknown vector which then allows us to approximately recover
these vectors.

Recall the definition of a representative coordinate of an unknown vector �t,

rep(�

t
) := minp{ p 2 supp(�

t
) \

[

q2[`]\{t}

supp(�

q
)} 2 [n].

Lemma 14. For every t 2 [`], there exists at least one row v

t in A that simulates a Gaussian query
for �t, and sign(hvt,�t0i) = sign(�

t0

rep(�t0)
) for all t0 6= t.

Proof of Lemma 14. For any fixed t 2 [`], consider the set of indices

X = {rep(�t0
) | t0 2 [`] \ {t}}.

Recall that from the property of (`, `k)� CFF, we must have
\

j2X
supp(Aj) 6✓

[

j2[q2[`]supp(�
q)\X

supp(Aj).

Therefore, there must exist at least one row v

t in A which has a large positive entry, Inf, in all the
coordinates indexed by X . Moreover, vt has a random Gaussian entry in all the other coordinates
indexed by the union of support of all unknown vectors. Since �

t is 0 for all coordinates in X , the
query sign(hvt,�ti) simulates a Gaussian query. Also,

sign(hv,�t0i) = sign(rep(�

t0
)) 8t0 6= t

since Inf ⇥ �

t0

rep(�t0)
dominates the inner product.

We are now ready to present the completely non-adaptive algorithm for the approximate recovery of
all the unknown vectors.

Proof of Theorem 3. The proof of Theorem 3 follows from the guarantees of Algorithm 7. The
query vectors of Algorithm 7 can be represented by the rows of the following matrix:

R =

2

666664

A

Ã+B

(1)

Ã+B

(2)

...
Ã+B

(D)

3

777775

where, D = O(k/✏ · log k/✏) and A is the matrix obtained from the (d, `k, 0.5) � RUFF re-
quired by Algorithm 2 and Algorithm 6. The matrix Ã is obtained from an (`, `k) � CFF,
F = {H1,H2, . . . ,Hn} by setting ˜

Ai,j = Inf if i 2 Hj and 0 otherwise, and each matrix B

(w)

for w 2 [D] is a Gaussian matrix with every entry B

(w)
i,j drawn uniformly at random from standard

Normal distribution.

Algorithm 7 decides all its query vectors at the start and hence is completely non-adaptive. It first
invokes Algorithm 2 and Algorithm 6 to recover the support and the sign of the representative
coordinate of every unknown vector �

t. Now using the queries from the rows of the matrix R,
the algorithm generates at least D =

˜O(k/✏) Gaussian queries for each unknown vector.

18

Algorithm 7 ✏-RECOVERY, SINGLE STAGE

Require: Assumption 1 to be true.
Require: Binary matrix Ã 2 {0, 1}m⇥n from (`, `k) � CFF of size n over alphabet m =

O((`k)`+1
log n).

1: Estimate supp(�

t
) and sign(�

t
rep(�t)) for all t 2 [`] using Algorithm 2 and Algorithm 6 respec-

tively.
2: Set Inf to be a large positive number.
3: Set D = O(k/✏ · log(k/✏)).
4: Set batchsize T = 4`2 log(mnk/✏).
5: for i = 1, . . . ,m do
6: for w = 1, 2, . . . ,D do

7: Construct query vector v, where vj =

⇢
Inf if Ãi,j = 1

N (0, 1) otherwise
.

8: Query

⇣
v, T

⌘
and set P i,w = poscount(v).

9: end for
10: end for
11: for t = 1, . . . , ` do
12: Let X := {rep(�t0

) | t0 2 [`] \ t} and U := [qsupp(�
q
)

13: Let i 2 {\j2X supp(Ãj) \
S

j2U\X supp(Ãj)} ⇢ [m].
14: Let p := |{t0 6= t | sign(�t

rep(�t)) = +1}|
15: for w = 1, . . . ,D do
16: if P i,w 6= p then
17: Set ytw = +1

18: else
19: Set ytw = �1

20: end if
21: end for
22: From {ytw | w 2 [D]} and supp(�

t
) recover �̂

t
by using Lemma 12.

23: end for
24: Return {�̂t | t 2 [`]}.

It follows from Lemma 14 that each matrix ˜

A+B

(w), for w 2 [D], contains at least one Gaussian
query for every unknown vector. Therefore, in total, R contains at least D = O(k/✏ · log k/✏)
Gaussian queries for every unknown vector �t. Using the responses of these Gaussian queries, we
can then approximately recover every �

t using Lemma 12.

The total query complexity is therefore the sum of query complexities of support recovery process
(which from Theorem 1 we know to be at most O(`6k3 log(n) log(`kn))), and the total number of
queries needed to generate O(k/✏ · log(k/✏)) Gaussian queries (which is mTD) for each unknown
vector. Therefore the net query complexity is O

⇣
(``+3k`+2/✏) log n log(k/✏) log(n/✏))

⌘
. Each

Algorithm 2, 6 and the Gaussian query generation succeed with probability at least 1 � O(1/n),
therefore from union bound, Algorithm 7 succeeds with probability at least 1�O(1/n).

D Relaxing Assumption 1 for ` = 2

In this section, we will circumvent the necessity for Assumption 1 when there are only two unknown
vectors - {�1,�2}. We present a two-stage algorithm to approximately recover both the unknown
vectors. In the first stage, the algorithm recovers the support of both the vectors, and then using the
support information it approximately recovers the two vectors.

We would like to mention that if supp(�1
) 6= supp(�

2
), we do not need any further assumptions

on the unknown vectors for their approximate recovery. However, if the two vectors have the exact
same support, then we need to impose some mild assumptions in order to approximately recover the
vectors.

19

D.1 Support Recovery
In this section, we show that supports of both the unknown vectors can be inferred directly from
{|S(i)|}i2[n] and {|S(i) \ S(j)|}i,j2[n]. These quantities were computed using Algorithm 3 and
using Algorithm 4 respectively. Moreover, the guarantees of both these algorithms (shown in
Lemma 10, and Lemma 11) do not require the unknown vectors to satisfy any special assumption.
Lemma 15. There exists an algorithm to recover the support of any two k-sparse unknown vectors
using O(k3 log2 n) oracle queries with probability at least 1�O(1/n2

).

Proof of Lemma 15. Consider Algorithm 8. The query complexity and success guarantees both
follow from Lemma 10 and Lemma 11. We now prove the correctness of Algorithm 8.

Algorithm 8 RECOVER–SUPPORT ` = 2

Require: Access to oracle O
1: Estimate |S(i)| for every i 2 [n] using Algorithm 3.
2: Estimate |S(i) \ S(j)| for every i, j 2 [n] using Algorithm 4.
3: if |S(i)| 2 {0, 2} for all i 2 [n] then
4: supp(�

1
) = supp(�

2
) = {i 2 [n]||S(i)| 6= 0}.

5: else
6: Let i0 = min{i||S(i)| = 1}, and let i0 2 supp(�

1
)

7: for j 2 [n] \ {i0} do
8: if |S(j)| = 2 then
9: Add j to supp(�

1
), and supp(�

2
).

10: else if |S(j)| = 1 and |S(i0) \ S(j)| = 0 then
11: Add j to supp(�

2
).

12: else if |S(j)| = 1 and |S(i0) \ S(j)| = 1 then
13: Add j to supp(�

1
).

14: end if
15: end for
16: end if

Case 1: (supp(�1
) 6= supp(�

2
)). First note that the set of coordinates, i 2 [n] with |S(i)| =

2 belong to the support of both the unknown vectors. For the remaining indices in T := {i 2
[n]||S(i)| = 1}, we use the following approach to decide the unknown vector whose support they
belongs to.

If |T | = 1, then without loss of generality we can assume i 2 supp(�

1
). Else if |T | > 1, we set the

smallest index i0 2 T to be in supp(�

1
). We then use this index as a pivot to figure out all the other

indices j 2 T \ supp(�

1
). If both i0, and j lie in supp(�

1
), then |S(i0) \ S(j)| = 1, otherwise

|S(i0) \ S(j)| = 0. So, using Algorithm 8, we can identify the supports of both the unknown
vectors.

Case 2: (supp(�1
) = supp(�

2
)). In this case, we observe that |S(i)| 2 {2, 0} for all i 2 [n].

Therefore, both the unknown vectors have the exact same support, and nothing further needs to be
done since supp(�

1
) = supp(�

2
) = {i 2 [n]||S(i)| 6= 0}.

D.2 Approximate Recovery
In this section, we present the approximate recovery algorithm. The queries are designed based on
the supports of the two vectors.

We split the analysis in two parts. First, we consider the case when the two vectors have different
supports, i.e. supp(�1

) 6= supp(�

2
). In this case, we use Lemma 16 to approximately recover the

two vectors.
Lemma 16. If supp(�1

) 6= supp(�

2
), then there exists an algorithm for ✏-approximate recovery of

any two k-sparse unknown vectors using O
⇣

k
✏ · log(nk✏)

⌘
oracle queries with probability at least

1�O(1/n).

20

When the two vectors have the exact same support, we use a set of sub-Gaussian queries to recover
the two vectors. This is slightly tricky, and our algorithms succeeds under some mild assumption on
the two unknown vectors (Assumption 2).

Lemma 17. If supp(�1
) = supp(�

2
), then there exists an algorithm for ✏-approximate recovery of

any two k-sparse unknown vectors using O(

k2

✏4�2 log
2
(

nk
�)) oracle queries with probability at least

1�O(1/n).

Algorithm 9 ✏-APPROXIMATE-RECOVERY

1: Estimate supp(�

1
), supp(�2

) using Algorithm 8.
2: if supp(�1

) 6= supp(�

2
) then

3: Return ˆ

�

1, ˆ

�

2 using Algorithm 10.
4: else
5: Return ˆ

�

1, ˆ

�

2 using Algorithm 11.
6: end if

Proof of Theorem 4. The guarantees of Algorithm 9 prove Theorem 4. The total query complexity
after support recovery is the maximum of the query complexities of Algorithm 10 and Algorithm 11,
which is O(

k2

✏�2 log
2
(

nk
�)).

Moreover from Lemma 16 and Lemma 17, we know that both these algorithms succeed with a
probability at least 1�O(1/n), therefore, Algorithm 9 is also guaranteed to succeed with probability
at least 1�O(1/n).

We now prove Lemma 16 and Lemma 17.

D.2.1 Case 1: supp(�1
) 6= supp(�

2
).

Proof of Lemma 16. Consider a coordinate p 2 supp(�

1
) � supp(�

2
), where � denotes the sym-

metric difference of the two support sets. Without loss of generality we can assume p 2 supp(�

1
).

We first identify the sign(�

1
p) simply using the query vector ep. For the sake of simplicity let us

assume sign(�

1
p) = +1.

We use two types of queries to recover the two unknown vectors. The Type 1 queries are modified
Gaussian queries, of the form v + Inf · ep, where v is a Gaussian query vector. Type 2 query is the
plain Gaussian query v.

Since p 2 supp(�

1
) \ supp(�

2
), the Type 1 queries will always have a positive response with the

unknown vector �1. Moreover, they will simulate a Gaussian query with �

2. Therefore from the
responses of the oracle, we can correctly identify the response of �2 with a set of O(k/✏ · log(k/✏))
Gaussian queries. Now, using Lemma 12, we can approximately recover it.

Now since the response of �2 with the Type 1 query v+ Inf ·ep and the corresponding Type 2 query
v, remains the same, we can also obtain correct responses of �1 with a set of O(k/✏ · log(k/✏))
Gaussian queries. By invoking Lemma 12 again, we can approximately recover �1.

The total query complexity of the algorithm is O(kT/✏ · log(k/✏)) = O(k/✏ · log(nk/✏) · log(k/✏)).
Also, from Lemma 5, it follows that each oracle query succeeds with probability at least 1 �
O(1/mn). Therefore by union bound over all 2m queries, the algorithm succeeds with probability
at least 1�O(1/n).

D.2.2 Case 2: supp(�1
) = supp(�

2
).

We now propose an algorithm for approximate recovery of the two unknown vectors when their
supports are exactly the same. Until now for ✏-recovery, we were using a representative coordinate
to generate enough responses to Gaussian queries. However, when the supports are exactly the same,
the same trick does not work.

21

Algorithm 10 ✏-APPROXIMATE-RECOVERY: CASE 1

Require: supp(�

1
) 6= supp(�

2
)

1: Set m = O(k/✏ · log(k/✏))
2: Set batchsize T = 10 logmn.
3: Let Inf be a large positive number.
4: Let p 2 supp(�

1
) \ supp(�2

), and s := sign(�

1
p).

5: for i = 1, . . . ,m do
6: Construct query vector v, where vj = N (0, 1) for all j 2 [n].
7: Construct query vector ˜v := v + s · Inf · ep
8: Query

⇣
v, T

⌘
, and Query

⇣
˜

v, T
⌘

.

9: Set yi =

8
<

:

+1 if poscount(˜v) == 2

�1 if negcount(˜v) == 1

0 otherwise

10: Set zi =

8
>>>>>>>>><

>>>>>>>>>:

+1 if yi = +1 and poscount(v) == 2

�1 if yi = +1 and negcount(v) == 1

+1 if yi = �1 and poscount(v) == 1

�1 if yi = �1 and negcount(v) == 2

+1 if yi = 0 and poscount(v) == 1

�1 if yi = 0 and negcount(v) == 1

0 otherwise
11: end for
12: From {yi | i 2 [m]} and supp(�

2
) recover �̂

2
by using Lemma 12.

13: From {zi | i 2 [m]} and supp(�

1
) recover �̂

1
by using Lemma 12.

For the approximate recovery in this case, we use sub-Gaussian queries instead of Gaussian queries.
In particular, we consider queries whose entries are sampled uniformly from {�1, 1}. The equiva-
lent of Lemma 12 proved by [2] for sub-Gaussian queries enables us to achieve similar bounds.
Lemma 18 (Corollary of Theorem 1.1 of [2]). Let x 2 Sn�1 be a k-sparse unknown vector of
unit norm. Let v1, . . . ,vm be independent random vectors in Rn whose coordinates are drawn
uniformly from {�1, 1}. There exists an algorithm that recovers ˆ

x 2 Sn�1 using the 1-bit sign
measurements {sign(hvi,xi)}i2[m], such that with probability at least 1 � 4e�↵2

(for any ↵ > 0),
it satisfies

kx� ˆ

xk22  O

✓
kxk

1
21 +

1

2

p
m
(

p
k log(2n/k) + ↵)

◆
.

In particular, for m = O(

k
✏4 log n), we get O(✏ + kxk

1
21) - approximate recovery with probability

at least 1 � O(1/n). Therefore, if the unknown vectors are not extremely sparse (Assumption 2),
we can get good guarantees on their approximate recovery with sufficient number of sub-Gaussian
queries.

The central idea of ✏-recovery algorithm (Algorithm 11) is therefore to identify the responses of a
particular unknown vector � with respect to a set of sub-Gaussian queries v ⇠ {�1, 1}n. Then
using Lemma 18, we can approximately reconstruct �.

Let us denote by response(v), the set of distinct responses of the oracle with a query vector v.
Since there are only two unknown vectors, |response(v)|  2. If both unknown vectors have the
same response with respect to a given query vector v, i.e., |response(v)| = 1 then we can trivially
identify the correct responses with respect both the unknown vectors by setting sign(hv,�2i) =

sign(hv,�2i) = response(v).

However if |response(v)| = 2, we need to identify the correct response with respect to a fixed
unknown vector. This alignment constitutes the main technical challenge in approximate recovery.
To achieve this, Algorithm 11 fixes a pivot query say v0 with |response(v0)| = 2, and aligns all the
other queries with respect to it by making some additional oracle queries.

22

Let W denote the set of queries such that |response(v)| = 2. Also, for any pair of query vectors,
v1,v2 2 W , we denote by align�(v1,v2) to be an ordered tuple of responses with respect to the
unknown vector �.

align�(v1,v2) = (sign(hv1,�i), sign(hv2,�i)).

We fix a pivot query v0 2 W to be one that satisfies response(v0) = {�1, 1}. We can assume
without loss of generality that there always exists one such query, otherwise all queries v 2 W have
0 2 response(v), and Proposition 19 aligns all such responses using O(log n) additional oracle
queries.
Proposition 19. Suppose for all queries v 2 W , 0 2 response(v). There exists an algorithm that
estimates align�1(v0,v) and align�2(v0,v) for any v,v0 2 W using O(log n) oracle queries with
probability at least 1�O(1/n).

For a fixed pivot query v0 2 W such that response(v0) = {�1, 1}, Proposition 20 and Propo-
sition 21 compute align�(v0,v) for all queries v 2 W such that 0 2 response(v) and 0 /2
response(v) respectively.
Proposition 20. Let v0 2 W such that response(v0) = {�1, 1}. For any query vector v 2 W such
that 0 2 response(v), there exists an algorithm that computes align�1(v0,v) and align�2(v0,v)
using O(log n) oracle queries with probability at least 1�O(1/n).

Proposition 21. Let � > 0, be the largest real number such that �1,�2 2 �Zn. Let v0 2 W such
that response(v0) = {�1, 1}. For any query vector v 2 W such that response(v) = {�1, 1}, there
exists an algorithm that computes align�1(v0,v) and align�2(v0,v) using O(

k
�2 log(

nk
�)) oracle

queries with probability at least 1�O(1/n).

Using the alignment process and Lemma 18, we can now approximately recover both the unknown
vectors.

Proof of Lemma 17. Consider Algorithm 11, which basically collects enough responses of an un-
known vector for a set of sub-Gaussian queries by aligning all responses.

Without loss of generality, we fix v0 such that response(v0) = {+1,�1}, and also enforce that
sign(v0,�

1
) = +1. Now, we align all other responses with respect to v0. The proof of Lemma 17

then follows from the guarantees of Lemma 18. For m = O(

k
✏4 log n), along with the assumptions

that k�1k1, k�2k1 = o(1), the algorithm approximately recovers �1,�2.

The number of queries made by Algorithm 11 is at most mT to generate responses and
O(m k

�2 log(
nk
�)) to align all the m responses with respect to a fixed pivot query v0. Therefore

the total query complexity of Algorithm 11 is O(

k2

✏4�2 log
2
(

nk
�)).

All parts of the algorithm succeed with probability at least 1�O(1/n), and therefore the algorithm
succeeds with probability at least 1�O(1/n).

Finally, we prove Proposition 19, Proposition 20 and Proposition 21.

Proof of Proposition 19. For the proof of Proposition 19, we simply use the query vector v0 + v to
reveal whether the 0’s in the two response sets correspond to the same unknown vector or different
ones. The correctness of Algorithm 12 follows from the fact that there will be a 0 in the response
set of v0 + v if and only if both the 0’s correspond to the same unknown vector.

To obtain the complete response set for the query v0 + v with probability at least 1 � 1/n, Algo-
rithm 12 makes at most O(log n) queries.

Proof of Proposition 20. In this case, we observe that the response set corresponding to the query
Inf · v + v0 can reveal the correct alignment. To see this, let the response of v0 and v be {+1,�1}
and {s, 0} respectively for some s 2 {±1}. The response set corresponding to Inf · v + v0 will be
the set (or multi-set) of the form {s, t}. Since we know s = response(v) \ {0}, we can deduce t

from the poscount(Inf · v + v0), and negcount(Inf · v + v0).

23

Algorithm 11 ✏-APPROXIMATE RECOVERY: CASE 2

Require: supp(�

1
) = supp(�

2
), Assumption 2.

1: Set m = O(

k
✏4 log(n))

2: Set batchsize T = O(logmn)
3: for i = 1, . . . ,m do

4: Sample query vector v as: vj =

⇢
+1 w.p. 1/2
�1 w.p. 1/2

5: Query(v, T), and store response(v).
6: if |response(v)| == 1 then
7: Set yv = response(v).
8: Set zv = response(v).
9: else

10: Add v to W .
11: end if
12: Let v0 be an arbitrary v 2 W .
13: for every v 2 W do
14: Set (yv0 , yv) = align�1(v0,v).
15: Set (zv0 , zv) = align�2(v0,v).
16: end for
17: end for
18: Using {yv}v , estimate ˆ

�

1.
19: Using {zv}v , estimate ˆ

�

2.

Algorithm 12 ALIGN QUERIES, CASE 1

Require: v0,v 2 {�1, 1}n, 0 2 response(v0) \ response(v).
1: Set batchsize T = O(log n).
2: Query(v0 + v, T).
3: if 0 2 response(v0 + v) then
4: align�1(v0,v) = (0, 0)
5: align�2(v0,v) = (response(v0) \ {0}, response(v) \ {0})
6: else
7: align�1(v0,v) = (0, response(v) \ {0})
8: align�2(v0,v) = (response(v0) \ {0}, 0)
9: end if

Now, if t = +1, then (+1, 0) are aligned together (response of the same unknown vector) and
(s,�1) are aligned together. Similarly, if t = �1, then (�1, 0) and (+1, s) are aligned together
respectively.

The alignment algorithm is presented in Algorithm 13. It makes O(log n) queries and succeeds with
probability at least 1� 1/n.

Algorithm 13 ALIGN QUERIES, CASE 2

Require: v0,v 2 {�1, 1}n, 0 2 response(v), response(v0) = {±1}.
1: Set batchsize T = O(log n).
2: Set Inf to be a large positive number.
3: Query(v0 + Inf · v, T).
4: if response(v0 + Inf · v) = {response(v) \ {0},+1} then
5: align�1(v0,v) = (+1, 0)
6: align�2(v0,v) = (�1, response(v) \ {0})
7: else
8: align�1(v0,v) = (+1, response(v) \ {0})
9: align�2(v0,v) = (�1, 0)

10: end if

24

Proof of Proposition 21. The objective of Proposition 21 is to align the responses of queries v0 and
v by identifying which among the following two hypotheses is true:

• H1 : The response of the unknown vectors with both the query vectors v0 and v is same.
Since we fixed the sign(hv0,�

1i) = 1, this corresponds to the case when align�1(v0,v) =
(+1,+1) and align�1(v0,v) = (�1,�1).

In this case, we observe that for any query of the form ⌘v0+⇣v with ⌘, ⇣ > 0, the response
set will remain {+1,�1}.

• H2 : The response of each unknown vector with both the query vectors v0 and v is different,
i.e., align�1(v0,v) = (+1,�1) and align�1(v0,v) = (�1,+1).

In this case, we note that the response for the queries of the form ⌘v0 + ⇣v changes from
{�1, 1} to either {+1}, {�1}, or {0} for an appropriate choice of ⌘, ⇣ > 0. In particular,
the cardinality of the response set for queries of the form ⌘v0 + ⇣v changes from 2 to 1 if
⌘
⇣ 2

h
� h�1,vi

h�1,v0i ,�
h�2,vi
h�2,v0i

i
[
h
� h�2,vi

h�2,v0i ,�
h�1,vi
h�1,v0i

i
.

Algorithm 14 ALIGN QUERIES, CASE 3

Require: v0,v 2 {0,�1, 1}n, response(v) = response(v0) = {±1}.
1: Set batchsize T = O(log nk/�).
2: for ⌘ 2 { c

d | c, d 2 Z \ {0}, |c|, |d| 
p
k
� } do

3: Query(⌘v0 + v, T).
4: if |response(⌘v0 + v)| == 1 then
5: Return align�1(v0,v) = (+1,�1), align�2(v0,v) = (�1,+1)

6: end if
7: end for
8: Return align�1(v0,v) = (+1,+1), align�2(v0,v) = (�1,�1)

In order to distinguish between these two hypotheses, Algorithm 14 makes sufficient queries of the
form ⌘v0 + ⇣v for varying values of ⌘, ⇣ > 0. If for some ⌘, ⇣ the cardinality of the response set
changes from 2 to 1, then we claim that H2 holds, otherwise H1 is true. Algorithm 14 then returns
the appropriate alignment.

Note that for any query vector v 2 {�1, 1}n, and any k-sparse unknown vector � 2 Sn�1 the inner
product h�,vi 2 [�

p
k,
p
k]. Moreover, if we assume that the unknown vectors have precision �,

the ratio h�2,vi
h�2,v0i can assume at most 4k/�2 distinct values. Algorithm 14 therefore iterates through

all such possible values of ⌘/⇣ in order to decide which among the two hypothesis is true.

The total number of queries made by Algorithm 14 is therefore 4kT/�2 = O(

k
�2 log(

nk
�)). From

Lemma 5, all the responses are recovered correctly with probability 1�O(1/n).

E Experiments
Similar to the mixed regression model, the problem of learning mixed linear classifiers can be used
to model heterogenous data with categorical labels. We provide some simulation results to show the
efficacy of our proposed algorithms to reconstruct the component classifiers in the mixture.

Moreover, the algorithm suggested in this work can be used to learn the set of discriminative fea-
tures of a group of people in a crowd sourcing model using simple queries with binary responses.
Each person’s preferences represents a sparse linear classifier, and the oracle queries here corre-
spond to the crowdsourcing model. To exemplify this, we provide experimental results using the
MovieLens [17] dataset to recover the movie genre preferences of two different users (that may use
the same account, thus generating mixed responses) using small number of queries.

25

E.1 Simulations
We perform simulations that recover the support of ` = 2, k-sparse vectors in Rn using Algorithm 8.
We use random sparse matrices with sufficient number of rows to construct an RUFF. Error is
measured in terms of relative hamming distance between the actual and the reconstructed support
vectors.

The simulations show an improvement in the accuracy with increasing number of rows allocated to
construct the RUFF for different values of n = 1000, 2000, 3000 with fixed k = 5. This is evident
since the increasing number of rows improve the probability of getting an RUFF.

Figure 2: Support Recovery for ` = 2, k = 5 and n = 1000, 2000, 3000.

E.2 Movie Lens
The MovieLens [17] database contains the user ratings for movies across various genres. Our goal
in this set of experiments is to learn the movie genre preferences of two (` = 2) unknown users
using a small set of commonly rated movies.

We first preprocess the set of all movies from the dataset to obtain a subset that have an average
rating between 2.5 to 3.5. This is done to avoid biased data points that correspond to movies that
are liked (or not liked at all) by almost everyone. For the rest of the experiment, we work with this
pre-processed set of movies.

We consider n = 20 movie genres in some arbitrary, but predetermined order. The genre preference
of each user i is depicted as an (unknown) indicator vector �i 2 {0, 1}n, i.e., �i

j = 1 if and only if
user i likes the movies in genre j. We assume that a user likes a particular movie if they rate it 3 or
above. Also, we assume that the user likes a genre if they like at least half the movies they rated in
a particular genre.

We consider two users, say U1, U2 who have commonly rated at least 500 movies. The preference
vectors for both the users is obtained using Algorithm 8. We query the oracle with a movie, and
obtain its rating from one of the two users at random. For the algorithm, we consider each query to
correspond to the indicator of genres that the queried movie belongs to. Using small number of such
randomly chosen movie queries, we show that Algorithm 8 approximately recovers the movie genre
preference of both the users.

First, we pick a random subset of m movies that were rated by both the users, and partition them
into two subsets of size m1, and m2 respectively. The first set of m1 movies are used to partition
the list of genres into three classes - genres liked by exactly one of the users, genres liked by both
the users, and the genres liked by neither user. These set of m1 randomly chosen movies essentially
correspond to the rows of a RUFF used in Algorithm 8.

We then align the genres liked by exactly one of the users, we use the other set of m2 randomly
chosen movies and obtain two genre preference vectors s1, s2. Since we do not know whether s1
corresponds the preference vector of U1 or U2, we validate it against both, i.e., we validate s1 with
U1, s2 with U2 and vice versa and select the permutation with higher average accuracy.

Validation: In order to validate our results, we use our recovered preference vectors to predict the
movies that U1 and U2 will like. For each user Ui, we select the set of movies that were rated by Ui,
but were not selected in the set of m movies used to recover their preference vector. The accuracy

26

of our recovered preference vectors are measured by correctly predicting whether a user will like a
particular movie from the test set.

Results: We obtain the accuracy, precision and recall for three random user pairs who have to-
gether rated at least 500 movies. The results show that our algorithm predicts the movie genre pref-
erences of the user pair with high accuracy even with small m. Each of the quantities are obtained
by averaging over 100 runs.

id: (U1, U2) m1 m2 A(U1) P(U1) R(U1) A(U2) P(U2) R(U2)

0 0 0.300 0.000 0.000 0.435 0.000 0.000
(68, 448) 10 20 0.670 0.704 0.916 0.528 0.550 0.706

30 60 0.678 0.700 0.944 0.533 0.548 0.791

0 0 0.269 0.000 0.000 0.107 0.000 0.000
(274, 380) 10 20 0.686 0.733 0.902 0.851 0.893 0.946

30 60 0.729 0.737 0.982 0.872 0.891 0.976

0 0 0.250 0.000 0.000 0.197 0.000 0.000
(474, 606) 10 20 0.665 0.752 0.827 0.762 0.804 0.930

30 60 0.703 0.750 0.910 0.787 0.806 0.970

27

