A Distance Approximation Algorithm

In this section, we prove Theorem 3.3 which underlies all the other results in this work. In fact, we
show the following theorem that is more detailed.

Theorem A.1. Suppose we have sample access to distributions P and Q) over a finite set. Also,
suppose we can make calls to two circuits Cp and Cg which implement (3, y)-EVAL approximators
for P and Q) respectively. Let T' be the maximum running time for any call to Cp or Cq.

Then for any £,6 > 0, dvv (P, Q) can be approximated up to an additive error % + 38 + € with
probability at least 1 — 6, using O(e=21og 6~ 1) samples from P and O(¢=21og6~* - T') runtime.

Note that the EVAL approximators in Theorem A.l must return rational numbers with bounded
denominators as they are implemented by circuits with bounded running time. The exact model of
computation for the circuits does not matter so much, so we omit its discussion.

We now turn to the proof of Theorem A.l. As mentioned in the Introduction,
if Cp and Cqo were (0,0)-EVAL approximators, the result already appears in [ 1.
The proof below analyzes how having nonzero (S and ~ affects the error bound.

Algorithm 2: Distance approximation

Input :Sample access to distribution P; oracle access to circuits Cp and Cg.
Output : Approximate value of drv (P, Q)
1fori=1,...,t=0(c"2%logd~ ') do

2 Draw a sample x from P;
3 a + Cp(z);

4 b+ Colx);

5

i+ Loy (1—2);

1N\t .
6 return ; > . ¢;

Proof. We invoke Algorithm 2. Notice that the algorithm only requires sample access to one of the
two distributions but to both of the EVAL approximators. Let P be the distribution S-close to P
which is approximated by the output of Cp; similarly define Q.

We have |drv (P, Q) — drv (P, Q)| < drv (P, P) + drv(Q, Q) < 23 from the triangle inequality.

2

Hence, it is sufficient to approximate drv (P, Q) additively up to ﬁ + 0 +e

drv(P,Q) = 3 37 |P(x) - Q)
= Y (Pw-Qw)

Q@) 5 ce
= Z (1 - = ) P(x) (Since P(z) > 0)
Q(x

From the above, if we have complete access (both evaluation and sample) to P and Q, then we
can estimate the distance with O(E% log %) samples and evaluations. However as we have only
approximate evaluations of P and Q and samples from the original distribution P, we need some
additional arguments. Let Ep and E¢ be the functions implemented by the circuits Cp and Cq
respectively.
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drv(P.Q) = ZIP(»L)>Q(»L) (1 - (x;> P(a)

P(
Eg(z)\ -
= Z 1Ep(2)>Eq(x) (1 - EQ(x)) P(z) +

P

A
Q T FEo(x
Z [lﬁ(m)>Q(w) (1 - PExi) - 1EP(:L’)>EQ(Z) <1 - Eigx;

B

We start with an upper bound for the absolute value of the error term B. We consider the partition
of sample space into Sp, S and S3, where S; = {z : 1P(x)>Q(m) = lgp(@)>EBo@) ) S2 = {2 :

Lpy>0() > 1Ep(@)>Eq@} and Sy ={x : 15 6,y < 1Ep(@)>Eq (@) }-

Q) Eq(z)
|B| = Z [1P(w)>Q(w) (1 TP ) lBp()>Eq@) (1 — Br(z) P(z)
Q) Eq(x)
< [lp(m)>é(z) (1— Pla)) BB 1T B P(z)
Qx)  Eg(x) ( éz@)) :
= 113‘ x 9 x a - ]‘ m x ]‘ a P(SU)+
xgs:l (2)>Q(x) P(x) Ep(x) x%;b )>Q(z) P(z)
Eo(x -
Z 1EP(1? )>Eq(x) <1 QEI’;) P(‘T)
xrES3
For x in S; with P(x) > Q( ), (1+ gggxi < gggg < 8+j/) QEB so that ggzi _ 5253
2” Az) 27 .For x in Sy, P(x) > Q(z) implies Ep(x) < Eg(x) and hence, (1 — 7)P(z) <

1—v P(w)
Ep(x )gEQ( )\ (1+7)Q(x) so that Q(x)/P(x) > {72. For z in Ss, Ep(x) > Eq(x) implies

» A Eo(x T
P(z) < Q(x), and hence, Ei& > ELXng; > Lr” Therefore

Bl< Y %P(x) + 3 %P(x) +3 %ﬁ’(x)

€51 €S2 T€S3
A
Now consider the term A:
Eq(x)\ -
A= 1 1-— P
S tsrcrmran (1= £ ) P
EQ(CC) EQ('I) »
= XI: 1Ep(ac)>EQ(a:) (1 - EP({L‘)> P(JC) + XZ: 1EP(90)>EQ(95) (1 - EP(IL') (P(JZ) - P(m))
c
Eq(x > >
Note that: ]z 15 (a)> Fo (2) (1 - Eggg) (P(z) — P(x))‘ < Y. |P(x) — P(x)] < B So,
ldov (P, Q) — C| < 2“’ + . We can rewrite C' as E,p {1EP(I)>EQ(I) (1 Eigg)] Since
L1Ep(2)>Eq(2) (1 — ggg;) lies in [0, 1], by the Hoeffding bound, we can estimate the expectation

up to ¢ additive error with probability at least (1 — §) by averaging O( log 6) samples from P. [J
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Theorem A.1 can be extended to the case that P and () are distributions over R™ with infinite support.
We change Definition 3.1 so that Ep(x) is a (1 £ y)-approximation of f(x) where f(x) is the

probability density function for P. Then, Theorem A.1 and Algorithm 2 continue to hold as stated.
In the proof, we merely have to replace the summations with the appropriate integrals.

B Bayesian networks

First we apply our distance estimation algorithm for tolerant testing of high dimensional distributions
coming from bounded in-degree Bayesian networks. Bayesian networks defined below are popular
probabilistic graphical models for describing high-dimensional distributions succinctly.

Definition B.1. A Bayesian network P on a directed acyclic graph G over the vertex set [n] is a joint
distribution of the n random variables (X1, Xa, ..., X,,) over the sample space X" such that for
every i € [n] X; is conditionally independent of Xyon-descendants(i) 8Ven Xparenss(i), where for S C [nl,
X is the joint distribution of (X; : i € S), and parents and non-descendants are defined from G.

P factorizes as follows:

P(z)= Pr[X=x]= HXPNI}:[Xi =ux; |Vj € parents(i), X; = x;]  forallz € X" (4)

i=1

Hence a Bayesian network can be completely described by a set of conditional distributions for every
variable X;, for every fixing of its parents X parents(s)-

To construct an EVAL approximator for a Bayesian network, we first learn it using an efficient
algorithm. We show the following proper learning algorithm for Bayesian networks that uses
near-optimal sample complexity [ ].

Theorem B.2. There is an algorithm that given a parameter € > 0 and sample access to an unknown
Bayesian network distribution P on a known directed acyclic graph G of in-degree at most d, returns
a Bayesian network P on G such that dpy (P, P) < e with probability > 9/10. Letting 5. denote
the range of each variable X;, the algorithm takes m = O(|2|4nlog(|X|9 1 n)e2) samples and
runs in O(mn) time.

This directly gives us a distance estimation algorithm for Bayesian networks.

Theorem 4.1. Suppose G1 and G5 are two DAGs on n vertices with in-degree at most d. Let Dq
and Dy be the family of Bayesian networks on G and G respectively. Then, there is a distance
approximation algorithm for (D1, Ds) that gets m = O(|%|%T ne~2) samples and runs in O(mn)
time.

Proof. Given samples from P; and P, we first learn them as }51 and ]52 using Theorem B.2 in
drvy distance /4. This step costs m = O(|S|*1nlog(|S|**1n)e~2) samples and O(|Z|+1mn)
time and succeeds with probability 4/5. Py and P, gives efficient (¢/4,0)-EVAL approximators
from Equation (4). It follows from Theorem A.1 that we can estimate drv (Py, P2) up to an € additive
error using O(e~2) additional samples from P; except for 1/5 probability. O

Regarding lower bounds, Canonne et al. [ ] have shown a lower bound of Q(n/logn)
samples for deciding for two product distributions P and @ over {0, 1}", whether drv (P, Q) < &9
versus drv (P, Q) > 2¢o with probability 2/3 for a constant £y. On the other hand, Daskalakis et
al. [ ] have shown that there exists an unknown Bayes net P over {0, 1}" whose underlying
graph is unknown but known to be a tree such that deciding dpv (P, U) = 0 versus dpv (P, U) > ¢
with 2/3 probability requires (ne~2) samples, where U is the uniform distribution over {0, 1}™.

B.1 Learning Bayesian networks

In this section, we prove a strengthened version of Theorem B.2 that holds for any desired error
probability 4.
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Theorem B.3. There is an algorithm that given parameters €, > 0 and sample access to an unknown
Bayesian network distribution P on a known directed acyclic graph G of in-degree at most d, returns
a Bayesian network Q on G such that drv (P, Q) < € with probability > (1 — §). Letting ¥ denote
the alphabet for each variable X;, the algorithm takes m = O(|%|* ' nlog(|Z|*n)e 2 log %)

samples and runs in O(mn log? $) time.

We actually prove a stronger bound on the distance between P and () in terms of the KL divergence.

The KL divergence between two distributions P and @ is defined as KL(P, Q) = >, P(i)In LinC ; .

From Pinsker’s inequality, we have drv?(P, Q) < 2KL(P, Q). Thus a dpv learning result follows
from a KL learning result. We present Algorithm 3 for the binary alphabet case (X = {0,1}) and
reduce the general case to the binary case afterwards.

The add-1 empirical estimator takes z samples from a distribution over k items and assigns to item ¢
the probability (z; + 1)/(z + k) where z; is the number of occurrences of item ¢ in the samples. We
will use the following general result for learning a distribution in KL distance.

Theorem B.4 ([ 1. Let D be an unknown distribution over k items. Let D be the add-1
empirical distribution of z samples from D. Then fork > 2,z > 1, E[KL(D,D)] < (k—1)/(2+1).

We will use a KL local additivity result for Bayesian networks, a proof of which is given in [ ].
For a Bayesian network P, a vertex 7, and a setting a value a of its parents, let II[4, a] denote the event
that parents of ¢ take value a, and let P(i | a) denote the distribution at vertex ¢ when its parents
takes value a.

Theorem B.5. Let P and Q) be two Bayesian networks over the same graph G. Then

- Z > P[fi,a]] - KL(P(i | a),Q(i | a))

Algorithm 3: Fixed-structure Bayesian network learning

Input :Samples from an unknown Bayesian network P over {0, 1}" on a known graph G
of in-degree < d, parameters m, ¢
Output : A Bayesian network () over G
1 Get m samples from P;
2 for every vertex i do
for every fixing a of i’s parents do
Nj o < the number of samples where ¢’s parents are set to a;
if N; , > t then
Q(i | a) + the add-1 empirical distribution at node ¢ in the subset of samples
where ¢’s parents are set to a;
else
L Q(i | a) + uniformly random bit;

= Y T N

Lemma B.6. For m = 24n2%log(n2%)/e and t = 12log(n2?), Algorithm 3 satisfies KL(P, Q) <
5e with probability at least 3/4 over the randomness of sampling.

Proof. Call a tuple (i,a) heavy if P[I[i,a]] > 57— and light otherwise. Let N; , denote the number
of samples where 7’s parents are a.

For every heavy (i, a), let F; , be the event “N; , > n2¢P[[i,a]]t/c"and G; o = A\ (,b) heavy F(5,b)-

(4:0)#(4,a)
Let F' = G; 4 A Fj . It is easy to see from Chernoff and union bounds that F’ is true with 19/20

probability. Hence for the rest of the argument, we condition on this event. In this case, all heavy
items satisfy N; , > t.

Then for any random variable X, E[X | F;,] = E[X | F|Pr[G;, | F;,
G;.o)Pr[Giq | Fi ). Hence, E[X | F] < % E[X | F; o). Similarly, E[X | F]

Now, we see that:

(X | Fia A

+E
S EIX].

//\L
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— For any heavy (i, a), by Theorem B 4,

12n27 - P[[i, a]]

E[KL(P(i[a),Q(i ] a)) | Fia] <

— Similarly, for any light (i, a) that satisfies N; , > t, it follows from Theorem B.4 that
E[KL(P(i | a),Q(i | a)) | Nia > 1] < 13-

— Items which do not satisfy N, , > ¢ must be light for which [KL(P(i | a),Q(i | a)) |
Nio<t]<pln2p+ (1 —p)In2(1 —p) < In2, where p = P[i = 1]al, since in that case
Q(i | a) is the uniformly random bit.

Using Theorem B.5, we get

20 € €
E[KL(P. Fl< — PII[i,al] - - —In2| <e.
KUP.QIFI <35 | 30 Plllial) oo pamg+ D oyl2| <<
(i,a) heavy (i,a) light
The lemma follows from Markov’s inequality. O

Now we reduce the case when X is not binary to the binary case. We can encode each o € X of
the Bayesian network as a log |X| size boolean string which gives us a Bayesian network of degree
(d+ 1) log|X| over nlog |X| variables. Then we apply Lemma B.6 to get a learning algorithm with
O(e) error in drv and 3/4 success probability. Subsequently we repeat O(log %) times and find out a
successful repetition using Theorem F.1.

C Ising Models

In this section, we give a distance approximation algorithm for the class of bounded-width ferromag-
netic Ising models. Recall from Section 4.2 that a probability distribution P from this class is over
the sample space {—1,1}" and that P(x), the probability of an item « € {—1, 1}", is proportional
to the numerator:

N(z) = exp ZAi,jCL‘iﬂCj + 921‘1‘ ;
- ;

where A; ;s and 0 are parameters of the model. The constant of proportionality, also called the
partition function of the Ising model is Z = ) N(x), which gives P(z) = N(x)/Z. The width of
the Ising model is defined as max; 3, |4; j| 4 0. In a ferromagnetic Ising model, each 4; ; > 0.

Given two such Ising models, we give an algorithm for additively estimating their total variation
distance. We first learn these two Ising models up to total variation distance £/8 using the follow-
ing learning algorithm given by Klivans and Meka [ ]. In fact, it gives a stronger (1 + )
multiplicative approximation guarantee for every probability value.

Theorem C.1 (Theorem 7.3 in [ 1). There is an algorithm which, given independent samples
from an unknown Ising model P with width at most d, returns parameters fl” and 0 such that the
Ising model P constructed with the latter parameters satisfies (1 — £)P(z) < P(x) < (1 +¢)P(z)
forall x € {—1,1}". This algorithm takes m = e©Dc=4n%log(n/de) samples, O(mn?) time and
succeeds with probability 1 — 4.

However learning the parameters of an Ising model is not enough to efficiently evaluate the probability
at arbitrary points. Naively computing the constant of proportionality Z would take 2™ time. For
certain classes of Ising models polynomial time algorithms are known which approximates Z up
to a (1 + £) approximation factor. In particular we use the following approximation algorithm for

ferromagnetic! Ising models due to Jerrum and Sinclair [ ].

TAs pointed out by [ ], Jerrum and Sinclair’s result (and hence, our result) extends to the non-uniform
external field setting where there is a ; for each 7 instead of 6; = - - - = 6,, = 6, with the restriction that each
0; > 0.
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Theorem C.2. There is an algorithm which given the parameters of a ferromagnetic Ising model
distribution P, in O(e~2n'" logn) time returns a number Z such that with probability at least 9/10,

(1-e)Z < Z < (1+¢e)Z, where Z is the partition function of P.

Combining the previous two results with our general distance estimation algorithm, we can now
obtain our main result for Ising models which we restate below.

Theorem 4.2. Let D be the family of ferromagnetic Ising models having width at most d. Then, there
is a distance approximation algorithm for D with sample complexity m = ¢©(Deg—4p8 log(%) and
runtime O(mn? + = 2n1"logn).

Proof. We first use Theorem C.1 to get the parameters for a pair of Ising models P and Q which
are, with probability at least 9/10, pointwise (1 4 ¢/8) approximations to P and Q. If P or Q
has any negative pairwise interaction term, then we modify them to zero, thus making P and Q
ferromagnetic. We claim that since P and () are ferromagnetic to start with, this can only improve
the approximation factor. The reason is that Klivans and Meka, in their proof of Theorem C.1, show
the more general result that for any log-polynomial distribution, i.e, any distribution P on {—1,1}"
where P(z) o exp(T'(z)) for a bounded-degree polynomial T, they can obtain a polynomial 7" with
the same degree that satisfies a bound on |7 — T, = 3, |T[a] — T[a]| where T[a] and T'[a]
are the coefficients of the monomial indexed by . It is clear that if T'[a] > 0, changing T[] to
max(0, 7'[]) can only reduce |7 — T'||;.

Abusing notation for simplicity, henceforth let P and Q be the distributions after this modification.
Let N (2) and N (z) be the numerators for P and @ respectively. Then we apply Theorem C.2

to estimate, with probability 4 /5, the partition functions Zp and ZQ of P and Q respectively up to
a (1 & ¢/8) multiplicative factor. Therefore, Ep(2) = Np(z)/Zp and Eq(z) = Ny(z)/Zq are
(e/8,¢/4)-EVAL approximators for P and @ respectively, where the ¢ /8-close distributions are P

and Q. It follows from Theorem A.1 that conditioned on the above, we can estimate drv (P, Q) up
to an ¢ additive error with probability at least 9/10.

Remark C.3. Klivans and Meka [ ] have also given an algorithm for recovering the underly-
ing dependency graph of an n-dimensional ising model using O(exp(O(d)/n") log(;%)) samples
assuming its width at most d and min; j.a, ;20 |4; ;| = 1. Devroye et al. [ ] have given
a minimax-optimal algorithm that given the underlying graph, learns an Ising model in drv < €
using O(n?/&?) samples with 9/10 probability. These two results can be daisy-chained to improve
the sample complexity of learning an unknown ising model and hence of our distance approximation
algorithm. However, as noted in Section 6 of the later paper, this algorithm is not polynomial time
and hence we will not get a polynomial time algorithm for distance approximation.

C.1 Distance to uniformity

Next we give an algorithm for estimating the distance between an unknown Ising model and the
uniform distribution over {—1, 1}". We use the following recent result by Narayanan [ 1.

Theorem C.4 (Restated from [ 1. Let U and D be the uniform distribution and any other
distribution over [N] respectively, such that we can sample from D, as well as compute the ratio
D(i)/D(j) forany i # j € [N] up to (1 £ ¢) error for any 0 < £ < 1 in unit time. Then drv (D, U)
can be approximated up to an additive error using O(e~2) samples with 2/3 probability.

Theorem 4.3. There is an algorithm which, given independent samples from an unknown Ising model
P over {—1,1}" with width at most d, takes m = O(e®@De=%n3log(n/e)) samples, O(mn?) time
and returns a value e such that |e — dpv (P, U)| < € with probability at least 7/12, where U is the
uniform distribution over {—1,1}".

Proof. We first learn the parameters of the unknown ising model from samples using Theorem C.1.
As we noted earlier computing the partition function naively is intractable in general. However
computing IN,./N., the ratio of the probabilities of two items z, y can be computed in O(n?) time up
to (1 & ) approximation from Theorem C.1. The result follows from Theorem C.4.

19



D Multivariate Gaussians

In this section we give an algorithm for additively estimating the total variation distance between two
unknown multidimensional Gaussian distributions. For a mean vector € R™ and a positive definite
covariance matrix ¥ € R™*™, the Gaussian distribution N (1, ¥) has the pdf:

1

N 2iw) = 5 50 Taem)

exp (;(w —p) TN (@ - u)) )

We use the following folklore result (see [ ] for a proof) for learning the two Gaussians.

Theorem D.1. Let P be an n-dimensional Gaussian distribution. Let i € R" and Y € R™" pe
the empirical mean and the empirical covariance defined by O(n?c~2) samples from P. Then, with

probability at least 9/10, the distribution P = N (ji, %) satisfies doy (P, P) < e.

We are now ready to prove Theorem 4.4 restated below.

Theorem 4.4. Let D be the family of multivariate gaussian distributions, {N (1, %) : p € R* ¥ €
R™ ™% = 0}. Then, there is a distance approximation algorithm for D with sample complexity
O(n?e72) and runtime O(n*c~2) (where w > 2 is the matrix multiplication constant).

Proof. We first apply Theorem D.1 to obtain P and Q such that each is within £ /4 distance from
P and @ respectively. Since we can evaluate the pdf of P and Q exactly, they serve as (¢/4,0)
EVAL -approximators for P and (). Each determinant computation costs O(n*) time. Subsequently
from (the continuous analog of) Theorem A.1, using O(¢~2) samples from P and O(n“s~2) time,
we can estimate drvy (P, Q) up to an additive ¢ error with probability at least 4/5. O

Remark D.2. The above time analysis uses the unrealistic real RAM model in which real number
computations can be carried out exactly upto infinite precision. However, there are strongly polyno-
mial time algorithms for computing matrix determinant and inverse [ , ], so that even in
the more realistic word RAM model, the above algorithm runs in polynomial time.

E Causal Bayesian Networks under Atomic Interventions

We describe Pearl’s notion of causality from [ ]. Central to his formalism is the notion of an
intervention. Given a variable set V and a subset S C V, an intervention do(s) is the process of
fixing the set of variables in S to the values s. If the original distribution on V' is P, we denote the
interventional distribution as P, intuitively, the distribution induced on V' when an external force
sets the variables in S to s.

Another important component of Pearl’s formalism is that some variables may be hidden (latent).
The hidden variables can neither be observed nor be intervened upon. Let V' and U denote the subsets
corresponding to observable and hidden variables respectively. Given a directed acyclic graph H on
V UU and a subset S C (VUU), we use I (S) and Pay (.S) to denote the set of all parents and
observable parents respectively of S, excluding .S, in H. When the graph H is clear, we may omit
the subscript.

Definition E.1 (Causal Bayesian Network). A (semi-Markovian) causal Bayesian network (CBN)
on variables X1, . .., X, is a collection of interventional distributions defined by a tuple (V,U, G,
{Pr(X; | znw)) i € Vianu € SMON, Pr[Xy]}), where (i) G is a directed acyclic graph on
VUU = [n], (ii) Pr[X; | 2n(,)] is the conditional probability distribution of X; given that its
parents Xyy(;) take the values ), and (iii) Pr[Xy] is the distribution of the hidden variables

ACBN P = (V,UG, {Pr[X; | o] = i € Vo) € SIUON Pr[Xy)) defines a unique
interventional distribution Py for every subset S C V (including S = 0) and assignment s € %151,
as follows. For all z € V1

Pu(z) = >ulliev\s Prilzi | zz)] - Pr[Xu =] ifz is consistent with s
° 0 otherwise.
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Figure 1: An acyclic directed mixed graph (ADMG) where the bidirected edges are depicted as
dashed. The in-degree of the graph is 2. The c-components are { A, C} and {B, D, E'}.

We use P to denote the observational distribution (S = (). G is said to be the causal graph
corresponding to the CBN P.

It is standard in the causality literature [ ] to assume that each variable in U
is a source node with exactly two children from V', since there is a known algorithm [ , ]
which converts a general causal graph into such graphs. Given such a causal graph, we remove every
source node Z from G and put a bidirected edge between its two observable children X; and Xs.
We end up with an Acyclic Directed Mixed Graph (ADMG) graph G, having vertex set V' and having
edge set E— U E*" where E are the directed edges and E** are the bidirected edges. The in-degree
of GG is the maximum number of directed edges coming into any vertex in V. A c-component refers
to any maximal subset of V' which is interconnected by bidirected edges. Then V' gets partitioned
into c-components: S1, So, . ..,.S,. Figure 1 shows an example.

Throughout this section, we focus on atomic interventions, i.e. interventions on a single variable.
Let A € V correspond to this variable. Without loss of generality, suppose A € S;. Tian and Pearl
[ ] showed that in an ADMG G as above, P, can be completely determined from P for all
a € X iff the following condition holds.

Assumption E.2 (Identifiability wrt A). There does not exist a path of bidirected edges between A
and any child of A. Equivalently, no child of A belongs to S.

Recently algorithms and sample complexity bounds for learning and sampling from identifiable atomic

interventional distributions were given in [ ] under the following additional assumption. For

S CV,letPa®(S) = SUPa(S).

Assumption E.3 (a-strong positivity wrt A). Suppose A lies in the c-component Sy, and let Z =
a™(Sy). For every assignment z to Z, P(Z = z) > a.

We state the two main results of [ ], which given sampling access to the observational
distribution P of an unknown causal Bayesian network on a known ADMG return an (&, 0)-EVAL ap-
proximator and an approximate generator for P,. For the two results below, suppose the CBN P
satisfies identifiablity (Assumption E.2) and a-strong positivity (Assumption E.3) with respect to a
variable A € V' . Let d denote the maximum in-degree of the graph G and k denote the size of its
largest c-component.

Theorem E.4 (EVAL approximator and Sampler [ 1). For any intervention a to A and
parameter € € (0, 1), there is an algorithm that takes m = O (li‘kgf log 5) samples from P, and

in O(mnlog? +) time, returns a distribution P, such that dyy (P,, P,) < & with probability at least
(1 —6) and returns a circuit Ep o such that:

— Evaluation: Given an assignment x to the nodes, Ep o outputs P, (x) exactly in O(n) time.
— Generation: Obtaiing an independent sample from P, takes O(n) time.

We give a distance approximation algorithm for identifiable atomic interventional distributions using
the above result and Theorem A.1.

Theorem E.5 (Formal version of Theorem 4.6). Suppose P, Q are two unknown CBN’s on two
known ADMGs G and Go on a common observable set V' both satisfying Assumption E.2 and
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Assumption E.3 wrt a special vertex A. Let d denote the maximum in-degree, and k denote the size of
the largest c-component of G1 and Ga.

Then there is an algorithm which for any a € X and parameter ¢ € (0,1), takes m =
~ ‘lekd

O( ake?
that e — drv (P,, Qo)| < € with probability at least 2/3.

n

log %) samples from P and Q, runs in time O(mn log? %) and returns a value e such

Proof. We first invoke Theorem E.4 to learn the two distributions as Pa and Qawith the distance
parameter €, which serve as (g, 0)-EVAL approximators for P, and @), respectively. Once learnt, no
further samples are needed from P, and Q,. P, can be sampled in O(n) time from Theorem E.4.
The result follows from Theorem A.1. O

F Improving Success of Learning Algorithms Using Distance Estimation

In this section we give a general algorithm for improving the success probability of learning certain
families of distributions. Specifically, let D be a family of distributions for which we have a learning
algorithm A in drv distance ¢ that succeeds with probability 3/4. Suppose there is also a distance
approximation algorithm B for D. The algorithm presented below, which uses .4 and 5, learns an
unknown distribution from D with probability at least (1 — §).

Algorithm 4: High probability distribution learning

Data: Samples from an unknown distribution P

Result: A distribution P such that dpy (P, P) < & with probability 1 — 4
1 for 0 <i < R=0O(log 1) do

P; < Run A on samples from P to get a learnt distribution;

count; < 0;

for every unordered pair 0 < 1 < 7 < Rdo
d;; < Estimate distance between F; and P; up to additive error € using B;
if dij < 3¢ then
count; < count; + 1;
L count; < count; + 1,

0 N it B W

9 ¥ = argmax; count;;
10 return Pj;

Theorem F.1. Let D be a family of distributions. Suppose there is a learning algorithm A which
for any P € D takes m 4(g) samples from P and in time t 4(¢) outputs a distribution Py such that
drv (P, P1) < € with probability at least 3/4. Suppose there is a distance approximation algorithm
B for D that given any two completely specified distributions Py and Py estimates drv (Py, Pe) up to
an additive error € in tg(e, §) time with probability at least (1 — §). Then there is an algorithm that
uses A and B as subroutines, takes O(m 4(c/4) log §) samples from P, runs in O(t 4(¢/4) log § +

tp(e/4, W) log? %) time and returns a distribution P such that dpv (P, P) < e with

probability at least 1 — 4.

Proof. The boosting algorithm is given in Algorithm 4. We take R = 324 log % repetitions of A
to get the distributions P;s. From Chernoff’s bound at least 2R /3 distributions (successful) satisfy
drv(P;, P) < € with probability at least 1 —§ /2, which we condition on henceforth. These successful
distributions have pairwise distance at most 2e. Conditioned on the (123”) calls to BB succeeding, the
pairwise distances between the successful distributions are at most 3¢. Hence every successful ¢ has
its count value at least 2R/3 — 1. This means ¢*, which has the maximum count value (> 2R/3 — 1)
must intersect at least one successful ¢’ such that drv (P;«, P;r) < 3¢. By triangle inequality we get
dT\/(Pi* 5 P) < 4e.

It suffices for each call to 3 succeed with probability at least %. O

Assuming black-box access to A, O(m 4 log %) samples are needed in the worst case to learn with
1 — 0 probability, since otherwise all the o(log %) repetitions may fail. We can apply the above
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algorithm to improve the success probability of learning Bayesian networks on a given graph with
small indegree.
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