
DRL lr CNN lr Acc.

10−6 10−3 91.23

10−6 10−2 10.00
10−6 10−4 90.67
10−5 10−3 89.95
10−7 10−3 90.79

Reviewer #1: Q1: The number of iterations ... A1: We did not present values of all the hyper-1

parameters in submission due to the limit of space. Hyper-parameters are described as follows. The2

batch size for training is 128. For CIFAR-10, we train (N1 = 1560) batches (4 epochs) for DRL agents3

(corresponding to line 12-15 in Algorithm 1) and (N2 = 780) batches (2 epochs) for h(·), v, f(·) and4

CNN (line 16-19 in Algorithm 1) at each iteration. The total number of iterations is 40 (for line 1-19 in5

Algorithm 1). For ImageNet, at each iteration of training, N1 = 1200 and N2 = 600 except last iteration. The total6

number of iterations is 64. At last iteration, N2 = 200, 000 for finetuning the CNN. The learning rate for DRL agent is7

10−6. Learning rate for CNN is 10−3 in CIFAR-10 and 10−4 in ImageNet.8

We show experiment results on CIFAR-10 with various learning rate setting in table on the right side. The sparsity is9

0.5 and Rr = 0.5. It shows that our learning rate setting is optimal.10

Q2: The experimental results A2: We show the training curve of our method. We train on CIFAR-1011

with sparsity 0.5 and Rr = 0.5. The y-aix is test accuracy and x-aix is the number of epochs. This12

figure shows that our method reaches optimal and robust during training.13

Reviewer #2: Q1: Although combining ... A1: Our method combines static and runtime pruning under a DRL-based14

framework which determines sparsity of layers and addresses the storage efficiency problem of runtime pruning. Our15

method takes advantages of both static and runtime pruning to provide trade-off with better accuracy and lower storage.16

Q2: DRL methods usually ... A2: For training cost of DRL, kindly refer to Reviewer #1 A1. The extra cost of17

DRL at inference is tiny comparing to convolutional layers. The extra cost of each layer includes the computation of18

layer-dependent encoder (described in paragraph State in Sec. 3.3 ) and runtime DRL agent. The layer-dependent19

encoder is a fully-connected layer where input size is input channel of this convolutional layer and output size is20

128. The runtime DRL agent network consists of one layer of RNN with hidden state size of 128 and one layer21

fully-connected Actor network with output size of 1 (the mean of Gaussian policy). The MACs of layer-dependent22

encoder and runtime DRL agent is around 0.3% of pre-trained CNN.23

Q3: DRL-based methods usually ... A3: We are preparing the code and will open-source after paper is accepted.24

Reviewer #3: Q1: There are one... A1: The training process of Ref[22] is dynamic pruning but in inference it is25

static pruning. We will revise the related work to claim Ref[22] as static pruning and also update bibtex of Ref[22].26

Q2: The “sparsity” of Table 1 and 2 means the ratio of preserved output channels after pruning at every layer. This27

“sparsity” setting is mainly for FBS[22] because FBS uses a same sparsity value for all convolutional layers. However,28

our proposed method predicts layer-specific sparsity ratios by DRL agents. Therefore, for our method in Table 1 and 2,29

we calculate the computation and storage budget constraints according to the “sparsity” value (which is 0.5 in Table 130

and 0.7 in Table 2), then our approach learns layer-specific sparsity ratio according to the constraints by DRL method.31

Method Acc. ∆acc. GPU Time CPU Time

FBS 89.88 -1.49 10.9 ms 172.0 ms
RNP 84.93 -7.14 11.1 ms 175.3 ms
FPGM 89.8 -2.27 5.0 ms 48.2 ms
ours (Rr = 1) 91.425 -0.645 11.2 ms 178.3 ms
ours (Rr = 0.5) 91.228 -0.842 9.8 ms 110.7

Q3: Wall clock ... A3: The “Inference Time” in Sec. 4 Table 1 is wall clock of32

running on GPU. We show the CPU wall clock and static pruning method FPGM33

in following table. We also show experiment result of FPGM which is static pruning34

approach in this table. Since it is static pruning method, it has smaller wall clock but35

lower accuracy compared to runtime pruning approach FBS and our method.36
Method ∆ top-1

acc.
∆ top-5
acc. Speed-up #Params

DCP -2.29 -0.12 1.71× 0.71×
FPGM -1.87 -1.15 1.71× 0.72×
Dynamic Sparse Graph -4.68 - 1.4 × -
CGNN -1.07 -0.63 1.63× -
FBS -2.54 -1.46 1.98× 1.12×
AMC -3.13 -1.88 2.00× 0.76×
Ours (Rr = 0.5) -1.03 -0.43 1.94× 0.81×

Q4: One important ... A4: For the comparison of FPGM, please refer to A3. We report37

model size (number of parameters stored) of methods pruning ResNet-18 on ImageNet38

in following table. Static method can reduce more parameters (storage consumption) while39

runtime method FBS increases the number of parameters. Our method can reduce more storage compared to runtime40

method. The wall clock comparison of Table 4 and 5 in Sec. 4 is unavailable, for the method doesn’t report actual time41

nor release codes for re-run. Although some methods released codes, it is not fair to compare wall clock because their42

implementation is not optimized for latency.43

Reviewer #4: Q1: In Line 113, ... A1: We will carefully revise the definition of trade-off pruner in our next version44

of paper. Here let me clarify the trade-off pruner: In Sec. 3.2, we don’t mentioned art and ast because we use the mask45

Mr and Ms to represent the pruning results which are computed according to art and ast . Mr is computed by ur and art46

as mentioned in line 134-139 of Sec. 3.1 and Ms is computed by us and ast as mentioned in line 163-166 of Sec. 3.1.47

Q2: Some implementation ... A2: We use 1-layer RNN with hidden state size of 128. For more implementation48

details, please refer to Reviewer #1 A1 and Reviewer #2 A2 line 19 to 22.49

Q3: All variables in Fig. 1 should ... A3: Thanks for your suggestion. We will update the font in Fig.1.50

Q4: All vectors variables should ... A4: We will change decision mask to m and will carefully revise the matrix/vector51

variables in math equations.52


