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Abstract

Entropic causal inference is a framework for inferring the causal direction between
two categorical variables from observational data. The central assumption is that the
amount of unobserved randomness in the system is not too large. This unobserved
randomness is measured by the entropy of the exogenous variable in the underlying
structural causal model, which governs the causal relation between the observed
variables. [[15] conjectured that the causal direction is identifiable when the entropy
of the exogenous variable is not too large. In this paper, we prove a variant of
their conjecture. Namely, we show that for almost all causal models where the
exogenous variable has entropy that does not scale with the number of states of the
observed variables, the causal direction is identifiable from observational data. We
also consider the minimum entropy coupling-based algorithmic approach presented
by [IL5], and for the first time demonstrate algorithmic identifiability guarantees
using a finite number of samples. We conduct extensive experiments to evaluate
the robustness of the method to relaxing some of the assumptions in our theory
and demonstrate that both the constant-entropy exogenous variable and the no
latent confounder assumptions can be relaxed in practice. We also empirically
characterize the number of observational samples needed for causal identification.
Finally, we apply the algorithm on Tiibingen cause-effect pairs dataset.

1 Introduction

Understanding causal mechanisms is essential in many fields of science and engineering [26, [29].
Distinguishing causes from effects allows us to obtain a causal model of the environment, which
is critical for informed policy decisions [21]. Causal inference has been recently utilized in several
machine learning applications, e.g., to explain the decisions of a classifier [1]], to design fair classifiers
that mitigate dataset bias [[14}32] and to construct classifiers that generalize [28]].

Consider a system that we observe through a set of random variables. For example, to monitor the
state of a classroom, we might measure temperature, humidity and atmospheric pressure in the room.
These measurements are random variables which come about due to the workings of the underlying
system, the physical world. Changes in one are expected to cause changes in the other, e.g., decreasing
the temperature might reduce the atmospheric pressure and increase humidity. As long as there are no
feedback loops, we can represent the set of causal relations between these variables using a directed
acyclic graph (DAG). This is called the causal graph of the system. Pearl and others showed that
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(a) Deterministic relation. (b) Relaxing determinism with noise.

Figure 1: Intuition behind the entropic causality framework. (a) Most of the deterministic maps
would be non-deterministic in the opposite direction, requiring non-zero additional randomness. (b)
Entropic causality relaxes the deterministic map assumption to a map that needs low-entropy, and
demonstrates that, most of the time, the reverse direction needs more entropy than the true direction.

knowing the causal graph enables us to answer many causal questions such as, “What will happen if I
increase the temperature of the room?” [21]].

Therefore, for causal inference, knowing the underlying causal structure is crucial. Even though
the causal structure can be learned from experimental data, in many tasks in machine learning, we
only have access to a dataset and do not have the means to perform these experiments. In this case,
observational data can be used for learning some causal relations. There are several algorithms
in the literature for this task, which can be roughly divided into three classes: Constraint-based
methods and score-based methods use conditional independence statements and likelihood function,
respectively, to output (a member of) the equivalence class. An equivalence class of causal graphs are
those that cannot be distinguished by the given data. The third class of algorithms impose additional
assumptions about the underlying system or about the relations between the observed variables. Most
of the literature focus on the special case of two observed variables X, Y and to understand whether
X causes Y or Y causes X under different assumptions. Constraint or score-based methods cannot
answer this question simply because observed data is not sufficient without further assumptions. In
this work, we focus on the special case of two categorical variables. Even though the literature is
more established in the ordinal setting, few results exist when the observed variables are categorical.
The main reason is that, for categorical data, numerical values of variables do not carry any meaning;
whereas in continuous data one can use assumptions such as smoothness or additivity [7]].

We first start with a strong assumption. Suppose that the system is deterministic. This means that,
even though observed variables contain randomness, the system has no additional randomness. When
X causes Y, this assumption implies that Y = f(X) for some deterministic map f(.). Consider
the example in Figure[I] Since there is no additional randomness, each value of X is mapped to a
single value of Y. What happens if we did not know the causal direction and tried to fit a function in
the wrong direction as X = ¢g(Y"). Unlike f, g has to be one-to-many: Y = 2 is mapped to three
different value of X. Therefore, it is impossible to find a deterministic function in the wrong causal
direction for this system. In fact, it is easy to show that most of the functions have this property: If
X,Y each has n > 7 states, all but 2" fraction of models can be identified.

Although there might be systems where determinism holds such as in traditional computer software,
this assumption in general is too strict. Then how much can we relax this assumption and still identify
if X causes Y orY causes X ? In general, we can represent a system as Y = f(X, E) where E
captures the additional randomness. To quantify this amount of relaxation, we use the entropy of the
additional randomness in the structural equation, i.e., H (E). For deterministic systems, H(E) = 0.
This question was posed as a conjecture in [[15], within the entropic causal inference framework.

We provide the first result in resolving this question. Specifically, we show that the causal direction is
still identifiable for any I with constant entropy. “Constant” is relative to the support size n of the
observed variables (note 0 < H(X) < log(n)). This establishes a version of Kocaoglu’s conjecture.

A practical question is how much noise can the entropic causality framework handle: do we always
need the additional randomness to not scale with n? Through experiments, we demonstrate that,
in fact, we can relax this constraint much further. If H(E) ~ alog(n), we show that in the wrong
causal direction we need entropy of at least 3 log(n) for 8 > «. This establishes that entropic causal



inference is robust to the entropy of noise and for most models, reverse direction will require larger
entropy. We finally demonstrate our claims on the benchmark Tiibingen dataset.

We also provide the first finite-sample analysis and provide bounds on the number of samples needed
in practice. This requires showing finite sample bounds for the minimum entropy coupling problem,
which might be of independent interest. The following is a summary of our contributions.

o We prove the first identifiability result for the entropic causal inference framework using
Shannon entropy and show that for most models, the causal direction between two variables
is identifiable, if the amount of exogenous randomness does not scale with n, where n is the
number of states of the observed variables.

e We obtain the first bounds on the number of samples needed to employ the entropic causal
inference framework. For this, we provide the first sample-bounds for accurately solving the
minimum entropy coupling problem in practice, which might be of independent interest.

e We show through synthetic experiments that our bounds are loose and entropic causal
inference can be used even when the exogenous entropy scales with «log(n) for a < 1.

e We employ the framework on Tiibingen data to establish its performance. We also conduct
experiments to demonstrate robustness of the method to latent confounders, robustness to
asymmetric support size, i.e., when X, Y have very different number of states, and finally
establish the number of samples needed in practice.

Notation: We will assume, without loss of generality, that if a variable has n states, its domain is
[n] = {1,2,...,n}. p(x) is short for p(X = x). p(Y|z) is short for the distribution of Y given
X = z. Simplex is short for probability simplex, which, in n dimensions is the polytope defined as
Ap = {(%i)iem) : Do, s = 1,2, > 0,Vi € [n]}. 1y, is the indicator variable for event . SCM is
short for structural causal model and refers to the functional relations between variables. For two
variables where X causes Y, the SCMis Y = f(X, E), X Il E for some variable E and function f.

2 Identifiability with Entropic Causality

Consider the problem of identifying the causal graph between two observed categorical variables
X, Y. We assume for simplicity that both have n states, although this is not necessary for the results.
Similar to the most of the literature, we make the causal sufficiency assumption, i.e., there are no
latent confounders and also assume there is no selection bias. Then without loss of generality, if X
causes Y/, there is a deterministic f and an exogenous (unmeasured) variable E that is independent
from X such that Y = f(X, E), where X ~ p(X) for some marginal distribution p(X). Causal
direction tells us that, if we intervene on X and set X = z, we get Y = f(z, F) whereas if we
intervene on Y and set Y = y, we still get X ~ p(X) since Y does not cause X.

Algorithms that identify causal direction from data introduce an assumption on the model and show
that this assumption does not hold in the wrong causal direction in general. Hence, checking for this
assumption enables them to identify the correct causal direction. Entropic causality [15] also follows
this recipe. They assume that the entropy of the exogenous variable is bounded in the true causal
direction. We first present their relevant conjecture, then modify and prove as a theorem.

Conjecture 1 ([I3]). Consider the structural causal model Y = f(X,E), X € [n],Y € [n],E €
[m] where p(X), f, p(E) are sampled as follows: Let p(X) be sampled uniformly randomly from the
probability simplex in n dimensions A,,, and p(E) be sampled uniformly randomly from the set of
points in A, that satisfy H(E) <log(n) + O(1). Let f be sampled uniformly randomly from all

mappings [ : [n] x [m] — [n]. Then with high probability, any E1LY that satisfies X = g(Y, E)

for some mapping g : [n] x [m] — [n] entails H(X)+ H(E) < H(Y) + H(E).

In words, the conjecture claims the following: Suppose X causes Y with the SCMY = f(X, E).
Suppose the exogenous variable E has entropy that is within an additive constant of log(n). Then,
for most of such causal models, any SCM that generates the same joint distribution in the wrong
causal direction, i.e., Y causes X, requires a larger amount of randomness than the true model. The
implication would be that if one can compute the smallest entropy SCM in both directions, then one
can choose the direction that requires smaller entropy as the true causal direction.

We modify their conjecture in two primary ways. First, we assume that the exogenous variable has
constant entropy, i.e., H(FE) = O(1). Unlike the conjecture, our result holds for any such E. Second,



rather than the total entropy, we were able to prove identifiability by only compari the entropies of

the simplest exogenous variables in both directions H (F) and H (E) In Section |4 we demonstrate
that both criteria give similar performance in practice.

Our technical result requires the following assumption on p(X'), which, for constant p and d guaran-
tees that a meaningful subset of the support of p(X) is sufficiently uniform. We will later show that
this condition holds with high probability, if p(X) is sampled uniformly randomly from the simplex.

Assumption 1 ((p, d)-uniformity). Let X be a discrete variable with support [n]. Then there exists a

subset S of size |S| > dn, such that p(X = z) € [ﬁ, g]ﬁ’x €s.

We have the following theorem, which establishes that entropy in the wrong direction scales with n.
Theorem 1 (Entropic Identifiability). Consider the SCM'Y = f(X,E), X 1LE, where X €[n],Y €
[n], E € [m]. Suppose E is any random variable with constant entropy, i.e., H(E) = c = O(1).
Let p(X) satisfy Assumption p7 d) for some constants p>1,d> 0. Let f be sampled uniformly
randomly from all mappings f : [n] x [m] — [n). Then, with high probability, any E that satisfies
X = g(Y,E), ELLY for some g, entails H(E) > (1 — o(1))log(log(n)). Specifically, for any

O<r<gqg H(E)> (1— }ig) (0.51og(log(n))—log(l +r)—O(1)),Yn>v(r,q, p, ¢, d) for some v.

Theorem |1| shows that when H(FE) is a constant, under certain conditions on p(X), with high
probability, the entropy of any causal model in the reverse direction will be at least Q(log(log(n))).
Specifically, if a constant fraction of the support of p(X) contains probabilities that are not too far
from %, our result holds. Note that with high probability statement is induced by the uniform measure
on f, and it is relative to n. In other words, Theorem states that the fraction of non-identifiable
causal models goes to 0 as the number of states of the observed variables goes to infinity. If a structure
on the function is available in the form of a prior that is different than the uniform, this can potentially
be incorporated in the analysis although we expect calculations to become more tedious.

Through the parameters r, ¢ we obtain a more explicit trade-off between the lower bound on entropy
and how large n should be for the result. v(r, g, p, ¢, d) is proportional to ¢ and inversely proportional
to 7. The explicit form of v is given in Proposition[I]in the supplement.

We next describe some settings where these conditions hold: We consider the cases when p(X) has
bounded element ratio, p(X) is uniformly randomly sampled from the simplex, or H(X) is large.
Corollary 1. Consider the SCM in Theorem([I| Let H(E)=c=O(1) and f be sampled uniformly
max, p(x)

randomly. Let p(x) be such that either (a) = o) <P or (b) p(x) is sampled uniformly randomly
from the simplex A\, or (¢) p(X) is such that H(X) >log(n)—a for some a=O(1).

Then, with high probability, any F that satisfies X = g(Y, E), ELY for some deterministic function

g entails H(FE) > 0.25log(log(n)) — O(1). Thus, there exists ng (a function of p, ¢) such that for
all n > ny, the causal direction is identifiable with high probability.

The proof is given in Section|G] Note we do not restrict the support size of the exogenous variable E.
Proof Sketch of Theorem[I} The full proof can be found in Appendix [B]

1. Bound H(F) via H(E) > H(X|Y =y),Vy € [n].

2. Characterize the sampling model of f as a balls-and-bins game, where each realization of Y’
corresponds to a particular bin, each combination (X =4, E =k) corresponds to a ball.

3. Identify a subset of “good" bins U C [m]. Roughly, a bin is “good" if it does not contain a
large mass from the balls other than the ones in {(¢,1) : i € S}.

4. Show one of the bins in ¢/, say y = 2, has many balls from {(i, 1) : ¢ € S}.
5. Bound the contribution of the most-probable state of E to the distribution p(X|Y = 2).

6. Characterize the effect of the other states of E and identify a support for X contained in .S on
which the conditional entropy can be bounded. Use this to lower bound for H(X|Y = 2).

"Entropy of the exogenous variable, or in the case of Conjecturethe entropy of the system, can be seen as a
way to model complexity and the method can be seen as an application of Occam’s razor. In certain situations,
especially for ordinal variables, it might be suitable to also consider the complexity of the functions.



Conditional Entropy Criterion: From the proof of Proposition in Appendix B} we have H (E)
max, H(X|Y =y) > (1 — o(1)) log(log(n)). Further, we have max, H(Y|X =z) < H(E)
¢ = O(1). Hence not only is H(E) > H(FE) for large enough n, but max, H(X|Y = y)
max, H (Y| X =x) as well. Therefore, under the assumptions of Theorem [I} max, H(X|Y =y)
and max, H(Y|X =) are sufficient to identify the causal direction:

Corollary 2. Under the conditions of Theorem we have that max H (X |Y=y) >max H (Y| X=z).
Yy xr

VOIANIV

3 Entropic Causality with Finite Number of Samples

In the previous section, we provided identifiability results assuming that we have access to the joint
probability distribution of the observed variables. In any practical problem, we can only access a set
of samples from this joint distribution. If we assume we can get independent, identically distributed
samples from p(z, y), how many samples are sufficient for identifiability?

Given samples from N i.i.d. random variables {(X;, Y;)};c;n) where (X;,Y;) ~ p(z,y), consider

the plug-in estimators p(y) = ﬁ Zf\il Liy,—yy and p(z,y) = % Zf\il Lix,—2} 1{y,=y) and

define the estimator of the conditional p(x|y) as p(z|y) = %. Define p(x) and p(y|z) similarly.

Definition 1. The minimum entropy coupling of t random variables U1,Us, ..., U, is the joint
distribution p(uy, . .., us) with minimum entropy that respects the marginal distributions of U;, Vi.

The algorithmic approach of [[15] relies on minimum entropy couplings. Specifically, they show the
following equivalence: Given p(z,y), let E be the minimum entropy exogenous variable such that
E 11 X, and there exists an f such that Y = f(X, E), X ~ p(z) induces p(z, y). Then the entropy
of the minimum entropy coupling of the distributions {p(Y'|x) : © € [n]} is equal to H(FE).

Therefore, understanding how having a finite number of samples affects the minimum entropy
couplings allows us to understand how it affects the minimum entropy exogenous variable in either
direction. Suppose |p(y|z) — p(y|x)| < §,Ve,y and |p(x|y) — p(z|y)| < 6, Vz,y. Given a coupling
for distributions p(Y'|x), we construct a coupling for (Y |x) whose entropy is not much larger. As far
as we are aware, the minimum entropy coupling problem with sampling noise has not been studied.

Consider the minimum entropy coupling problem with n marginals pr = [px(i)]icin), & € [n].
Let p(iq,42,...,i,) be a valid coupling, i.e., Zj;ék ZZ:1p(ilvi2v ceyin) = pr(ig), Yk, ig.
Consider the marginals with sampling noise shown as px. = [px(¢)]ic[n], & € [1]. Suppose |py (i) —
pi(i)| < 8, Vi, k. The following is shown in Section [H]of the supplement.

Theorem 2. Let p be a valid coupling for distributions {p;};c|n), where p; € Ay, Vi € [n]. Suppose
{di}icn are distributions such that |q;(j) — pi(j)| < 6,Vi,j € [n]. If 6 < #g(n), then there
exists a valid coupling q for the marginals {q; } ;e[ such that H(q) < H(p)+e~*log(e) 42+ o(1).

Theorem [2| shows that if the /., norm between the conditional distributions and their empirical
estimators are bounded by § < #g(n), there exists a coupling that is within 3 bits of the optimal
coupling on true conditionals. To guarantee this with the plug-in estimators, we have the following:
Lemma 1. Let X € [n],Y € [n] be two random variables with joint distribution p(z,y). Let
a = min{min; p(X = i), min; p(Y = j)}. Given N samples {(X;,Y;)}icn) from independent
identically distributed random variables (X;,Y;) ~ p(x,y), let p(X|Y = y), p(Y|X = z) be
the plug-in estimators of the conditional distributions. If N = Q(nia=21log®(n)), then |p(y|z) —
p(ylz)| < m and |p(x|y) — p(x|y)| < m,vg’, y with high probability.

Next, we have our main identifiability result using finite number of samples:

Theorem 3 (Finite sample identifiability). Let A be an algorithm that outputs the entropy of the
minimum entropy coupling. Consider the SCM in Theorem[l| Suppose E is any random variable
with constant entropy, i.e., H(E) = ¢ = O(1). Let p(X) satisfy Assumption [I\p,d) for some
constants p>1,d>0. Let f be sampled uniformly randomly from all mappings f :[n] x[m]— [n].
Let o = min{min; p(X = 4),min; p(Y = j)}. Given N = Q(n*a~2log*(n)) samples, let
p(Xly),p(Y|z) be the plug-in estimators for the conditional distributions. Then, for sufficiently
large n, A{p(X|y)}y) > A{P(Y|x)}s) with high probability.
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Figure 2: m : number of states of X, n : number of states of Y in causal graph X — Y. (a) n =
40, m = 40. Accuracy on simulated data: Obs. entropy-based declares X — Y if H(X) > H(Y)
and Y — X otherwise; Exog. entropy-based compares the exogenous entropies in both direction and
declares X — Y if the exogenous entropy for this direction is smaller, and Y — X otherwise; Total
entropy-based compares the total entropy of the model in both directions and declares the direction
with smaller entropy as the true direction as proposed in [15]]. (b) uses uniform mixture data from
whenm = 40, n = 20 and m = 20, n = 40. Similarly for (¢) form = 40,n = 5and m = 5, n = 40.
Magenta and red dashed vertical lines show log, (min{m,n}) and log,(max{m,n}), respectively.
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From the equivalence between minimum entropy couplings and minimum exogenous entropy, The-
orem [3| shows identifiability of the causal direction using minimum-entropy exogenous variables.
Similar to Corollary [1} the result holds when p(X) is chosen uniformly randomly from the simplex:

Corollary 3. Consider the SCM in Theorem I} where H(E)=c=0(1), f is sampled uniformly

randomly. Let p(X) be sampled uniformly randomly from the simplex A,,. Given N =Q(n®log®(n))
samples, let p(X|Y = vy), p(Y|X = x) be the plug-in estimators for the conditional distributions.
Then, for large enough n, A({p(X|Y =y)}y) > A{p(Y|X = x)}.) with high probability.

Conditional Entropy Criterion with Finite Samples: Note that the sample complexity in Theorem
scales with a=2 where a := min{min; p(X = i), min; p(Y = j)}. If either of the marginal
distributions are not strictly positive, this can make the bound of Theorem [3] vacuous. To address
this, we use an internal result from the proof of Theorem[I] In the proof we show that for some i,
p(Y =i) = Q(2)and H(X|Y =1i) = Q(log(log(n))). Then, itis sufficient to obtain enough samples
to accurately estimate p(X|Y =1i). Even though ¢ is not known a priori, since p(Y = i) = Q(1),
estimating conditional entropies H (X|Y = j) where the number of samples |{(z,Y = j)}.| exceeds

a certain threshold guarantees that p(X|Y" = ) is estimated accurately. We have the following result:

Theorem 4 (Finite sample identifiability via conditional entropy). Consider the SCM in Theorem
where H(E)=c=0(1), f is sampled uniformly randomly. Let p(X) satisfy Assumption[I|p, d)
for some constants p>1,d>0. Given N = Q(n?log(n)) samples, let N, be the number of samples
where X = x and similarly for N,. Let H denote the entropy estimator of [30]. Then, for n large

enough, maxyy. N, >n} fI(X|Y:y) > maX{,: N, >n} H(Y\X:aj) with high probability.

Theorem shows that O(n? log(n)) samples are sufficient to estimate the large conditional entropies
of the form H(Y'|z), H(X|y), which in turn is sufficient for identifiability even for sparse p(z, y).

4 Experiments

In this section, we conduct several experiments to evaluate the robustness of the framework. Complete
details of each experiment are provided in the supplementary material. Unless otherwise stated, the

greedy minimum entropy coupling algorithm of [[15]] is used to approximate H(E) and H(E).

Implications of Low-Exogenous Entropy Assumption. We investigate the implications of this
assumption. Specifically, one might ask if having low exogenous entropy implies H(X) > H(Y).
This would be unreasonable, since there is no reason for cause to always have the higher entropy.

In Figure |2} we evaluate the accuracy of the algorithm on synthetic data for different exogenous
entropies H(E). To understand the impact of the assumption on H(X), H(Y'), in addition to
comparing exogenous entropies (Exog. entropy-based) and total entropies (fotal entropy-based)
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Figure 4: (a) Probability of correctly discovering the causal direction X — Y as a function of n
and number of samples NV, using the conditional entropies as the test. (b) Probability of correctly
discovering the causal direction X — Y using the greedy MEC algorithm. (c) Samples N required
to reach 95% correct detection as a function of n, derived from the plots in Figure @ and Figure @

[15], we also show the performance of a simple baseline that compares H(X) and H(Y') (obs.
entropy-based) and declares X — Y if H(X) > H(Y") and vice versa.

We identify three different regimes, e.g., see Figure 2a} Regime 1: If H(E) < 0.2log(n), we get
H(X) > H(Y) most of the time. All methods perform very well in this regime which we can call
almost deterministic. Regime 2: If 0.2log(n) < H(E) < 0.6log(n), accuracy of obs. entropy-
based method goes to 0 since, on average, we transition from the regime where H(X) > H(Y) to
H(X) < H(Y). Regime 3: 0.6log(n) < H(FE) < 0.8log(n) where H(X) < H(Y) most of the
time. As can be seen, total entropy-based and exog. entropy-based methods both show (almost)
perfect accuracy in Regime 1, 2, 3 whereas obs. entropy-based performs well only in Regime 1.

We also evaluated the effect of the observed variables having different number of states on mixture
data in Figure[2b] 2d] In this case, framework performs well up until about 0.8 log(min{m,n}).

Relaxing Constant Exogenous-Entropy Assumption. In Section 2] we demonstrated that the
entropic causality framework can be used when the exogenous randomness is a constant, relative to
the number of states n of the observed variables. For very high dimensional variables, this might be a
strict assumption. In this section, we conduct synthetic experiments to evaluate if entropic causality
can be used when H (E) scales with n. In particular, we test for various « < 1 the following: Is it
true that the exogenous entropy in the wrong direction will always be larger, if the true exogenous
entropy is <alog(n)? For a={0.2,0.5, 0.8}, we sampled 10k p(E) from Dirichlet distribution such

that H(E) ~ alog(n) and calculated exogenous entropy in the wrong direction H (E). Figure

shows the histograms of H(F) for « =0.8 and n = {16, 64, 128}. We observe that H(E) tightly
concentrates around /3 log(n) for some 8> . For reference, a:log(n) is shown by the vertical yellow
line. Similar results are observed for other o values which are provided in the supplementary material.

Effect of Finite Number of Samples. In Section 3] we identified finite sample bounds for en-

tropic causality framework, both using the exogenous entropies H (E), H(F) and using conditional
entropies of the form max, H(X|Y =y), max, H(Y|X =x). We now test if the bounds are tight.

We observe two phases and a transition phenomenon in between. The first phase occurs for small
values of n, for n € {20, 30, 40}. Here, the fraction of identifiable causal models does not reach 1 as
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Figure 5: Accuracy on simulated data with light confounding. Number of states and data are identical
to those in Figure [2l We use exogenous entropy of 2 bits and add a confounder L. This can be
interpreted as replacing some bits of the exogenous variable in Figure [2] with those of a latent
confounder. Surprisingly, performance for H(E)=2, H(L)=t is similar to the performance when
H(E)=2+ t in Figure[2] This indicates that the proposed method is robust to latent confounders, as
long as the total exogenous and confounder entropy is not very close to min{log(n), log(m)}.

Threshold (x log support) | 0.7 0.8 | 085 | 09 1.0 1.2

5-state quantization # of pairs 14 25 34 42 57 85
Accuracy (%) 85.7 | 64.0 | 58.8 | 57.1 | 63.2 | 60.0

Threshold (x log support) | 0.7 0.8 | 085 | 09 1.0 1.2

10-state quantization # of pairs 13 23 34 46 67 85
Accuracy (%) 84.6 | 739 | 70.6 | 63.0 | 61.2 | 56.5

Threshold (x log support) | 0.7 0.8 | 085 | 09 1.0 1.2

20-state quantization # of pairs 12 21 41 52 76 85
Accuracy (%) 75.0 | 619 | 537 | 51.9 | 51.3 | 494

Table 1: Performance on Tiibingen causal pairs with low exogenous entropy in at least one direction.

the number of samples is increased, but saturates at a smaller value. This is expected since exogenous
noise is relatively high, i.e., H(E) > log(n). For n > 40, or equivalently, when H(FE) < log(n),
increasing number of samples increases accuracy to 1, as expected.

The greedy MEC criterion has slightly better performance (by a2 5%), indicating more robustness.

This may be due to a gap between H(E) and H (X|Y =y) since greedy-MEC output is not limited

by log(n) unlike conditional entropy. In contrast to the O(n®) bound, the number of samples needed
has a much better dependence on n. Figure dc|includes a dashed linear growth line for comparison.

Effect of Confounding The equivalence between finding the minimum entropy exogenous variable
and finding the minimum entropy coupling relies on the assumption that there are no unobserved
confounders in the system. Despite lack of theory, it is useful to experimentally understand if the
method is robust to light confounding. One way to assess the effect of confounding is through its
entropy: If a latent confounder L is a constant, i.e., it has zero entropy, it does not affect the observed
variables. In this section, we simulate a system with light confounding by limiting the entropy of the
latent confounder and observe how quickly it degrades the performance of entropic causality.

The results are given in Figure The setting is similar to that of Figure We set H(FE) ~ 2 and
show accuracy of the method as entropy of the latent L is increased. Perhaps surprisingly, the effect
of increasing the entropy of the confounder is very similar to the effect of increasing the entropy of
the exogenous variable. This shows that the method is robust to light latent confounding.

Tiibingen Cause-Effect Pairs In [15]], authors employed the total entropy-based algorithm on
Tiibingen data [20] and showed that it performs similar to additive noise models with an accuracy of
64%. Next, we test if entropic causality can be used when we only compare exogenous entropies.

The challenge of applying entropic causality on Tiibingen data is that most of the variables are
continuous. Therefore, before applying the framework, one needs to quantize the data. The authors
chose a uniform quantization, requiring both variables have the same number of states. We follow
a similar approach. For b € {5, 10, 20}, the value of n is chosen for both X, Y as the minimum
of b, N/10, N;,“”q and N;”iq, where N is the number of samples available for pair X,Y and

Nunia, N;“”q are the number of unique realizations of X, Y, respectively.



As a practical check for the validity of our key assumption, we make a decision based on the following:
For a threshold ¢, algorithm makes a decision only for pairs for which either H(F) < tlog(n) or

H(E)<tlog(n). We report the accuracies in Table|I| As we expect, for stricter thresholds, accuracy
is improved, supporting the assumption that in real data, the direction with the smaller exogenous
entropy is likely to be the true direction. The most consistent performance is obtained for b = 10.

To check the stability of performance to quantization, we conducted an experiment where we perturb
the quantization intervals and take majority of 5 independent decisions. This achieves qualitatively
similar (sometimes better, sometimes worse) performance shown in Table[3in the appendix. Exploring
best practices to quantize continuous data is an interesting avenue for future work.

We now compare performance with other leading methods on this dataset. The total-entropy approach
for Entropic Causal Inference achieved 64.21% accuracy at 100% decision rate in [15]. ANM
methods are evaluated on this data in [20], where they emphasize two ANM methods with consistent
performance that achieve 63 4+ 10% and 69 + 10% accuracy. IGCI methods are also evaluated
in [20]] and were found to vary greatly with implementation and perturbations of data. No IGCI
method had consistent performance. LINGAM methods are evaluated in [8]] and reported nonlinear
approaches with 62% and 69% accuracy. Of these, only Entropic Causal Inference and IGCI can
handle categorical data. Comparison is difficult with limited data, but we suggest assessing the MEC
in both directions when deciding how to use our approach in combination with other methods.

5 Discussion

In this section we discuss several aspects of our method in relation with prior work. First, note that our
identifiability result holds with high probability under the measure induced by our generative model.
This means that, even under our assumptions, not all causal models will be identifiable. However, the
non-identifiable fraction vanishes as n, i.e., the number of states of X, Y goes to infinity. In essence,
this is similar to many of the existing identifiability statements that show identifiability except for an
adversarial set of models [[7]. Specifically in [13]], the authors show that under the assumption that
the exogenous variable has small support size, causal direction is identifiable with probability 1. This
means that the set of non-identifiable models has Lebesgue measure zero. This is clearly a stronger
identifiability statement. However, this is not surprising if we compare the assumptions: Bounding
the support size of a variable bounds its entropy, but not vice verse. Therefore, our assumption can be
seen as a relaxation of the assumption of [15]. Accordingly, a weaker identifiability result is expected.

Next, we emphasize that our key assumption, that in the true causal direction the exogenous variable
has small entropy, is not universal, i.e., one can construct cause-effect pairs where the anti-causal
direction requires less entropy. [9] provides an example scenario: Consider a ball traveling at a fixed
and known velocity from the initial position X towards a wall that may appear or disappear at a
known position with some probability. Let Y be the position of the ball after a fixed amount of time.
Clearly we have X — Y. If the wall appears, the ball ends up in a different position (yy) from the
one it would if the wall does not (y;). Then the mapping X — Y requires an exogenous variable
to describe the behavior of the wall. However, simply by looking at the final position, we can infer
whether wall was active or not, and accordingly the initial position deterministically. This shows that
our key assumption is not always valid and should be evaluated depending on the application in mind.

Finally note that the low-entropy assumption should not be enforced on the exogenous variable of
the cause, since this would imply that X has small entropy. This brings about a conceptual issue to
extend the idea to more than two variables: Which variables’ exogenous noise should have small
entropy? For that setting, we believe the original assumption of [[15] may be more suitable: Assume
that the total entropy of the system is small. In the case of more than two variables, this means total
entropy of all the exogenous variables is small, without enforcing bounds on specific ones.

6 Conclusion

In this work, we showed the first identifiability result for learning the causal graph between two
categorical variables using the entropic causal inference framework. We also provided the first finite-
sample analysis. We conducted extensive experiments to conclude that the framework, in practice, is
robust to some of the assumptions required by theory, such as the amount of exogenous entropy and
causal sufficiency assumptions. We evaluated the performance of the method on Tiibingen dataset.
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Broader Impact

Determining causal direction from data has numerous applications. The main challenge in using
purely observational data for causal inference always lies in the set of assumptions that are made.
Especially for safety-critical applications, the assumptions should be very carefully evaluated.

In this work, we use the assumption that the exogenous variables have small entropy. This means that
the factors which affect the effect variable have only a small number of states that are active, relative
to the number of active states of the cause and effect variables. Only then there is some structure in
the probability distribution in the context of entropic causality. Otherwise, the structure disappears
and the approach will be unreliable. In an application, this assumption should first be evaluated by the
field experts. If the expert believes this assumption might be violated, other observational methods
that rely on a different set of assumptions should be used instead.
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