
Supplementary Material
Entropic Causal Inference: Identifiability and Finite Sample Results

A Related Work

There are a variety of assumptions and accompanying methods for inferring the causal relations
between two observed variables [27, 22, 18, 4, 5]. For example, authors in [7] developed a framework
to infer causal relations between two continuous variables if the exogenous variables affect the
observed variable additively. This is called the additive noise model (ANM). Under the assumption
that the functional relation is non-linear they show identifiability results, i.e., for almost all models
the causal direction between two observed variables can be identified. This is typically done by
testing independence of the residual error terms from the regression variables. Interestingly in [17]
authors show that independence of regression residuals leads the total entropy in the true direction to
be smaller than the wrong direction, which can be used for identifiability thereby arriving at the same
idea we use in our paper.

A challenging setting for causal inference is the setting with discrete and categorical variables, where
the variable labels do not carry any specific meaning. For example, Occupation can be mapped to
discrete values {0, 1, 2, . . .} as well as to one-hot encoded vectors. This renders methods which
heavily rely on the variable values, such as ANMs, unusable. While extensions of ANMs to the
discrete setting exist, they still utilize the variable values and are not robust to permuting the labels of
the variables. One related approach proposed in [11] is motivated by Occam’s razor and proposes
to use the Kolmogorov complexity to capture the complexity of the causal model, and assume that
the true direction is "simple". As Kolmogorov complexity is not computable, the authors resort to a
proxy, based on minimum description length.

Another line of work uses the idea that causes are independent from the causal mechanisms, which is
called the independence of cause and mechanism assumption. The notion of independence should
be formalized since comparison is between a random variable and a functional relation. In [10, 12],
authors propose using information geometry within this framework to infer the causal direction in
deterministic systems. Specifically, they create a random variable using the functional relation based
on uniform distribution and utilize the hypothesis that this variable should be independent from the
cause distribution.

B Proof of Theorem 1

Step 1. Bounding H(Ẽ) by H(Ẽ) ≥ H(X|Y = y),∀y: Consider any Ẽ⊥⊥Y for which there exists
a deterministic map g such that X = g(Ẽ, Y ). We have

p(X = x|Y = y) = p(g(Ẽ, Y ) = x|Y = y)

= p(g(Ẽ, y) = x) = p(gy(Ẽ) = x),

for gy(e) := g(e, y),∀e, y, since Ẽ⊥⊥Y . Due to data processing inequality, it follows that H(Ẽ) ≥
H(X|Y = y).

In [15], this analysis is used to show that the minimum entropy exogenous variable Ẽ can be obtained
by solving the minimum entropy coupling problem on the conditional distributions p(X|Y = y).
Here, we use the conditional entropies to lower bound the entropy of the exogenous variable Ẽ.
Therefore, in the rest of our analysis we attempt to show that under the given assumptions, with high
probability, H(X|Y = y) is large for some value of y.

Step 2. Generative process as a balls and bins game: In order to analyze the conditional distribu-
tions p(X|Y = y) we relate the generative model to a balls and bins game:

Consider a deterministic map f : [n]× [m]→ [n]. Let p(X = i) = xi and p(E = k) = ek. Without
loss of generality, assume that X and E are labeled in decreasing probability order. In other words,
ek ≥ el if k < l and xi ≥ xj if i < j.2 Let M be the matrix defined as Mi,k := f(i, k). The

2This relabeling of X,E is without loss of generality since realization of f is symmetric across rows and
columns.
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probability distribution p(Y |X) is determined by the causal mechanism, i.e., the structural equation
Y = f(X,E). The conditional distributions in the wrong causal direction, i.e., p(X|Y ) can then be
calculated as follows:

p(X = i|Y = j) =
1

Z
xi

m∑
k=1

1{Mi,k=j}ek.

Z =
n∑
i=1

xi
m∑
k=1

1{Mi,k=j}ek is the normalizing constant.

To sample f uniformly randomly from all the mappings is equivalent to filling the entries of M
independently and uniformly randomly from Y = [n]. A small example is given in Table 1, which
shows a realization of f through matrix M, and illustrates how this affects p(X|Y = 1).

E 1 2 3 4 5

X PMF
of X

PMF
of E

e1 e2 e3 e4 e5

1 x1 2 3 2 1 1
2 x2 3 2 3 3 1
3 x3 3 1 2 3 2

P(X = x|Y = 1)

x = 1
x1(e4+e5)

Z

x = 2
x2e5
Z

x = 3
x3e2
Z

Table 2: Left: Balls and bins representation of function f : X × E → Y , where X = Y = [3]
and E = [5]. The function values for a given X = i, E = k can be seen as realizations of a two
dimensional balls and bins game. Right: Conditional probability values of X given Y = 1 for the
given function. Z = x1(e1 + e3) + x2(e2) + x3(e5) is the normalization constant, which also gives
P(Y = 1).

Any realization of f corresponds to a realization of matrix M. The first column is of special interest
to us because it corresponds to the value of E with the highest probability. The realization of M can
be thought of as a balls and bins process, with the cells corresponding to balls and each entry Mi,k

corresponding to which bin that cell’s ball landed in.

Step 3. Identify a set of “good" bins: Each coordinate (i, k) is a ball and the value of Mi,k is the
identity of the bin this ball is placed in. We utilize the existence of a set S as described in the theorem
statement as follows: We focus on the set of balls corresponding to the cells (i, 1) for i ∈ S. Our goal
is to identify a bin which contains a large fraction of these balls. We also want this bin to not contain
too much probability mass from balls outside of the set S in order to get a close bound in Step 6.

Recall that each bin y contains mass xiek when Mi,k = y. To restrict our search of a good bin, we first
discard all the bins that contain a large mass from entries of M that are either in rows corresponding
to x /∈ S or columns other than the first column. Let p(X,Y,E) represent the joint distribution

between X,Y,E. Then we discard every value of y where
∑
x/∈S

m∑
e=1

p(x, y, e) +
∑
x∈S

m∑
e=2

p(x, y, e) is

large. We pick the threshold of 2
n and define the set B accordingly:

B =

{
y :
∑
x/∈S

p(x, y) +
∑
x∈S

p(x, y, E > 1) >
2

n

}
.

We know that |B| ≤ n
2 , since otherwise the total mass would exceed 1.3 Let U := [n]\B. Then

|U| ≥ n/2. Note that B and U are determined in a manner not affected by the realized values of
Mx,1 for x ∈ S. We will next focus on only the values of y ∈ U , and later quantify the following
claim: A significant fraction of the probability mass that falls in any bin in U is due to entries from
Mx,1 for x ∈ S. Therefore, for one of these bins y ∈ U , we can focus on obtaining a lower bound of
H(X|Y = y,X ∈ S,MX,1 = y) to later show that H(X|Y = y) cannot be much smaller.

Step 4. Show a bin from U has many balls from the first column of M and rows in S: We focus
our attention to the balls in S and bins in U . We want to show that ∃y ∈ U such that Mx,1 = y for a
large number of values of x ∈ S. Recall that since |S| ≥ dn, we have at least dn balls falling into n

3The probabilities we sum correspond to disjoint events, hence the total probability cannot exceed 1.
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bins. Moreover, since |U| ≥ n/2, at least n/2 of these bins are “good" for us. First, we show that,
with high probability, at least dn4 of the dn balls fall in the bins in U .

Lemma 2. Consider the process of uniformly randomly throwing dn = Θ(n) balls into n bins.4 Let
U be an arbitrary, fixed subset of bins with size |U| ≥ n

2 . Then with high probability, at least dn4 balls
fall into the bins in U . Moreover, these balls are also uniformly randomly thrown.

The above lemma, proven in Appendix C is directly applicable to our setting, even though U is a
random variable. This is because the realization of the entries of M outside the rows S or outside the
first column, which determines the set U are independent from the entries in M in the rows S and in
the first column. In other words, how balls are thrown into the bins in U is not affected by how U is
chosen.

We want to use this to show that there is a bin y ∈ U such that the conditional distribution p(X|Y = y)
is due to many balls x ∈ S where Mx,1 = y. We have shown that with high probability at least dn4
balls land in bins corresponding to y ∈ U . We apply a bound from Theorem 1 of [24], which implies
that with high probability when there are b bins and ηb balls (η = Θ(1)), the most loaded bin has
at least ln(b)

ln(ln(b))+ln( 1
η )

balls. We know that with high probability we have some number of balls in

range [nd4 , nd] in some number of good bins in range [n2 , n]. In terms of the established bound on
the most loaded bin, this means η ≥ d

4 and b ∈ [n2 , n]. If we substitute valid values of η and b that
minimize the lower bound, we know that with high probability the heaviest loaded bin among U
conditional distributions has at least ln(n)−ln(2)

ln(ln(n))+ln( 4
d )

balls. Without loss of generality, suppose this bin
has label 2. We show that H(X|Y = 2) is large using the above bound.

Step 5. Bounding H(X|Y = 2): Next, we obtain a lower bound for H(X|Y = 2). We utilize the
following lemma, proved in Section D of the supplement:
Lemma 3. Let X be a discrete random variable with distribution [p1, p2, . . . , pn]. Consider the
random variable X ′ with distribution [ pi∑

j∈S′ pj
]i for any S′ ⊆ [n]. Then, H(X) ≥ µH(X ′), where

µ =
∑
i∈S′ pi.

To use this lemma, we consider a specific distribution induced on the support of X|Y = 2. First, let
us define the following: For any subset S′ ⊆ [n], y ∈ [n], let XS′,y be the discrete variable with the
following distribution:

p(XS′,y= i)=
p(X = i|Y = y)∑
l∈S′ p(X = l|Y = y)

,∀i ∈ S′. (1)

We focus on XS′,2, where S′ = {i : i ∈ S,Mi,1 = 2}. We first show that H(XS′,2) is large, and
then show the total mass µ =

∑
i∈S′ p(X = i|Y = 2) that XS′,2 contributes to (X|Y = 2) is large,

which allows us to use Lemma 3.

To show H(XS′,2) is large, we use the following lemma from [3]:
Lemma 4 (Theorem 2 of [3]). Let X be a strictly positive discrete random variable on n states such
that maxi p(X=i)

mini p(X=i) ≤ ρ. Then

H(X) ≥ log(n)−
(
ρ ln(ρ)

ρ− 1
− 1− ln

(
ρ ln(ρ)

ρ− 1

))
1

ln(2)
.

To lower boundH(XS′,y) using the above lemma, we obtain an upper bound to ρ′ :=
maxi p(XS′,2=i)

mini p(XS′,2=i)

by utilizing our knowledge that H(E) = c. For each value i ∈ S′, we know that Mi,1 = 2. Thus,
p(XS′,2 = i) ≥ xie1

µ . Also p(XS′,2 = i) ≤ xi
∑m
k=1 ek
µ = xi

µ and maxi∈S xi
mini∈S xi

≤ ρ. Therefore

ρ′ ≤ maxi
xi
µ

mini
xie1
µ

≤ ρ
e1

.

In order to understand how small e1 can be under the given constraints, we obtain a useful characteri-
zation for constant entropy distributions. The following lemma shows that the maximum probability
value for any discrete distribution with constant entropy is a constant away from zero.

4Uniformity follows from uniformity of f .
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Lemma 5. Let E be a discrete random variable with m states, with the probability distribution
[e1, e2, . . . , em], where without loss of generality ei ≥ ej ,∀j > i. If H(E) ≤ c then e1 ≥ 2−c.

The proof is given in Section E in the supplement.

Applying Lemmas 3-5, with some derivation we show in Section F of the supplement that:

Proposition 1 (Step 6). Under the conditions stated above,

H(Ẽ) ≥ max
y

H(X|Y = y) ≥ H(X|Y = 2)

≥ (1− o(1))[log(log(n))− log(log(log(n)))−O(1)].

Furthermore, to make the trade-off between the strength of the lower bound and assumptions on n
more explicit, when n ≥ ν(r, q, ρ, c, d) with

ν(r, q, ρ, c, d) = max{4, e(
4
d )

1/r

, 2eq
222(c+1)ρ},

we have

H(Ẽ) ≥ max
y

H(X|Y = y) ≥ H(X|Y = 2)

≥
(

1− 1 + r

1 + q

)
(0.5 log(log(n))− log(1 + r)−O(1)) .

This completes the proof of Theorem 1.

Potential Improvements and Limitations: In our analysis, we use maxyH(X|Y = y) to bound
H(Ẽ). One potential improvement might be obtained by considering the gap between H(Ẽ) and the
collection {H(X|Y = y)}y for a given p(x, y). [15] showed that the smallest H(Ẽ) is given by the
minimum entropy coupling of the conditional distributions {p(X|Y = y)}y . Follow-up works have
developed minimum-entropy coupling algorithms [2, 16, 25] and obtained approximation guarantees.
However there is currently no tight analysis characterizing this entropy gap.

Note that the original conjecture proposes that H(E) ≤ log(n) +O(1) is sufficient. This is a very
strong statement and we believe, even if it is true, it requires a much deeper understanding on the
minimum entropy couplings than is currently available in the literature. We do, however, provide
evidence in Section 4 that H(E) ≤ α log(n) for α < 1 seems sufficient for identifiability.

One point in our analysis that is related to this setting when H(E) scales with n, is that we only
considered the first column of the matrix M, i.e., we have only taken into account the probability
values of the form xie1 contributing to the entropy of H(X|Y = y). As long as the function
f is sampled uniformly randomly in the considered generative model, this approach cannot give
H(Ẽ) � log(log(n)) due to the support size of X being upper bounded by O(log(n)) with high
probability from the balls and bins perspective. For when H(E) is very small, we do expect this to be
a reasonable approach as the remaining columns have very small probability values, hence very small
impact. However, for going beyond the current analysis and for proving identifiability when H(E)
scales with n, we strongly believe that the effect of the remaining columns should be considered.

C Proof of Lemma 2

Let ε be the event that less than dn
4 balls fall in the bins in U . We provide an upper bound for the

probability of this event P (ε). Consider the indicator variables each corresponding to the event that a
particular ball lands in U . These indicator variables are independently and identically distributed,
where each has probability Un ≥

1
2 of being 1. We use Hoeffding’s inequality to bound P (ε). Let Sdn

be the sum of the dn indicator variables (i.e., the number of the balls that land in bins corresponding
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to U) and Edn be the expected sum of the indicator variables (Edn = dn
(U
n

)
).

P (ε) = P

(
Sdn <

dn

4

)
(2)

≤ P
(
|Sdn − Edn| >

∣∣∣∣Edn − dn

4

∣∣∣∣) (3)

≤ P
(
|Sdn − Edn| >

dn

2
− dn

4

)
(4)

≤ P
(
|Sdn − Edn| >

dn

4

)
= 2e−

dn
8 (5)

(3) to (4) is due the fact that for all valid values of U , it holds that Edn = dn(Un ) ≥ dn
2 . (5) is due

to Hoeffding’s inequality. As such, P (ε) ≤ 2e−
dn
8 . Thus, with high probability there are at least

dn
4 balls that fall into bins corresponding to U . Since balls are thrown independently and uniformly

at random, conditioned on the balls that land in U , they are thrown independently and uniformly at
random.

D Proof of Lemma 3

Recall that µ =
∑
i∈S′ p(X = i). We have

H(X) ≥
∑
i∈S′

p(X = i) log

(
1

p(X = i)

)

= µ

(∑
i∈S′

p(X = i)

µ
log

(
1

p(X = i)

))

≥ µ

(∑
i∈S′

p(X = i)

µ
log

(
µ

p(X = i)

))

= µ

(∑
i∈S′

p(X ′ = i) log

(
1

p(X ′ = i)

))
= µH(X ′).

E Proof of Lemma 5

We show the contrapositive. Suppose that p1 ≤ ε < 2−c. We have pi ≤ p1,∀i ∈ [m]. We consider
all such distributions and find the one with smallest entropy:

min
p1≥p2,...≥pm

H([p1, p2, . . . , pm])

s.t.
∑
i

pi = 1

ε ≥ pi ≥ 0,∀i ∈ [m]

(6)

For simplicity, suppose 1
ε is an integer. We show that the solution to the above optimization problem is

strictly greater than c using majorization theory. For any given p, define the vector up = [
∑i
j=1 pj ]i.

Recall that a probability distribution p majorizes another distribution q if up(i) ≥ uq(i),∀i ∈ [m].
Also if p majorizes q, we have H(p) ≤ H(q).

Consider all distributions in the feasible region of the above problem. For any p∗, consider the vector
up∗ . Clearly, up∗(1) ≥ ε. Since p2 ≤ p1 < ε, we have that up∗(2) ≤ 2ε. Similarly, we have
up∗(i) ≤ ε. The uniform distribution achieves this upper bounding u vector, establishing that the
uniform distribution majorizes every other distribution in the feasible set. Then for any distribution in
the feasible region, we get that H(p) ≥ log( 1

ε ) > c.
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Suppose 1
ε is not an integer. Let t be the largest integer such that tε ≤ 1. Then the above argument

leads to the distribution with entropy

H = tε log

(
1

ε

)
+ (1− tε) log

(
1

1− tε

)
. (7)

Next, we show that if ε < 2−c, above value is greater than c. We can rewrite

H = tε log

(
1

ε

)
+ (1− tε) log

(
1

1− tε

)
(8)

≥ tε log

(
1

ε

)
+ (1− tε) log

(
1

ε

)
(9)

= log

(
1

ε

)
> c (10)

since 1− tε ≤ ε. This concludes the proof.

F Proof of Proposition 1

By Lemma 5 we then know ρ′ ≤ ρ
e1
≤ ρ2c, and the size of the support of XS′,2 is the number

of balls in the most loaded bin which is at least ln (n)−ln (2)

ln (ln (n))+ln ( 4
d )

. Using Lemma 4, we conclude

H(XS′,2) ≥ log ( ln (n)−ln (2)

ln (ln (n))+ln ( 4
d )

)− (ρ2
c ln (ρ2c)
ρ2c−1 − 1− ln (ρ2

c ln (ρ2c)
ρ2c−1 )) 1

ln (2) .

Using our previous results, we know that mini∈S′ p(X = i, Y = 2) ≥ mini∈S′ e1xi ≥ e1√
ρn ≥

2−c√
ρn .

Then, p(X ∈ S′, Y = 2) ≥ ( ln (n)−ln (2)

ln (ln (n))+ln ( 4
d )

)( 2−c√
ρn ) = ln (n)−ln (2)

(ln (ln (n))+ln ( 4
d ))
√
ρn2c

. Additionally:

p(X /∈ S′, Y = 2) =
∑
i∈Sc

m∑
j=1

p(X = i, Y = 2, E = j)

+
∑

i∈S,i/∈S′

m∑
j=1

p(X = i, Y = 2, E = j) (11)

=
∑
i∈Sc

m∑
j=1

p(X = i, Y = 2, E = j)

+
∑

i∈S,i/∈S′

m∑
j=2

p(X = i, Y = 2, E = j) (12)

≤
∑
i∈Sc

m∑
j=1

p(X = i, Y = 2, E = j)

+
∑
i∈S

m∑
j=2

p(X = i, Y = 2, E = j) ≤ 2

n
. (13)

We go from (11) to (12) by realizing that for any i ∈ S, p(X = i, Y = 2, E = 1) > 0 only if
Mx,1 = 2 and thus i ∈ S′. We simplify (12) by definition of U . As such, p(X ∈ S′|Y = 2) =

p(X∈S′,Y=2)
p(X∈S′,Y=2)+p(X/∈S′,Y=2) ≥

ln (n)−ln (2)

(ln (ln (n))+ln ( 4
d
))
√
ρn2c

ln (n)−ln (2)

(ln (ln (n))+ln ( 4
d
))
√
ρn2c

+ 2
n

= ln (n)−ln (2)

ln (n)−ln (2)+(ln (ln (n))+ln ( 4
d ))
√
ρ2c+1 .

Thus, we have shown thatH(XS′,2) ≥ log ( ln (n)−ln (2)

ln (ln (n))+ln ( 4
d )

)−(ρ2
c ln (ρ2c)
ρ2c−1 −1−ln (ρ2

c ln (ρ2c)
ρ2c−1 )) 1

ln (2)

and P (X ∈ S′, Y = 2) ≥ ln (n)−ln (2)

ln (n)−ln (2)+(ln (ln (n))+ln ( 4
d ))
√
ρ2c+1 .
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Using Lemma 3 we have:

H(Ẽ) ≥ H(X|Y = 2) ≥ P (X ∈ S′, Y = 2)(H(XS′,2))

≥
(

ln (n)− ln (2)

ln (n)− ln (2) + (ln (ln (n)) + ln ( 4
d ))
√
ρ2c+1

)
(

log (
ln (n)− ln (2)

ln (ln (n)) + ln ( 4
d )

)

−
(
ρ2c ln (ρ2c)

ρ2c − 1
− 1− ln (

ρ2c ln (ρ2c)

ρ2c − 1
)

)
1

ln (2)

)
=

(
1−

(ln (ln (n)) + ln ( 4
d ))
√
ρ2c+1

ln (n)− ln (2) + (ln (ln (n)) + ln ( 4
d ))
√
ρ2c+1

)
(

log (
ln (n)− ln (2)

ln (ln (n)) + ln ( 4
d )

)

−
(
ρ2c ln (ρ2c)

ρ2c − 1
− 1− ln (

ρ2c ln (ρ2c)

ρ2c − 1
)

)
1

ln (2)

)
. (14)

Since c = O(1) and d = Θ(1), this lower bound is asymptotically H(Ẽ) ≥ maxyH(X|Y = y) ≥
H(X|Y = 2) ≥ (1− o(1))(log (log (n))− log (log (log (n)))−O(1)).

Now when n ≥ ν(r, q, ρ, c, d), we can lower bound the (1− o(1)) term as:

1−
(ln (ln (n)) + ln ( 4

d ))
√
ρ2c+1

ln (n)− ln (2) + (ln (ln (n)) + ln ( 4
d ))
√
ρ2c+1

(15)

≥ 1−
(1 + r) ln (ln (n))

√
ρ2c+1

ln (n/2) + ln (ln (n))
√
ρ2c+1

(16)

≥ 1−
(1 + r)

√
ln (n/2)

√
ρ2c+1

ln (n/2) +
√

ln (n/2)
√
ρ2c+1

(17)

= 1− 1 + r

1 + ln (n/2)√
ρ2c+1

(18)

≥ 1− 1 + r

1 + q
(19)

We bound from (15) to (16) by using n ≥ e(
4
d )

1/r

which implies ln (ln (n)) + ln ( 4
d ) ≤ (1 +

r) ln (ln (n)). We go from (16) to (17) by using
√

ln (n/2) ≥ ln (ln (n)) when n ≥ 3. We bound

from (18) to (19) by using n ≥ 2eq
222(c+1)ρ. Next, we lower bound the term log

(
ln (n)−ln (2)

ln (ln (n))+ln ( 4
d )

)
.

log

(
ln (n)− ln (2)

ln (ln (n)) + ln ( 4
d )

)
(20)

≥ log

(
ln (n/2)

(1 + r) ln (ln (n))

)
(21)

≥ log
(√

ln (n/2)
)
− log (1 + r) (22)

≥ 0.5 log (0.5 log (n/2))− log (1 + r) (23)
≥ 0.5 log (log (n))− log (1 + r)− 1 (24)

We bound from (20) to (21) by using ln (ln (n)) + ln ( 4
d ) ≤ (1 + r) ln (ln (n)). We bound from (21)

to (22) using
√

ln (n/2) ≥ ln (ln (n)). We then substitute all of these bounds into our previous lower
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bound on H(Ẽ) (14) yielding:

H(Ẽ) ≥
(

1− 1 + r

1 + q

)(
0.5 log (log (n))− log (1 + r)

−O(1)− 1

ln(2)

(
ρ2c ln(ρ2c)

ρ2c − 1
− 1− ln

(
ρ2c ln (ρ2c)

ρ2c − 1

)))
=

(
1− 1 + r

1 + q

)
(0.5 log(log(n))− log(1 + r)−O(1)) .

G Proof of Corollary 1

G.0.1 Condition (a): Bounded Ratio

We know that maxx p(x)
minx p(x)

≤ ρ. Since
∑
x p(x) = 1, minx p(x) ≤ 1

n ≤ maxx p(x) and we have
maxx p(x)

1/n ≤ ρ ⇒ maxx p(x) ≤ ρ
n and similarly minx p(x) ≥ 1

ρn . Then using Theorem 1, when

n ≥ ν(r = 1, q = 3, ρ2, c, d = 1), H(Ẽ) ≥ maxyH(X|Y = y) ≥ 0.25 log (log (n))−O(1) with
high probability (where the O(1) term is a function of only ρ, c). As such, there exists an n0 (which
is a function of only ρ, c) such that for all n > n0, the causal direction is identifiable with high
probability.

G.1 Condition (b): Sampled Uniformly on the Simplex

We first show that when the distribution of X is uniformly sampled from the simplex, there exist a set
S that satisfies the assumptions of Theorem 1 with high probability.

Lemma 6. When the xi are sampled uniformly from the simplex, there exists a subset of the support
with size at least (e

− 1√
ρ − 1√

ρ − δ)n for which all xi are within a factor of
√
ρ from 1

n and make

up total probability mass ≥
(
e
− 1√

ρ − 1√
ρ − δ

)
1√
ρ , with probability > 1 − 2e−2δ

2n for ρ, n ≥ 1,
δ > 0.

Proof. Let us call a probability “small” if xi ≤ 1√
ρn . We want to show that with high probability (at

least 1−2e−2δ
2n), there are at most (1−e−

1√
ρ +δ)n small xi. Using Theorem 3 of [19], we know that

for each xi in a Dirichlet distribution with α = 1 (i.e., the uniform distribution over the probability
simplex) and support size n, P (xi > z) = (1− z)n−1 (This is by setting ai = z and aj = 0,∀j 6= i
and using the fact that P (xi = 0) = 0,∀i ∈ [n]). As such, P (xi ≤ z) = 1 − (1 − z)n−1. The
probability that xi is small is then equal to P (xi ≤ 1√

ρn ) = 1 − (1 − 1√
ρn )n−1. This value is

non-decreasing when n ≥ 1, and approaches 1− e−
1√
ρ as n approaches infinity. Hence when n ≥ 1,

the probability that any xi is “small” is upper-bounded by 1 − e−
1√
ρ . We want to show that the

outcome that there are more than (1− e−
1√
ρ + δ)n small xi will not happen with high probability. To

do this, we note that all xi in a symmetric Dirichlet distribution are negatively associated (this follows
from Lemma 9 in Section N). This implies that the probability that there are at least (1− e−

1√
ρ + δ)n

small xi is upper-bounded by the probability that there are at least that many xi when we treat the xi
as if they are i.i.d. random variables. This allows us to use Hoeffding’s inequality. Let Sn be the total
number of small xi and En be the expected number of small xi. Since En ≤ (1 − e−

1√
ρ )n, then

P (Sn > (1− e−
1√
ρ + δ)n) ≤ P (|Sn − En| > δn) < 2e−2δ

2n. As such, the probability that there
are at most (1− e−

1√
ρ + δ)n small xi is at least (1− 2e−2δ

2n).

Let us call an xi “big” if xi ≥
√
ρ

n . There are at most n√
ρ big xi, since otherwise their total probability

mass would exceed 1.

Next, consider the subset of xi that are neither “big” nor “small”. They are in the range [ 1√
ρn ,
√
ρ

n ].

We know that with high probability (1− 2e−2δ
2n) there are at most (1− e−

1√
ρ + δ)n small xi and
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at most n√
ρ big xi. This means our desired subset has size at least

(
n− (1− e−

1√
ρ + δ)n− n√

ρ

)
=(

e
− 1√

ρ − 1√
ρ − δ

)
n with probability at least 1− 2e−2δ

2n.

As such, if we set ρ = 25 and δ = 0.1, there exists a subset of the support of size ≥ (e
− 1√

25 −
1√
25
− 0.1)n ≥ 0.5n where all xi are within a factor of

√
25 = 5 from 1

n with probability >

1− 2e−2(0.1)
2n = 1− 2e−0.02n. Using Theorem 1, we conclude that when n ≥ ν(r = 1, q = 3, ρ =

25, c, d = 0.5), H(Ẽ) ≥ maxyH(X|Y = y) ≥ 0.25 log (log (n)) − O(1) with high probability
(where the O(1) term is a function of only c). As such, there exists an n0 (which is a function of only
c) such that for all n > n0, the causal direction is identifiable with high probability.

G.2 Condition (c): High Entropy

We show that when X has entropy within an additive constant of log (n), there exists a set S that
satisfies the assumptions of Theorem 1.

Lemma 7. For any distribution X with support size n and entropy ≥ log (n) − a, there exists a
subset S with all xi ∈ .[ 3

40n ,
22b

n ] for i ∈ S, and support size |S| ≥ n
22b+3 , where b = max{a, 2}.

Proof. Let us call an xi “large” if xi ≥ 22b

n , and µlarge be the total probability mass contributed by
large xi. The upper bound for the sum of the terms in the formula for H(X) corresponding to large
xi is µlarge log ( n

22b
). The upper bound for the sum of the terms in Shannon entropy corresponding

to xi that are not large is (1 − µlarge) log ( n
1−µlarge

). Since entropy is greater than log(n) − a and
b = max{a, 2}, we have that entropy is greater than or equal to log(n)− b as well. Then, for the total
entropy to be at least log(n)− b it must be true that µlarge log ( n

22b
) + (1− µlarge) log ( n

1−µlarge
) ≥

log (n) − b. It follows that 2bµlarge + (1 − µlarge) log (1− µlarge) ≤ b. For x ≥ 0, we have that
(1−x) log(1−x) ≥ −1.5x. Then we have 2µlarge(b−0.75) ≤ b, or equivalently µlarge ≤ b

2(b−0.75) .
Since b ≥ 2, we have that µlarge ≤ 0.8.

Let us call an xi “small” if it is≤ 0.075
n , and let µsmall be the total probability mass in small xi. Even if

all xi were small (although that would be impossible), µsmall ≤ 0.075. As such, µsmall + µlarge ≤ 7
8 .

This means at least 1
8 total probability mass belongs to xi ∈ [ 0.075n , 2

2b

n ]. Our subset S of X will be
all of these xi. Since every element in X is upper-bounded by 22b

n , S has a support size of at least
1
8

22b

n

= n
22b+3 .

We can therefore satisfy the conditions of Theorem 1 with d = 1
22max{a,2}+3 and ρ ≤

( 40
3 22max{a,2})2 ≤ 24max{a,2}+8. Using Theorem 1, we conclude that when n ≥ ν(r = 1, q =

3, ρ = 24max{a,2}+8, c, d = 1
22max{a,2}+3 ), H(Ẽ) ≥ maxyH(X|Y = y) ≥ 0.25 log (log (n)) −

O(1) with high probability (where the O(1) term is a function of only a, c). Hence there exists an
n0 (a function of only a, c) such that for all n > n0, the causal direction is identifiable with high
probability.

H Proof of Theorem 2

Given the random variables Ui, i ∈ [n] with marginal distributions pi(ui), let p(u1, u2, . . . , un)
be a valid coupling. Then p satisfies pi(ui) =

∑
k 6=i
∑
uk∈[n] p(u1, u2, . . . , un) holds for all

i, ui. Therefore, for all i, ui, we can define Si,ui = {(uj)j 6=i : p(u1, u2, . . . un) > 0}. Si,ui
contains the coordinates in the coupling that contribute non-zero mass to satisfy the ith marginal
distribution, specifically the probability that variable Ui takes the value ui. Let us define the function
gi,ui((uj)j 6=i) := p(u1, . . . , un). Then equivalently, we can write pi(ui) =

∑
t∈Si,ui

gi,ui(t).

Consider a noisy version of the marginal distributions: Let p̂i be the noisy marginals where |p̂i(ui)−
pi(ui)| ≤ δ for all i, ui. Our strategy is to start with the coupling p(u1, . . . , un) and convert it to a
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Algorithm 1 Phase I

Input: Valid coupling pinit for the marginals {pi}i∈[n]. Noisy marginals {p̂i}
p← pinit.
Construct gi,ui , Si,ui , T

+
i , T

−
i from pinit for all i, ui.

while ∃i ∈ [n] s.t. T−i 6= ∅ do
Pick arbitrary hi,ui for all ui such that

0 ≤ hi,ui(t) ≤ gi,ui(t),∀t ∈ Si,ui ,∑
t∈Si,ui

hi,ui(t) = p̂i(ui).

Update p as follows:

p(u1, u2, . . . , un)← hi,ui((uj)j 6=i),∀(uj)j 6=i ∈ Si,ui (27)

Construct gi,ui , Si,ui , T
+
i , T

−
i from p for all i, ui.

end while
return p

coupling for the noisy marginals. Let us define T+
i (p) := {ui :

∑
k 6=i
∑
uk∈[n] p(u1, u2, . . . , un) <

p̂i(ui)}, T−i (p) := {ui :
∑
k 6=i
∑
uk∈[n] p(u1, u2, . . . , un) > p̂i(ui)}. In words, T+

i (p) shows the
coordinates of the ith noisy marginal which has excess mass compared to the mass induced by
coupling p. Similarly, T−i (p) shows the coordinates of the ith noisy marginal for which the coupling
p has more mass than needed. We update p in two stages: First, we update p so that T−i (p) = ∅.
In the second stage, we further update p so that T+

i (p) = ∅ and T−i (p) = ∅, which shows that the
updated p is a valid coupling for the noisy marginals p̂i. We finally bound the entropy of the new
coupling relative to the initial coupling we started with.

First we observe the following: Consider any ui ∈ T−i . Then there exists a function hi,ui(t) such that

0 ≤ hi,ui(t) ≤ gi,ui(t),∀t ∈ Si,ui , (25)∑
t∈Si,ui

hi,ui(t) = p̂i(ui). (26)

This is true since
∑
t∈Si,ui

gi,ui(t) = pi(ui) and p̂i(ui) < pi(ui),∀ui ∈ Ti. We can describe the

first phase as follows: For each i ∈ [n] and ui ∈ T−i , we pick an arbitrary hi,ui and update p to
match the entries of hi,ui . Notice that each update of p changes the corresponding h, g functions.
Our construction proceeds by updating these functions every time p is updated as given above. This
procedure is summarized in Algorithm 1.

Note that the size of T−i after an update is at least one less than the size of T−i before the update. To
see this, note that after the update in (27), ui /∈ T−i . Also by reducing elements of p, we can never
add a new element to T−i for any i by definition of T−i . Therefore, after at most

∑
i|T
−
i | applications

of the above update for the initial sets T−i , we have T−i = ∅,∀i ∈ [n]. Since there are at most n
elements in T−i and n such sets, the first phase terminates in at most n2 steps.

Let p be the output of Algorithm 1 in the rest of the proof. In the second phase, we consider the
updated T+

i . Our strategy here is to distribute the remaining mass in each marginal as its own
coupling and add this coupling to p that is the output of Algorithm 1. Let us represent the excess
probability mass in coordinate ui of marginal i relative to coupling p by ri,ui . Note that ri,ui(p) :=
p̂i(ui) −

∑
k 6=i
∑
uk∈[n] p(u1, u2, . . . , un) may increase at each step of the first phase. The exact

increase in this gap for each i, ui depends on the choice of hi,ui function at each step. However, we
can bound the total gap per marginal at the end of first phase as

∑
ui∈[n] ri,ui(p) ≤ δn2,∀i. Each

step of Algorithm 1 can add a mass of at most δ to each marginal at each step (it terminates after
at most

∑
i |T
−
i | steps) and at the beginning of first phase, each coordinate of each marginal has

at most δ excess mass (there are
∑
i |T

+
i | coordinates with excess mass). As such, there is at most
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∑
i δ|T

−
i |+

∑
i δ|T

+
i | ≤ δn2 total gap per marginal at the end of the first phase. Let p(u1, . . . , un)

be the output of Algorithm 1. [15] showed a greedy minimum entropy coupling algorithm that
produces a coupling with support at most n2. Let q(u1, u2 . . . , un) be the output of this greedy
algorithm when given the excess marginal mass as its input. Then we have that v := p + q is a
valid coupling for the noisy marginals. This is because, by feeding the greedy algorithm the excess
marginal mass, we guarantee that the marginals of v are correct. Moreover, all cells in the coupling
are in range [0, 1] as no cell in p or q has negative value and their sum has the correct marginals.

Next, define the distribution s : 2× [n]n → [0, 1] as follows:
s(0, u1, u2, . . . , un) = p(u1, u2, . . . , un), (28)
s(1, u1, u2, . . . , un) = q(u1, u2 . . . , un). (29)

From the argument above, it is easy to see that s is a valid probability distribution, i.e., it has
non-negative entries and its entries sum to 1.

We compare entropy of the obtained coupling v with entropy of s and that with entropy of the
initial coupling pinit. First, it is easy to see from concavity of entropy and Jensen’s inequality that
H(v) ≤ H(s). Let H̄ be the extended entropy operator that admits vectors outside the simplex as
input, for vectors whose entries are between 0 and 1: H̄(p(x)) = −

∑
x p(x) log(p(x)). We have

the following lemma that allows us to compare H̄(p) with H(pinit):
Lemma 8. Let p = [p1, p2, . . . , pn] be a discrete probability distribution. Let q = [q1, q2, . . . , qn]

be a non-negative vector such that qi ≤ pi,∀i ∈ [n]. Then H̄(q) ≤ H̄(p) + log(e)
e .

The proof is in Section I in the supplement.

From the lemma, we can conclude that H̄(p) ≤ H(pinit) + log(e)
e . Finally, the maximum entropy

contribution of q is when it induces uniform distribution over n2 states. Since the total mass of q is
δn2, we have

H̄(q) ≤ n2
(
δn2

n2
log

(
n2

δn2

))
(30)

= δn2 log

(
1

δ

)
(31)

Suppose δ ≤ 1
n2 log(n) . Then we can further bound H̄(q) ≤ 2 + log (log (n))

log (n) ≤ 2 + o(1) since

δ log
(
1
δ

)
≤ 2 log(n)+log(log(n))

n2 log(n) if δ < 1
n2 log(n) .

Bringing it all together, we obtain the following chain of inequalities:
H(v) ≤ H(s) = H̄(p) + H̄(q) (32)

≤ H(pinit) +
log(e)

e
+ 2 + o(1). (33)

This concludes the proof.

I Proof of Lemma 8

If pi < 1
exp(1) ,∀i, due to monotonicity of −p log(p) in p, we have H̄(q) ≤ H̄(p).

In general, no more than 2 states can satisfy pi > 1
exp(1) . Therefore, H̄(q) can only be larger than

H̄(p) due to two states. Let us call these two states p1, p2 without loss of generality. Reducing the
probability of any other state only gives a looser bound.

We can obtain the largest entropy increase by solving the following optimization problem:

max
p1,p2

1{p1>1/e}

(
log(e)

e
− p1 log

(
1

p1

))
+ 1{p2>1/e}

(
log(e)

e
− p2 log

(
1

p2

))
subject to p1 + p2 ≤ 1,

p1 ≥ 0, p2 ≥ 0

(34)
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Suppose p1 > 1/e and p2 < 1/e. Then the solution is simply to set p1 = 1 since this minimizes the
entropy contribution of p1. This gives a gap of log(e)

e . Due to symmetry, we only need to investigate
the case where p1 > 1/e and p2 > 1/e. In this case, we have the following optimization problem:

min
p1,p2

p1 log

(
1

p1

)
+ p2 log

(
1

p2

)
subject to p1 + p2 ≤ 1,

p1 ≥ 1/e, p2 ≥ 1/e

(35)

This is a concave minimization problem and the solution has to be at the boundary of the convex
constraint region. If p1 = 1/e, the maximum gap is obtained when p2 is maximized to p2 = 1− 1/e

which gives a gap that is strictly less than log(e)
e , hence we can discard this solution for the maximum

entropy gap. p2 = 1/e gives the same solution from symmetry. When p1 + p2 = 1, the problem
reduces to minimizing the binary entropy function, which again is minimized at the boundary. The
boundary in this case is where either p1 = 1/e or p2 = 1/e. Therefore, both probabilities being
greater than 1/e cannot yield a better bound.

J Proof of Lemma 1

Joint Probabilities. First, we bound the estimates of the entries of the joint distribution between X
and Y . Both X and Y have n states which we index as i = 1, . . . , n and j = 1, . . . , n respectively.
Hence the joint distribution has n2 states. Probability that X = i and Y = j is shown as pij .
Suppose N samples from N independent, identically distributed random variables are drawn as
{(xk, yk)}k∈[N ]. This yields the empirical probability estimates (I is the indicator function)

p̂ij =
1

N

N∑
k=1

I(xk = i& yk = j).

Note that each of these estimates are averages of Bernoulli random variables with success probability
pij . We also consider the marginal probability empirical estimates

p̂Xi =
1

N

N∑
k=1

I(xk = i)

and

p̂Yj =
1

N

N∑
k=1

I(yk = j).

which are also averages of N Bernoulli random variables (with success probabilities pXi and pYj
respectively).

Since these estimates are clearly correlated with one another, our approach will be to use concentration
results on individual entries of the joint distribution and then do a union bound over all n2 + 2n
probabilities. Note that I(xk = i & yk = j) = 1 with probability pij and 0 otherwise. Thus by
Hoeffding’s inequality [31],

P {|p̂ij − pij | ≥ t} ≤ 2 exp
(
−2t2N

)
. (36)

We can define an event A where all the probability estimates are within t of the truth:

A =

{
max

i,j∈1,...,n
|p̂ij − pij | ≤ t

}⋂{
max
i∈1,...,n

|p̂Xi − pXi | ≤ t
}⋂{

max
j∈1,...,n

|p̂Yj − pYj | ≤ t
}
.

Starting with (36) and taking the union bound over all n2 + 2n probabilities in the joint and marginal
distribution, we obtain

P(A) > 1− 2(n2 + 2n) exp
(
−2t2N

)
(37)

> 1− 4 exp(2 ln(n)− 2t2N).

12



Conditional Probabilities. Given the above bound on the estimates of the joint probabilities, we
formulate bounds on the conditional probability estimates. Recall that

P (X = i|Y = j) =
P (X = i, Y = j)

P (Y = j)
=

pij∑n
i=1 pij

.

Using the plug-in approach, we have

p̂i|j =
p̂ij
p̂Yj

.

Note that it is critical for p̂Yj to be bounded away from zero, otherwise a small error in p̂ij may cause
a large error in p̂i|j . In what follows, we set

α =
minj=1,...,n p

Y
j

2
.

α will naturally appear in the number of samples, and notably must depend on n. Note that the case
of
∑n
i=1 pij = 0 is allowable since if that is the case Y = j will never occur and corresponding

probability estimates will all be zero and the conditional probabilities will not be of interest.

Now consider any t < α, assume that eventA holds. We then have that all p̂Yj > pYj −t > 2α−t > α.
Combined with the fact that under event A, |p̂ij − pij | < t and t ≥ 0, it is easy to check that

p̂i|j − pi|j =
p̂ij
p̂Yj
− pij
pYj

<
pij + t

pYj − t
− pij
pYj

=
pijp

Y
j + tpYj − pijpYj + tpij

pYj (pYj − t)

<
tpYj + tpij

pYj α

<
2t

α
,

where the last inequality follows since pij < pYj by definition. Similarly,

pi|j − p̂i|j =
pij
pYj
− p̂ij
p̂Yj

<
pij
pYj
− pij − t
pYj + t

=
pijp

Y
j + tpij − pijpYj + tpYj

pYj (pYj + t)

<
tpYj + tpij

pYj 2α

<
t

α
,

hence
|p̂i|j − pi|j | <

2t

α
.

Since by (37) the event A holds with probability at least 1− 4 exp(2 log(n)− 2t2N), we have

P
(

max
i,j∈1,...,n

|p̂i|j − pi|j | ≥
2t

α

)
≤ 4 exp(2 ln (n)− 2t2N). (38)

The derivation of the bound for the conditional probability estimates in the other direction is similar
and relies on the same event A holding. Hence the probability the bounds hold in both directions
simultaneously remains P(A).
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Achieving error of δ = 1/(n2 ln (n)). Let α =
min{minx p(x),miny p(y)}

2 . Suppose we want 2t/α =

1/(n2 ln (n)). Then we need t = 1/(2n2α−1 ln (n)). Note that t < α as required above. Suppose
further that we want this to hold with probability at least 1− 4/n. By the above, we require

2 ln(n)− 2t2N < − ln(n)

3 ln(n) <
2N

4n4α−2 ln2(n)

6n4α−2 ln3(n) < N

Hence N needs to be Ω(n4α−2 ln3(n)).

K Proof of Theorem 3

From the equivalence between the minimum entropy coupling problem and the problem of finding
the exogenous variable with minimum entropy, the output of A({p̂(Y |X = x)}x) is the smallest
entropy of any exogenous variable for the causal model X → Y . Similarly, this claim holds for
A({p̂(X|Y = y)}y) as well. From Theorem 1, entropy in the direction Y → X scales with n using
p(X|Y = y). From Theorem 6 of [6], it can be seen that the given sampling error can induce an
entropy difference of at most o(1) in the conditional entropies. Hence, even with noisy conditionals,
maxy Ĥ(X|Y = y) scales with n, implying that A({p̂(X|Y = y)}y) scales with n. In the forward
direction, the true exogenous variable provides a valid coupling under the true joint distribution
without sampling noise. From Lemma 2, givenN samples, there exists a valid coupling in the forward
direction that is constant entropy away from the true exogenous variable. Hence A({p(Y |X = x)}x)
is constant. Since A({p(X|Y = y)}y) scales with n, the result follows.

L Proof of Theorem 4

We first show that the H(X|Y = 2) conditional entropy will have enough samples to be included
in the criterion listed in Theorem 4. As N = Ω(n2 log(n)), we have at least c1n2 log(n) sam-
ples for c1 = Θ(1). As shown in the proof of Theorem 1, p(Y = 2) = Ω( 1

n ) ≥ c4
n where

c4 = Θ(1). Following a rejection sampling approach, we use Hoeffding’s inequality to show
that if c1n2 log n samples are drawn from the joint distribution, then with probability 1 − o(1)
we will successfully draw Ω(n log (n)) independent samples from the distribution p(X|Y = 2).
Specifically, let Sn denote the number of samples (out of c1n2 log(n) total samples from the
joint distribution) for which Y = 2, and En = E[Sn] denote the expected number of such sam-
ples. We have En ≥ (c1n

2 log(n))( c4n ) = c1c4n log(n). Hence using Hoeffding’s inequality,

P
(
Sn <

c1c4n log(n)
2

)
≤ P

(
|Sn − En| > c1c4n log(n)

2

)
< 2e

− 2(c1c4n log(n))2

c1n
2 log(n) = 2e−2c1c

2
4 log(n) =

o(1). Hence Sn ≥ c1c4n log(n)
2 � n with probability 1− o(1). Thus the Ĥ(X|Y = 2), which we use

for identifiability, will have sufficient number of samples to be included in the criterion in Theorem 4.

We now show that each conditional entropy in the criterion in Theorem 4 will have error bounded
by a constant with high probability. Immediately following from Corollary 1.12 of [30], for a
distribution D with support size n, |H(D) − Ĥ(D)| ≤ 1 with probability 1 − e−n

c2 given a
sample of size at least c3n

log(n) where c2, c3 = Θ(1). Since we only calculate conditional entropy
estimates with ≥ n samples, the number of samples n � c3n

log(n) for all considered conditional
entropies. Hence the total probability of any computed conditional entropy estimate being off
by more than 1 is ≤ ne−n

c2
= o(1) by the union bound. Since by the proof of Theorem 1 we

know maxxH(X|Y = y) ≤ c � Ω(log(log(n))) ≤ H(X|Y = 2), it immediately follows that
maxx,p̂(X=x)N≥n Ĥ(Y |X = x) ≤ c + 1 � Ω(log(log(n))) − 1 ≤ maxy,p̂(Y=y)N≥n Ĥ(X|Y =
y).
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M Proof of Corollary 3

This generative model satisfies the assumptions of Theorem 3 following from the proof of Corollary
1. As such, under this generative model for sufficiently large n and N = Ω(n4α−2 log3 (n)) samples,
A({p̂(X|Y = y)}y) > A({p̂(Y |X = x)}x) with high probability.

We show a lower bound on α with high probability, under this generative model. As mentioned in the
proof of Corollary 1, under this generative model, for any i, P (xi ≤ z) = 1− (1− z)n−1. We aim
to show that with high probability, xi ≥ 1

n2 log(n) ,∀i ∈ [n] when n is sufficiently large.

We lower bound the probability of this not happening as (1 − (1 − 1
n2 log(n) )

n−1)n by the union

bound. Note that limn→∞
(1−(1− 1

n2 log(n)
)n−1)n

1/ log(n) = 1.

Hence for sufficiently large n the probability that there exists an xi < 1
n2 log(n) is upper bounded by

2
log(n) . Thus, we have a high probability lower bound for α. We substitute this for α in our lower
bound for the number of required samples in the previous paragraph. This yields that under this
generative model for sufficiently large n and N = Ω(n8 log5 (n)) samples, A({p̂(X|Y = y)}y) >
A({p̂(Y |X = x)}x) with high probability.

N Proof of Negative Association

Lemma 9. Let [xi]i∈[n] be a vector, uniformly randomly sampled from the probability simplex in n
dimensions. Then [xi]i∈[n] is negatively associated.

Proof. Let xi = zi∑
j zj

, where each zi is independent and identically distributed exponential random

variable with mean 1, i.e. distributed as Exp(1). Then [xi]i is a discrete probability distribution
uniformly randomly chosen from the simplex in n dimensions. We will show that xi are negatively
associated. The following argument is provided by [23] as an answer on the online forum https:
//mathoverflow.net/, which we reproduce here for completeness.

Consider the following theorem:

Theorem 5. [13] Let z1, z2, . . . , zn be n random variables with log-concave probability densities.
Then (z1, z2, . . . , zn) conditioned on

∑
i∈[n] zi are negatively associated.

Note that exponential distribution is log-concave. Hence the theorem is applicable in our setting.
Furthermore, the distribution induced on ( zi∑

j∈[n] zj
)i∈[n] is identical to the distribution induced on

(z1, z2, . . . , zn) conditioned on
∑
i∈[n] zi = 1. This concludes the proof.

O Additional Experiments and Experimental Details

O.1 Experimental Details

In this section, we provide the complete details of every experiment given in the main text, as well as
provide additional results that we were not able to present in the main text due to space constraints.

Sampling low-entropy exogenous variables: We use Dirichlet distribution to sample the distribu-
tion for the exogenous variable from the probability simplex. Dirichlet has the parameter α which
affects the entropy of the distribution obtained by sampling the corresponding Dirichlet distribution:
Smaller α values lead to sampling distributions with smaller entropy. Suppose we want to sample
distributions for E such that H(E) ≤ θ. Since a good α value for this θ is not known a priori, we use
the following adaptive sampling scheme: Suppose we want to sample N distributions for E such
that H(E) ≤ θ. We initialize with α(0) = 1 and obtain 10N samples from Dirichlet with parameters
α(0). If there are at least N samples out of 10N which has entropy less than θ, we are done. If not,
we set α(1) = 0.5α(0) and iterate until for a particular α(i) such that at least N out of 10N samples
satisfy the entropy condition.
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Figure 6: Histogram of H(Ẽ) when H(E) ≈ 0.5 log2(n). Yellow line shows x = 0.5 log2(n)

Details about Figure 2: We set E to have mn number of states where m,n are the number of
states of X and Y , respectively. It can be shown that this many number of states is sufficient to
obtain any joint distribution. We uniformly randomly sample the function f in the structural equation
Y = f(X,E). We also independently and uniformly randomly sample p(X) from the simplex, i.e.,
we obtain samples from Dirichlet distribution with parameter α = 1. For m = n = 40, we choose
20 values of θ, i.e., entropy thresholds for the exogenous variable E, uniformly spaced in the range
[0, log(m)]. For m 6= n, we choose 10 θ values in the range [0, log(max{m,n})].
When m 6= n, we use a mixture data as follows: We obtain 10000 samples from the graph X → Y
and we obtain 10000 samples from X ← Y . We operate on this mixed data. This is done to reflect
the fact that, there is no reason for the cause or the effect variable to have less or more number of
states. Accuracy shown in the figures reflect the fraction of times each algorithm correctly identifies
the true causal direction. Total entropy-based compares H(X) +H(E) and H(Y ) +H(Ẽ) where
E and Ẽ are the outputs of the greedy minimum entropy coupling algorithm in the direction X → Y
and X ← Y , respectively.

Details about Figure 3: We sample exogenous variable using the above adaptive sampling method
so that, for each value of n, we have H(E) ≤ 0.8 log(n). The other details are identical (e.g., 10000
samples for each configuration.) Due to the sampling method, we observe that most of the samples
are very close to H(E) ≈ 0.8 log(n). We then obtain the histogram plots for H(Ẽ), where Ẽ is the
output of the greedy minimum entropy coupling algorithm in the wrong direction. As observed, data
fits well to a Gaussian and is highly concentrated around 0.854 log(n).

Details about Figure 5: In this section, we introduce a latent confounder L. First, distribution of
L and distribution of E are sampled independently. Then the distributions p(X|l), p(Y |x, l, e) are
sampled uniformly randomly from the simplex for every configuration of x, l, e. We use the adaptive
sampling described above to sample E such that H(E) ≤ 2. Using the same sampling method,
we sweep through different entropy thresholds for the latent confounder L and sample such that
H(L) ≤ φ for φ ∈ {0.5, 1, 1.5, 2, 2.5, 3}. The settings for m,n and how data is mixed is identical to
the procedure used to obtain Figure 2: When m 6= n, we use uniformly mixed data from X → Y and
X ← Y . For each configuration, we obtain 1000 total number of samples and report the accuracy of
the method to identify the true causal direction.

O.2 Relaxing constant exogenous entropy assumption

As indicated in Section 4, we provide additional experiments for α = 0.2 and 0.5 in Figure 7 and
Figure 6, respectively. As can be seen, for both α values, i.e., when H(E) ≤ α log(n), H(Ẽ) highly
concentrates around β log(n) for some β > α.

O.3 Additional results on the finite sample regime

Figure 8 shows results on finite sample identifiability for the setting considered in the figure in the
main text, except with smaller H(E) ≤ ln(4).
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Figure 7: Histogram of H(Ẽ) when H(E) ≈ 0.2 log2(n). Yellow line shows x = 0.2 log2(n)
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Figure 8: Finite sample identifiability of the causal direction via entropic causality. (a) Probability
of correctly discovering the causal direction X → Y as a function of n and number of samples N ,
using the conditional entropies as the test. (b) Probability of correctly discovering the causal direction
X → Y using the greedy MEC algorithm to test the direction. (c) Samples N required to reach 95%
correct detection as a function of n, derived from the plots in Figure 8a and Figure 8b.
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Figure 9: Finite sample identifiability of the causal direction via entropic causality, where p(x) ∼
Dir(1) (uniform on the simplex). (a) Probability of correctly discovering the causal direction X → Y
as a function of n and number of samplesN , using the conditional entropies as the test. (b) Probability
of correctly discovering the causal direction X → Y as a function of n and number of samples N ,
using the greedy MEC algorithm to test the direction. (c) Samples N required to reach 98% correct
detection as a function of n, derived from the plots in Figure 9a and Figure 9b.

Results for p(X) drawn from Dir(1) are shown Figure 9, as described in the main text. We find that
the greedy MEC performance degrades to a level that is similar to the conditional entropy criterion.
This might be explained by the fact that if p(X|Y = y) are close to uniform, then the gap between
H(Ẽ) and H(X|Y = y) vanishes.
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5-state quantization
Threshold (× log support) 0.6 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 10 13 32 42 53 69 85
Accuracy (%) 90.0 61.5 53.1 54.8 56.5 58.5 57.6

10-state quantization
Threshold (× log support) 0.6 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 8 12 23 39 49 71 85
Accuracy (%) 87.5 66.7 60.9 53.8 51.0 52.1 57.6

20-state quantization
Threshold (× log support) 0.6 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 5 10 15 31 54 78 85
Accuracy (%) 60.0 70.0 73.3 54.8 48.1 48.7 55.3

Table 3: Performance on Tübingen causal pairs with low exogenous entropy in at least one direction.
Chosen based on majority voting on 5 random quantizations.

O.4 Additional Tuebingen Experiments

In this section, we perform additional experiments to evaluate the stability of the method to choice
of quantization on the Tuebingen dataset. Specifically, to quantize [a, b] into n intervals, we perturb
each quantization point {a + (b−a)i

n }i with a uniform noise in [− (b−a)
8n , (b−a)8n ]. For every pair,

this is done 5 times independently and the majority decision is taken. The results, which show
similar performance to Table 1 are shown in Table 3, demonstrating a degree of stability to choice of
quantization. We observe that perturbed quantization demonstrates better performance for 20−state
quantization, whereas it shows somewhat worse performance for the 5 and 10−state quantizations.
This indicates that more research is needed to determine the optimal quantization for a given dataset.
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