
Answers to Reviewer #1.1

Q1: Comparison to OpenTuner.2

A: We thank the reviewer for pointing out the OpenTuner project. OpenTuner identifies the importance of having3

domain-specific search techniques in auto-tuning. It was built to adaptively choose among domain-specific search4

techniques for general program tuning. In contrast, our focus is on NN model compilation rather than generic program5

tuning. Even though OpenTuner may be regarded as the state-of-the-art for other problems, AutoTVM is more widely6

accepted as the state-of-the-art in NN model compilation. Our technique is designed and validated specifically for the7

NN model compilation problem, and we are not claiming we advance the generic problem of program auto-tuning.8

Furthermore, our technical contribution is beyond the specific search strategies employed during auto-tuning, such as9

those used in OpenTuner. There can be multiple paths to advance the state-of-the-art of NN model compilation, and10

our work focuses on one of them. Finally, we find that OpenTuner is not directly applicable to our problem without11

non-trivial modifications. OpenTuner does not support optimizing PyTorch or TensorFlow models out-of-the-box and12

requires the user to manually create a configuration manipulator for the target program before optimization. However, it13

is non-trivial to create such a configuration manipulator for neural network components as their implementation details14

(e.g., tiling decisions) are often hidden away from end users. Even if we can create such a configuration manipulator,15

doing so for all tunable operators in a neural network seems time-consuming and tedious because there can be tens or16

hundreds of them. In contrast, AdaTune is closely coupled with AutoTVM, which automatically generates tunable code17

templates for neural network components. We will add a citation describing OpenTuner.18

Q2: Evaluation on larger NNs on Transformer and ResNet-50.19

A: We added additional experiments on Transformer and ResNet-50 in the appendix (also shown results below).20

AdaTune is 1.4-2.2X faster in optimization time while achieving comparable and sometimes better inference time21

than the baseline. We also observe that larger models do not necessarily indicate longer optimization time. Take the22

Transformer as an example. Since each layer of the model has the same model structure, AdaTune only needs to23

optimize it once and apply the same optimization strategy across all Transformer layers to reduce its latency.24

AutoTVM AdaTune Speedup
Resnet-18 22.6h 9.6h 2.4X
Resnet-50 20.0h 14.1h 1.4X
VGG-16 21.9h 16.7h 1.3X

SqueezenetV1 7.6h 5.8h 1.3X
Transformer (Enc.) 3.8h 2.8h 1.4X

Table 1: Optimization time on GPU.

AutoTVM AdaTune Speedup
Resnet-18 2.0h 1.0h 2.0X
Resnet-50 3.6h 1.7h 2.1X
VGG-16 18.9h 6.5h 2.9X

SqueezenetV1 1.2h 0.7h 1.7X
Transformer (Enc.) 8.4h 3.8h 2.2X

Table 2: Optimization time on CPU.
TVM AutoTVM AdaTune

Resnet-18 1.53ms 1.38ms 1.38ms
Resnet-50 4.82ms 4.37ms 4.37ms
VGG-16 3.95ms 3.86ms 3.86ms

SqueezenetV1 2.93ms 0.65ms 0.63ms
Transformer (Enc.) 78.15ms 52.25ms 47.46ms
Table 3: Inference time comparison on GPU.

TVM AutoTVM AdaTune
Resnet-18 79.24ms 52.64ms 52.64ms
Resnet-50 217.12ms 115.76ms 115.68ms
VGG-16 884.94ms 442.01ms 438.68ms

SqueezenetV1 14.41ms 11.36ms 11.25ms
Transformer (Enc.) 2897.27ms 1620.88ms 1607.67ms

Table 4: Inference time comparison on CPU.

Q3: "It is not clear from the text how EI is used to select a promising plan. Is it the entire fitness function or part of it?"25

A: We use the same diversity-aware function as the one used in AutoTVM, which is the addition of two terms: one is26

for the runtime cost estimate and the other considers the diversity when selecting candidates. We replace the run time27

cost part with EI and keep the second term unchanged to have a fair comparison.28

Q4: "Figure 11 and 12, shouldn’t the orange line climb up to the peak GFLOP plan faster?"29

A: Thanks for pointing out. Since orange and red are similar colors, we accidentally switched the RFEI+CSA+AE and30

RFEI+CSA+DE label when generating the shared legend as a separate picture. We will use more distinguishable colors.31

Answers to Reviewer #2.32

Q1: "Whether Fig.8 is on GPU or CPU. I would like to see all these comparisons on both CPU and GPU."33

A: Fig.8’s result is on GPU. In the appendix (Table 1-4 and Figure 14-17), we included optimization time and inference34

time on both CPU and GPU. For the hardware measurement vs. space searching cost ratio on GPU (ResNet-18), it is35

28% : 72% (22.6h) for the baseline and 44% : 56% (9.6h) for AdaTune. AdaTune reduces the hardware measurement36

time by 1.5X and reduces the space searching cost by 3X. Together it speedups the optimization by 2.4X.37

Answers to Reviewer #3.38

We thank the reviewer for the positive feedback and for highlighting the significance of our work.39


