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A Details of numerical experiments

A.1 General training details

All models studied in the paper are trained with squared loss and /5 regularization. For multi-class
datasets such as FMNIST, one-hot encoded labels are used for training. All models discussed in
the paper use ReLLU non-linearity. Fully-connected models are initialized according to mean-field
parameterization [8, 9, 7]. All neural networks are optimized with SGD with 0.9 momentum. The
learning-rate evolves according to the cosine rule

tm 1
7 135) (M

where Irg = 1072 and T' = 750 is the total number of training epochs. To ensure the stability of the
optimization for wide models, we use 15 linear warm-up epochs in the beginning.

Iry = lro max((1 + cos(

When N > 1, training RF and NT with SGD is unstable (unless extremely small learning-rates are
used). This makes the optimization prohibitively slow for large datasets. To avoid this issue, instead
of SGD, we use conjugate gradient method (CG) for optimizing RF and N'T. Since these two models
are strongly convex °, the optimizer is unique. Hence, using CG will not introduce any artifacts in the
results.

In order to use CG, we first implement a function to perform Hessian-vector products in TensorFlow
[1]. The function handle is then passed to scipy.sparse.cg for CG. Our Hessian-vector product code
uses tensor manipulation utilities implemented by [3].

Unfortunately, scipy.sparse.cg does not support one-hot encoded labels. To avoid running CG for
each class separately, when the labels are one-hot encoded, we use Adam optimizer [6] instead. When
using Adam, the learning-rate still evolves as (1) with Iry = 10~°. The batch-size is fixed at 10* to
encourage fast convergence to the minimum.

For NN, RF and NT, the training is primary done in TensorFlow (v1.12) [1]. For KRR, we generate
the kernel matrix first and directly fit the model in regular python. The kernels associated with
two-layer models are calculated analytically. For deeper models, the kernels are computed using
neural-tangents library in JAX [2, 10].

A.2 Synthetic data experiments

The synthetic data follows the distribution outlined in the main text. In particular,
x = (ui,2),  yi=p(uw),  u €RY z eRTY, @)

where u; and z; are drawn i.i.d from the hyper-spheres with radii r/dy and v/d respectively. We
choose

r=d"?  dy=d", 3)
where d is fixed to be 1024 and ) = % We change « in the interval {0, . ..,0.9}. For each value of
we generate 229 training and 10* test observations.

The function ¢ is the sum of three orthogonal components {; }3_; with ||¢;]l2 = 1. To be more
specific,

do—1 J+i
% i) i.4.d
pil@) oc Yo [Taw,  of A exp(1). (4)
=l k=j

>Note that all models are trained with 2 regularization.

SStrictly speaking, the model outlined in the main text requires z; to be generated from the hyper-sphere of
radius v/d — do. In order to work with round numbers, in our experiments we use v/d instead of v/d — do. The
numerical difference between these two choices is negligible.



This choice of (; guarantees that each ¢; is in the span of degree ¢ + 1 spherical harmonics.

In the experiments presented in Figure 2, for NN and NT, the number of hidden units N takes
30 geometrically spaced values in the interval [5,10%]. NN models are trained using SGD with
momentum 0.9 (the learning-rate evolution is described above). We use batch-size of 512 for the
warm-up epochs and batch-size of 1024 for the rest of the training. For RF, NV takes 24 geometrically
spaced values in the interval [100, 711680]. The limit N = 711680 corresponds to the largest model
size we are computationally able to train at this scale. All models are trained with ¢5 regularization.
The ¢y regularization grids used for these experiments are presented in Table A.1. In all our
experiments, we choose the /5 regularization parameter that yields the best test performance.” In
total, we train approximately 10000 different models just for this subset of experiments.

In Figure 3 of the main text, we compared the generalization performance of NTK KRR with NN.
We use the same training and test data as above to perform this analysis. The number of training data
points, n, takes 24 different values ranging from 50 to 10°. The number of test data points is always
fixed at 102,

Table A.1: Hyper-parameter details for synthetic data experiments.

Experiment Model {5 Regularization grid
NN {10%}2Y | «; uniformly spaced in [—8, —4]
Approximation error (Fig2) NT {10%};7,, o; uniformly spaced in [—4, 2
RF {10%}]Z,, a; uniformly spaced in [—5, 2
o . NN {10%}2% |, o; uniformly spaced in [—8, —2]
Generalization error (Fig 3) —rierg {10%}]7,, a; uniformly spaced in [0, 6]

A.3 High-frequency noise experiment on FMNIST

In effort to make the distribution of the covariates more isotropic, in this experiment, we add
high-frequency noise to both the training and test data.

Let x € R*** be an image. We first remove the global average of the image and then add high-
frequency Gaussian noise to @ in the following manner:

1. We convert x to frequency domain via Discrete Cosine Transform (DCT II-orthogonal to be
precise). We denote the representation of the image in the frequency domain & € R**¥,

2. We choose a filter F' € {0,1}***. F determines on which frequencies the noise should be
added. The noise matrix Z is defined as Z () F where Z € R*** has i.i.d N(0, 1) entries.

3. We define &,,0isy = @& + 7(||2||/|| Z||) Z. The constant T controls the noise magnitude.

4. We perform Inverse Discrete Cosine Transform (DCT III-orthogonal) on 4,5, to convert
the image to pixel domain. We denote the noisy image in the pixel domain as & ,;s,-

5. Finally, we normalize the @05y S0 that it has norm V.

In the frequency domain, a grayscale image is represented by a matrix & € R¥**, Qualitatively
speaking, elements (&), ; with small values of ¢ and j correspond to the low-frequency component of
the image and elements with large indices correspond to high-frequency components. The matrix F’
is chosen such that no noise is added to low frequencies. Specifically, we choose

1 k=i (k-4 < (k—1)
Fj= { 0 otherwise )

This choice of F' mirrors the average frequency domain representation of FMNIST images (see
Figure A.1 for a comparison). Figure A.2 shows the eigenvalues of the empirical covariance of the
dataset for various noise levels. As discussed in the main text, the distribution of the covariates
becomes more isotropic as more and more high-frequency noise is added to the images.

"Due to the large size of the test set, choosing these hyper-parameter based on the test set performance has a
negligible over-fitting effect. In addition, in studying the approximation error overfitting is not relevant.



Figure A.3 shows the normalized squared loss and the classification accuracy of the models as more
and more high-frequency noise is added to the data. The normalization factor Ry = 0.9 corresponds

to the risk achievable by the (trivial) predictor {Qj (:1:)] =0.1.
1<5<10

Noise Filter F
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Figure A.1: Left frame: the pictorial representation of the filter matrix F' used for the FMNIST
experiments. The matrix entries with value zero are represented by color blue while the entries
with value one are represented by red. Coordinates on top left-hand side correspond to lower
frequency components while coordinates closer to bottom right-hand side represent the high-frequency
directions. Right frame: the absolute value of the frequency components of FMNIST images averaged
over the training data. The projection of the dataset into the low-frequency region chosen by the filter
retains over 95% of the variation in the data.

The Effect of High-Frequency Noise on the Eigenvalues of the Data
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Figure A.2: The eigenvalues of the empirical covariance matrix of the FMNIST training data. As the
noise intensity increases, the distribution of the eigenvalues becomes more isotropic. Note that due to
the conservative choice of the filter F', noise is not added to all of the low-variance directions. These
left-out directions corresponds to the small eigenvalues appearing in the left-hand side of the plot.

A.3.1 Experiment hyper-parameters

For NT and NN, the number of hidden units N = 4096. For RF, we fix N = 321126. These
hyper-parameter choices ensure that the models have approximately the same number of trainable
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Figure A.3: The normalized test squared error (left) and the test accuracy (right) of the models trained
and evaluated on FMNIST data with high-frequency noise.

High-Frequency Noise on FMNIST Images High-Frequency Noise on CIFAR Images

Figure A.4: Left: FMNIST images with various high-frequency noise levels. Right: CIFAR-2 images
with various levels of high-frequency Gaussian noise. The images are converted to grayscale to make
the covariate dimension manageable.

parameters. NN is trained with SGD with 0.9 momentum and learning-rate described by (1). The
batch-size for the warm-up epochs is 500. After the warm-up stage is over, we use batch-size of
1000 to train the network. Since CG is not available in this setting, N'T and RF are optimized using
Adam for T' = 750 epochs with batch-size of 10%. The /5 regularization grids used for training these
models are listed in Table A.2.

A.4 High-frequency noise experiment on CIFAR-2

We perform a similar experiment on a subset of CIFAR-10. We choose two classes (airplane and cat)
from the ten classes of CIFAR-10. This choice provides us with 10* training and 2000 test data points.
Given that the number of training observations is not very large, we reduce the covariate dimension by
converting the images to grayscale. This transformation reduces the covariate dimension to d = 1024.

Figure A.5 demonstrates the evolution of the model performances as the noise intensity increases. In
the noiseless regime (7 = 0), all models have comparable performances. However, as the noise level
increases, the performance gap between NN and RKHS methods widens. For reference, the accuracy
gap between NN and NT KRR is only 0.6% at 7 = 0. However, at 7 = 3, this gap increases to
4.5%. The normalization factor Ry = 0.25 corresponds to the risk achievable by the trivial estimator
j(x) = 0.5.
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Figure A.5: Normalized test squared error (left) and test classification accuracy (right) of the models
on noisy CIFAR-2. As the noisy intensity increases, the performance gap between NN and RKHS
methods widens. For reference, the accuracy gap between NN and NT KRR is only 0.6% at 7 = 0.
However, at 7 = 3, this gap increases to 4.5%. For finite-width models, NV is chosen such that
the number of trainable parameters is approximately equal across the models. For NN and NT,
N = 4096 and for RF, N = 4.2 x 10%. We use the noise filter described in (5).

A.4.1 Experiment hyper-parameters

For NT and NN, the number of hidden units N = 4096. For RF, we fix N = 4.2 x 10°. These hyper-
parameter choices ensure that the models have approximately the same number of trainable parameters.
NN is trained with SGD with 0.9 momentum and learning-rate described by (1). The batch-size is
fixed at 250. N'T is optimized via CG with 750 maximum iterations. The /5 regularization grids used
for training these models are listed in Table A.2.

Table A.2: Details of regularization parameters used for high-frequency noise experiments.

Dataset Model {5 Regularization grid

NN {10%}20, " «; uniformly spaced in [—6, —2]
NT {10%}2Y | «v; uniformly spaced in [—5, 3
FMNIST ~RF {10%}2Y | «v; uniformly spaced in [—5, 3

NT KRR {10%}?Y,, a; uniformly spaced in [-1,5

i=

RF KRR  {10%}77,, a; uniformly spaced in [—1,5

NN {10%}20, " «; uniformly spaced in [—6, —2]
NT {10%}2Y, | ov; uniformly spaced in [—4, 4]
CIFAR-2 “RF {10%}1%,, «v; uniformly spaced in [—2, 10]

NT KRR {10%}?, «a; uniformly spaced in [—2,4

i=

RF KRR {10%}?Y,, a; uniformly spaced in [—2,4

=




A.5 Low-frequency noise experiments on FMNIST

To examine the ability of NN and RKHS methods in learning the information in low-variance
components of the covariates, we replace the low-frequency components of the image with Gaussian
noise. To be specific, we follow the following steps to generate the noisy datasets:

1. We normalize all images to have mean zero and norm /d.

2. Let Dyyqin denote the set of training images in the DCT-frequency domain. We compute the
mean 4 and the covariance X of the elements of Dy,.q4p,.

3. We fix a threshold o € N where 1 < o < k.

4. Let  be an image in the dataset (test or train). We denote the representation of x in the
frequency domain with &. For each image, we draw a noise matrix z ~ N (u, ). We have

[Enoiny], . = 4 P 07 <0
noisy|; ; i’i,j otherwise
5. We perform IDCT on :i:noisy to get the nOiSy image Lnoisy-

The fraction of the frequencies replaced by noise is a2 /k?.
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Figure A.6: Normalized test squared error (left) and test classification accuracy (right) of the models
on FMNIST with low-frequency Gaussian noise.

A.5.1 Experiment hyper-parameters

For neural networks trained for this experiment, we fix the number of hidden units per-layer to
N = 4096. This corresponds to approximately 3.2 x 105 trainable parameters for two-layer networks
and 2 x 107 trainable parameters for three-layer networks. Both models are trained using SGD with
momentum with learning rate described by (1) (with Irg = 10~2). For the warm-up epochs, we use
batch-size of 500. We increase the batch-size to 1000 after the warm-up stage. The regularization
grids used for training our models are presented in Table A.3.

A.6 Low-frequency noise experiments on CIFAR-10

To test whether our insights are valid for convolutional models, we repeat the same experiment for
CNN s trained on CIFAR-10. The noisy data is generated as follows:

1. Let Dyyqin denote the set of training images in the DCT-frequency domain. Note that
CIFAR-10 images have 3 channels. To convert the images to frequency domain, we apply
two-dimensional Discrete Cosine Transform (DCT-II orthogonal) to each channel separately.
We compute the mean p and the covariance X of the elements of Dy,.qin -

2. We fix a threshold o € N where 1 < o < 32.

3. Let & € R32%32%3 be an image in the dataset (test or train). We denote the representation
of x in the DCT-frequency domain with & € R32*32X3, For each image, we draw a noise



matrix z ~ N (u, ¥). We have

Bony] = { s g <a
noisyl; ik Z;;r  otherwise

4. We perform IDCT on &,y to get the noisy image Troisy-

5. We normalize the noisy data to have zero per-channel mean and unit per-channel standard
deviation. The normalization statistics are computed using only the training data.

We use Myrtle-5 architecture for our analysis. The Myrtle family is a collection of simple light-weight
high-performance purely convolutional models. The simplicity of these models coupled with their
good performance makes them a natural candidate for our analysis. Figure A.7 describes the details
of this architecture. We fix the number of channels in all convolutional layer to be N = 512. This
corresponds to approximately 7 x 10® parameters. Similar to the fully-connected networks, our
convolutional models are also optimized via SGD with 0.9 momentum (learning rate evolves as (1)
with [rg = 0.1 and T = 70). We fix the batch-size to 128. To keep the experimental setting as simple
as possible, we do not use any data augmentation for training the network.

3x3 Conv RelU 3x3Conv RelU 2x2 AvgPool & 3 x3 Conv RelU 2x2 AvgPool ¢ 3x3 Conv RelU 2x2 AvgPool & 2x2 AvgPool & 2x2 AvgPool

Figure A.7: Details of Myrtle-5 architecture. The network only uses convolutions and average
pooling. In particular, we do not use any batch-normalization [5] layers in this network. The figure is
borrowed from [11].
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Figure A.8: Performance of Myrtle-5 and KRR with convolutional neural tangent kernel (CNTK)
on noisy CIFAR-10. CNTK is generated from the Myrtle-5 architecture using neural-tangents JAX
library. When no noise is present in the data, the CNN achieves 87.7% and the CNTK achieves
77.6% classification accuracy. After randomizing only 1.5% of the frequencies (corresponding to
a = 4) CNTK classification performance falls to 58.2% while the CNN retains 84.7% accuracy.

Table A.3: Details of regularization parameters used for low-frequency noise experiments.

Dataset Model {5 Regularization grid
NN depth 2 {10%}2Y,, o; uniformly spaced in [—6, —2
NN depth 3 {10%}]Y,, a; uniformly spaced in [—7, —5

FMNIST  NTK KRR depth 2 {10%}2Y | «; uniformly spaced in [—1, 5

NTK KRR depth 3 {10% 2%, v; uniformly spaced in |—4, 3
Linear model {10%}7Y,, «; uniformly spaced in [—1, 5

1=

Myrtle-5 {10%}19,, a; uniformly spaced in [—5, —2]
KRR (Myrtle-5 NTK)  {10%}?Y, «; uniformly spaced in [—6, 1]

1=

CIFAR-10




Noise Effect on Images

Figure A.9: The effect of low-frequency noise for various cut-off thresholds, . The left panel
corresponds to the noisy FMNIST images and the right panel corresponds to CIFAR-10 images. In
order to plot CIFAR-10 images, we rescale them to the interval [0, 1].

B Technical background on function spaces on the sphere

B.1 Functional spaces over the sphere

Ford > 1, we let S=1(r) = {z € R? : ||z|2 = r} denote the sphere with radius 7 in RY. We
will mostly work with the sphere of radius /d, Sdil(\/a) and will denote by p4_1 the uniform
probability measure on S¢~1(+v/d). All functions in the following are assumed to be elements of
L?(S?*1(v/d), juq_1), with scalar product and norm denoted as (-, - )z> and || - || 2:

(f.g)ie = / f(@) 9(@) a1 (d) ©)
54-1(v/a)

For { € Z>g, let f/d,g be the space of homogeneous harmonic polynomials of degree £ on R? (i.e.
homogeneous polynomials ¢(x) satisfying Ag(x) = 0), and denote by Vg, the linear space of

functions obtained by restricting the polynomials in f/d, o to S?71 (\/E) With these definitions, we
have the following orthogonal decomposition

LS (Vd), pra1) = P Var - @)
£=0
The dimension of each subspace is given by

dim(Vye) = B(d, ¢) =

20 +d—2(0+d—3
Htrd-2 (+ ) @®)

l ‘-1
For each ¢ € Z>q, the spherical harmonics {Y}?}ls je<B(d,r) form an orthonormal basis of Vj s

d d
(Vo V)12 = 610k
Note that our convention is different from the more standard one, that defines the spherical harmonics
as functions on S~1(1). It is immediate to pass from one convention to the other by a simple scaling.

We will drop the superscript d and write Y, ; = Yé(j) whenever clear from the context.
We denote by Py, the orthogonal projections to V ; in L2(S?~*(v/d), pta—_1). This can be written in

terms of spherical harmonics as
B(d,k)

Prf(@) = Y (f, Vi) L2 Yia(@). ©)

=1

10



We also define P<, = Zi:o Pe.Psy=T—-Pey=3 7", PrandPy=Pcy 1, Poy=Psyy.
B.2 Gegenbauer polynomials

The ¢-th Gegenbauer polynomial di) is a polynomial of degree /. Consistently with our convention
for spherical harmonics, we view Qéd) as a function Qﬁd) : [—=d,d] — R. The set {di)}gzo forms an

orthogonal basis on L?([—d, d], fi},_,), where ji}_, is the distribution of \/d(x, e;) when & ~ p1q4_1,
satisfying the normalization condition:

d 2 (d—
d d W2 d ¢ (d=3)/2
/ QP (1) Q;- '(#)dp_, _dw / QW (1) Q' (1) <1 - ﬁ) dt
—d d—1 (10)
0
B(d, k) Ik
where we denoted wg_; = ( v /2) the surface area of the sphere S¢~1(1). In particular, these

polynomials are normalized so that Qe ( )=1.

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v € S¥~1(1/d)
and consider the subspace of V; formed by all functions that are invariant under rotations in R that
keep v unchanged. It is not hard to see that this subspace has dimension one, and coincides with the

span of the function Qéd) (v, -)).

We will use the following properties of Gegenbauer polynomials

1. Forx,y € S*(+/d)

1
(@70, QU (s Mz = g QL (@) an
2. Forz,y € S 1(V/d)
| BUR)
d d d)
ey = g L W) (12)
3. Recurrence formula
k+d—2
Q(d)() WQk () + m@gﬂﬂﬂ- (13)

4. Rodrigues formula

P((d - 1)/2) 120Gz Ak, 2\ k32
(1) = (-1/2)" (k+(d_1)/2)(1_d7) () (- 2) :
(14)

Note in particular that property 2 implies that —up to a constant— Q,(Cd) ({x,y)) is a representation of
the projector onto the subspace of degree -k spherical harmonics

(Puf)@) =Bld.k) [ Qi (. 9)) S () pa-r(dy) (1)

B.3 Hermite polynomials

The Hermite polynomials {Hey}r>o form an orthogonal basis of L?(R,~), where y(dz) =

e/ de/ V2m is the standard Gaussian measure, and Hey has degree k. We will follow the
classical normalization (here and below, expectation is with respect to G ~ N(0, 1)):

E{He;(G)He,(G)} = k! 65, . (16)

11



As a consequence, for any function g € L?(R, 7y), we have the decomposition

o) =3 "D e, w), ulg) = E{g(6) Hen(@)) a7)
k=0

Notice that for functions g that are k-weakly differentiable with ¢(*) the k-th weak derivative, we
have

1k (9) = Ec[g™(G)). (18)

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polynomials
introduced in the previous section. Indeed, the Gegenbauer polynomials are constructed by Gram-
Schmidt orthogonalization of the monomials {xk} k>0 with respect to the measure /1(11_1, while
Hermite polynomial are obtained by Gram-Schmidt orthogonalization with respect to . Since
Ak, = v (here = denotes weak convergence), it is immediate to show that, for any fixed integer k,

: (d) 1/2v _ 1
Jim Coeff{Q} (Vdz) B(d, k)'/?} = Coeff { Ok Hey (z )} : (19)
Here and below, for P a polynomial, Coeff{P(x)} is the vector of the coefficients of P.

B.4 Tensor product of spherical harmonics

We will consider in this paper the product space
Q

pst =] s% " (Vd,), (20)
g=1
and the uniform measure on PSd, denoted g = fig, 1 @ ... @ plag-1 = ®q€[Q] pd,—1, Where we

recall j14,—1 = Unif(S?~1(,/d,)). We consider the functional space of L?(PS®, ju4) with scalar
product and norm denoted as (-, )z and || - || p2:

(f,9)r> = / f(®@)g(T) pa(dz).

For € = (¢1,...,0g) € Zgo, letVEi=Vy,,®...® VdQ,gQ be the span of tensor products of @
homogeneous harmonic polynomials, respectively of degree £, on R% in variable x,. Denote by

V}f’ the linear space of functions obtained by restricting the polynomials in f/ld to PS?. With these
definitions, we have the following orthogonal decomposition

L*(Ps% ua) = @ V& (21)
ISAN

The dimension of each subspace is given by

Q
B(d, £) = dim(V2) H (dg, L),

where we recall

B(d’g):2£+d—2(€+d—3).

L (-1

We recall that for each ¢ € Z>¢, the spherical harmonics {Yg(jd) } je[B(d,¢)) Torm an orthonormal

basis of V(d) on S4-1 (\/g) Similarly, for each £ € Zgo, the tensor product of spherical harmonics

{Ye s Jse[B(d.¢)) form an orthonormal basis of V2, where s = (s1,...,50) € [B(d,£)] signify
€ [B(dg,¢y)| forg=1,...,Q and

Q
Yd _Y(dl) Y(dQ) Y(dQ) _ Y(dq)

£1,s81 £2,82 lg,sqQ Ly,sq”
q=1
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We have the following orthonormalization property

Q
dq
<}/£(,1s’ 1/lt’l,s'> = H <}/Z( sq)’ }/E( s!

q=1

Q
= H 004,01 05,5, = Op./0s,s.
1

q=

a)
SR

We denote by Py the orthogonal projections on de in LQ(PS"’7 tta). This can be written in terms of
spherical harmonics as

Pk‘f<f) = Z <f, Yk-d,s>L2 Ylg,s (f) (22)

s€[B(d,k)]

We will denote for any Q C Zgw Pg the orthogonal projection on Py, o V&, given by

Po=> Pg.

keQ

Similarly, the projection on Q°, the complementary of the set Q in Zgo, is given by

Poe =) Pg.

kZQ
B.5 Tensor product of Gegenbauer polynomials

We recall that /i, ; denotes the distribution of v/d(z, e4) when = ~ Unif (S~ (1/d)). We consider
similarly the projection of PS? on one coordinate per sphere. We define

Q
Y= Tl-dgdg, Ry =ih @ @ g, =), 1, (23)
g=1 g=1

and consider L2 (ps<, fily).
Recall that the Gegenbauer polynomials {Ql(f) }>o form an orthogonal basis of L*([—d, d], i}_,).

Define for each k € Zgo, the tensor product of Gegenbauer polynomials

Q
Q(dl) ® Q’(:(i?q) — ® ng‘iq) (24)
q=1

We will use the following properties of the tensor product of Gegenbauer polynomials:

Lemma 1 (Properties of products of Gegenbauer). Consider the tensor product of Gegenbauer
polynomials {Qg}kezq defined in Eq. (24). Then
>0

(a) The set {Q¢}, cz@ forms an orthogonal basis on L2(ps?, i), satisfying the normalization
>0

condition: for any k, k' € Zgo,

1

<ka Qk’> (psd) = m 5k,k’ (25)

(b) Forz = (ZWY,...,. 29 andg = (gV,...,5?) € PS%, and k, k' € Z>0,

<Qﬁ (1@ eer) @ ({F?. Vaeia) >L2(Psd)

(26)
=gz o G (@5 eia))
(c) For® = (ZY,.... 29 andg = (g, ... y(@) e PS? and k € Zgo,
Qg ({<E(q)vy(q)>}qE[Q]) Z Yk s Yk s( ) (27)

7

seB(d k)
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Notice that Lemma 1.(c) implies that Qﬁ is (up to a constant) a representation of the projector onto
the subspace V,g

Pufl@) = Bla.k) [ (1@ 5 seie)) F@nalds).

Proof of Lemma 1. Part (a) comes from the normalization property (10) of Gegenbauer polynomials,

<kaQk’> < (‘{\/»q €q;- }qG[Q]) ’Qk’ ({\/Tz €q>° }qE[Q]) >
(i ( sten)) Q7 (Vaiten)) )

L2(Ps9)

Q
1;[ L2(8%(v/da))
Q
- 5@, 5

T B(d,k) *
where the {e,},¢[q] are unit vectors in R% respectively.

Part (b) comes from Eq. (11),
(@ (1@ hera) @ (17 hiei@1) )

Q
— 1:[ <Q,(€‘j") (@(q)’ .>> 7 ;C‘zfz) (@(@7 .>> >L2(qu71(\/@))
:ﬁwékq’% (@ << @, g )>>

1
“BdR Sty Qf ({@(q),?(‘”ﬂqe@]) ’

while part (c¢) is a direct consequence of Eq. (12).

B.6 Notations

Throughout the proofs, O4( - ) (resp. o4(-)) denotes the standard big-O (resp. little-o) notation,
where the subscript d emphasizes the asymptotic variable. We denote Ogp( - ) (resp. ogp(-)) the
big-O (resp. little-0) in probability notation: hj(d) = Ogp(ha(d)) if for any € > 0, there exists
C. > 0and d. € Z~, such that

P(|h1(d)/h2(d)| > C:) < e, vd > d.,

and respectively: h1(d) = og.p(ha(d)), if h1(d)/h2(d) converges to 0 in probability.

We will occasionally hide logarithmic factors using the Ogy( - ) notation (resp. 4(-)): hy(d) =
Oa(ha2(d)) if there exists a constant C' such that h; (d) < C(log d)ha(d). Similarly, we will denote
Og,p(-) (resp. 64.p( - )) when considering the big-O in probability notation up to a logarithmic factor.

Furthermore, f = wy(g) will denote f(d)/g(d) — oo

C General framework and main theorems

In this section, define a more general model than the model considered in the main text. In the general
model, we will assume the covariate vectors will follow a product of uniform distributions on the
sphere, and assume a target function in L? space. We establish more general versions of Theorems 1,
2, 3 on the two-spheres cases in the main text as Theorems 1, 2, 3. We will prove Theorems 1, 2, 3
in the following sections. At the end of this section, we will show that Theorems 1, 2, 3 will imply
Theorems 1, 2, 3 in the main text.

14



C.1 Setup on the product of spheres

Assume that the data « lies on the product of ) spheres,

T = (m(l), . .,m(Q)) € H St~ (r

q€(Q]

where d, = d" andr, = datra)/2 Letd = (dy,. .. ydg) = (d™,...,d")and kK = (K1,. ..

where 77, > 0 and k4 > 0 for g = 1,...,Q. We will denote this space

Pt = ] s '(r
a€(Q]

Furthermore, assume that the data is generated following the uniform distribution on PSﬁ, ie

xR Unif (PS%) = ® Unif (S%~(ry)) = uf.
q€l@]

Q)

(28)

(29)

We have & € R” and |||, = Rwhere D = d™ +...+d" and R = (d" 1" 4 ... 4 dnetre)l/2,

We will make the following assumption that will simplify the proofs. Denote

= max + Kqy,
: qE[Q]{nq o)

(30)

then ¢ is attained on only one of the sphere, whose coordinate will be denoted g, i.e. § = g, + kg,

and 1, + kg < £ for g # qe.

Let o : R — R be an activation function and (w;);e[n] ~iia Unif(SP~1) the weights. We introduce

the random feature function class
Frr(W) = {fRF z;a) Zaa w;, x)VD/R) : a; € R,Vi € [N]},

and the neural tangent function class

Fnr(W) = {fRF(x;a) => (a;, @)’ ((wi,)VD/R) : a; e RP Vie [N]}.

i=1

We will denote 8; = v/ Dw;. Notice that the normalization in the definition of the function class
insures that the scalar product (z, 8;) /R is of order 1. This corresponds to normalizing the data.

We consider the approximation of f by functions in function classes Frp(®) and FxT(O).

C.2 Reparametrization

Recall (6;)icin) ~ Unif(SP~1(v/D)) independently. We decompose 6; = (02(1), e OZ(Q)) into
Q sections corresponding to the d, coordinates associated to the g-th sphere. Let us consider the

following reparametrization of (6;);¢| N]i'}@d‘Unif (SP=Y(vV/D)):
(8.8 7", ),

where

@
0 = /3,09/169), 7P =09]s/\/d,,  forq=1,...,Q.

0, = (’Ti(l) ~§£1), e ,TZ-(Q) -51(-@))
1)

Hence

It is easy to check that the variables (6

(Ti(l), . ,Tl-(Q)), and verify

2

_ d, D—d
0.” ~ Unif(S%~1(,/dy)), T,fq)wdql/?\/Beta <2q q), forg=1,...,

15
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We will denote ; = (551), e ,@(Q)) and T; = (Ti(l), cee Ti(Q)). With these notations, we have
0;c [ st '(ydy) =Ps?,
q€[Q]

where PS? is the ‘normalized space of product of spheres’, and

() iy =" ) Unif(s 7 (1/dy)) = ra

q€(Q]

Similarly, we will denote the rescaled data & € PS?,
T = (f(l),...,E(Q)) ~ ) Unif(s%~'(\/dy)),
q€[Q]
obtained by taking @) = /d,x(®) /r, = d~"a/22(® for each q € [Q)].

The proof will proceed as follows: first, noticing that 7(2) concentrates around 1 for every q =
1,...,Q, we will restrict ourselves without loss of generality to the following high probability event

Pine = {@ T

€l-e1+¢e)Vie [N,V € [Ql} cSP(VD)Y,

where ¢ > 0 will be chosen sufficiently small. Then, we rewrite the activation function
a((-,-)/R) : SP"H(VD) x PS{ - R,

as a function, for a random 7 (but close to (1,...,1))

oar:PS?x PS5 R,

given for @ = (0, 1) by

(9) 2D ()
7@ (g _ T\Dr, (07, T'V)
var ({07, 70))d}eeiq) =0 | > e
( ) q€[Q] R dq

We can therefore apply the algebra of tensor product of spherical harmonics and use the machinery
developed in [4].

C.3 Notations

Recall the definitions d = (dy,...,d,), & = (ki,...,kQ), dg = d", r, = dMatr)/2 D =
dm +...4+d" and R = (d"HF 4.+ d7eT7e)1/2 Let us denote £ = max,e(q{ng + K4} and
ge = argminge(q){ng + #q}-

Recall that (;);c(n] ~ Unif(SP~1(v/D)) independently. Let © = (6,,...,0y). We denote Eg to
be the expectation operator with respect to @ ~ Unif (S?~1(v/D)) and Eg the expectation operator
with respect to © = (6y,...,0y) ~ Unif(SP~1(v/D))®N,

. . . - —(1 —=
We will denote [Eg the expectation operator with respect to 8 = (0( ), N H(Q)) ~ jd, Eg the
expectation operator with respectto ® = (01, ...,0y), and E,. the expectation operator with respect
to T (werecall 7 = (7)), ..., 7(@))or (74, ..., 7Tn) (Where the 7; are independent) depending on
the context. In particular, notice that Eg = E,Eg and Ee = E.Eg
We will denote Eg_ the expectation operator with respect to @ = (601, ..., 8y ) restricted to Pa,N,e
and E,_ the expectation operator with respect to T restricted to [1 — ¢, 1 + €]%. Notice that Eg_ =
E, Eg-
Let E,, to be the expectation operator with respect to  ~ <, and E the expectation operator with
respectto * ~ ugqg.
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C.4 Generalization error of kernel ridge regression

We consider the Kernel Ridge Regression solution a;, namely
a=(H+ M, 'y,
where the kernel matrix H = (H;;);;e[n) is assumed to be given by
Hij = ha({zi,25)/ R*) = By psa) [0 (0, @) /R)o (8, y) /R,

andy = (yla“'ayn)T = .f+€’ with

f = (fd(xl)a LR fd(mn))-ra

e=(e1,-. 60"
The prediction function at location & gives

Ax) =y (H +L,) " h(z),
with ~ ~
h(x) = [ha((z,21)/R?), ..., ha((z, z) /R))]T.

The test error of empirical kernel ridge regression is defined as

R (fa X, N) ZEo | (falw) — y" (H + Axnrlh(m)ﬂ .

We define the set Oxgrr () C Zgo as follows (recall that § = max,¢[q)(1g + Fq)):

Q
Qurr(7) ={k € 28| Y (€ — )by <7}, (1)
qg=1

and the function m : R>o — R>( which at vy associates

m(y) = min (€~ rgky
kQQKRR(W) qG[Q]

Notice that by definition m(vy) > ~.
We consider sequences of problems indexed by the integer d, and we view the problem parameters
(in particular, the dimensions dg, the radii r,, the kernel h4, and so on) as functions of d.

Assumption 1. Let {hy}q>1 be a sequence of functions hy : [—1,1] — R such that Hq(x1,x2) =
ha({x1, x2)/d) is a positive semidefinite kernel.

(a) For v > 0 (which is specified in the theorem), we denote L = maxgciq)[7/nq]. We
assume that hq is L-weakly differentiable. We assume that for 0 < k < L, the k-th weak
derivative verifies almost surely hgk) (u) < C for some constants C > 0 independent of d.
Furthermore, we assume there exists k > L such that hfik) (0) > ¢ > 0 with c independent
of d.

(b) For~ > 0 (which is specified in the theorem), we define

K= max k|
keQkrr (V)

We assume that o verifies for k < K, hglk) (0) > ¢, with ¢ > 0 independent of d.

Theorem 1 (Risk of the KRR model). Let {fq € L?(PS%, u%)}a>1 be a sequence of functions.
Assume wg(d” logd) < n < Og(d™=°) for some v > 0 and § > 0. Let {hg}a>1 be a sequence
of functions that satisfies Assumption 1 at level . Let X = (2;);c[n) With (€;)ic[n) ~ Unif (PS%)
independently, and y; = fq(x;) +¢; and £; ~i;q N(0, 72) for some 72 > 0. Then for any € > 0, and
Sor any A = O4(1), with high probability we have

Ryrr(fa, X, ) = [Poe falliz| < e(llfallfz +77) . (32)

See Section D for the proof of this Theorem.
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C.5 Approximation error of the random features model

We consider the minimum population error for the random features model

Rerp(fa, W) = fefi;f(W)E[(f*(m) — f(=))?].

Let us define the sets:

Onr(7) ={k € 22 ’Z kg <7} (33)
Qrr(7) :{k € Zg(]’ f:(g — kg)kq < ’Y}~ (34)
q=1

Assumption 2. Let o be an activation function.

(a) There exists constants cy, c1, with cg > 0 and ¢y < 1 such that the activation function o
verifies o(u)? < ¢y exp(ciu®/2) almost surely for u € R.

(b) For~y > 0 (which is specified in the theorem), we denote L = maxqc(o)[7/nq]. We assume
that o is L-weakly differentiable. Define

K= min |k
kcQrr(7)°

We assume that for K < k < L, the k-th weak derivative verifies almost surely o*) (u)? <
co exp(ciu?/2) for some constants co > 0 and ¢ < 1.

Furthermore we will assume that o is not a degree-|y /g, | polynomial where we recall that
qe¢ corresponds to the unique arg mingeg1{n, + kq}-

(c) For~y > 0 (which is specified in the theorem), we define

K= max [kl
keQrr(v)
We assume that o verifies for k < K, up(c) # 0. Furthermore we assume that for

k < K, the k-th weak derivative verifies almost surely o®) (u)? < ¢y exp(ciu?/2) for some
constants cqg > 0 and c; < 1.

Assumption 2.(a) implies that o € L2(R, ) where v(dz) = e~* /2dz/\/27 is the standard Gaussian
measure. We recall the Hermite decomposition of o,

o) =3 " ey (@), (o) = Banon (G Hen (). (5)
k=0 '

Theorem 2 (Risk of the RF model). Let {fs € L?(PS%, u%)}a>1 be a sequence of functions. Let
W = (w;);e(n) with (w;);en) ~ Unif (SP~1) independently. We have the following results.

(a) Assume N < 04(d") for a fixed v > 0. Let o satisfy Assumptions 2.(a) and 2.(b) at level .
Then, for any € > 0, the following holds with high probability:

Rrr(fa, W) = Rrr(Pofa, W) — [Poe fall7:| < el fall L2IPoe fall 2 (36)
where Q = Qgrr () is defined in Equation (33).

(b) Assume N > wq(d") for some positive constant vy > 0, and o satisfy Assumptions 2.(a) and
2.(c) at level vy. Then for any € > 0, the following holds with high probability:

0 < Rpr(Pofa, W) < ellPofali. (37)
where Q = Orr(7) is defined in Equation (34).
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See Section E for the proof of the lower bound (36), and Section F for the proof of the upper bound
(37).

Remark 1. This theorems shows that for each v & (§ — K1)Z>o + ... + (§ — Kg)Z>0, we can
decompose our functional space as

L*(PSE,15) = F(B,k,7) ® F°(B, K, ),

where
*7:(/[37’17’7) = @ Vk:d>
kcQrr(7)
fc(/gvnv'y) = @ dev
kZQOrr (7v)

such that for N = d7, RF model fits the subspace of low degree polynomials F (3, k,~) and cannot
fit FE(B, Kk, ), i.e.
Ryr(fa, W) = [IPQgp (e fal Z2-

Remark 2. In other words, we can fit a polynomial of degree k € Zgo, if and only if
d€ k. gralke = g L de? = 04(N).

Each subspace has therefore an effective dimension dgeqx = dére = d((f*'%)/ e =

DE—ra)/ maxee@) M This can be understood intuitively as follows,

o((0.2)/R) =0 | > (0 2W)/R
q€[Q]
The term q¢ (recall that q¢ = argmaxy(n, + kq) and & = 1g, + kg, ) verifies (0(9) x(a0)) /R =
©4(1) and has the same effective dimension d,, o = d" has in the uniform case restricted to the

sphere S*" —1 (\/qu ) (the scaling of the sphere do not matter because of the global normalization
factor R™1). However, for n, + t, < & we have (80, z(@) /R = ©4(dMat7a=)/2) and we will
need d~"a~"a more neurons to capture the dependency on the q-th sphere coordinates. The effective
dimension is therefore given by dg e = d, - d5~ %4~ "a = d5~Fa,

C.6 Approximation error of the neural tangent model

We consider the minimum population error for the random features model

Ryt (fa, W) = fefi;le(W)]E[(f*(w) — f(x))?].

For k ¢ Zgo, we denote by S(k) C [Q)] the subset of indices ¢ € [@Q] such that &k, > 0.
We define the sets

Onr(7) ={k € 2% XQj(f gk <7+ (€ min wg )}, (38)
q=1
Onr(7) :{k c Zg()’ S (€ Ry <7+ (g - min nq) } (39)

q=1
Assumption 3. Let 0 : R — R be an activation function.
(a) The activation function o is weakly differentiable with weak derivative o'. There exists

constants cqy,cy, with cg > 0 and ¢; < 1 such that the activation function o verifies
o' (u)? < co exp(ciu?/2) almost surely for u € R.

(b) For~y > 0 (which is specified in the theorem), we denote L = maxqe(q[7/nq]. We assume
that o' is L-weakly differentiable. Define
K= min |k|
keOnT(v)°
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We assume that for K — 1 < k < L, the k-th weak derivative verifies almost surely
o B+ (1)? < ¢q exp(ciu? /2) for some constants c¢o > 0 and ¢; < 1.

Furthermore, we assume that o' verifies a non-degeneracy condition. Recall that
pr(h) = Egono,)[h(G)Her(G)] denote the k-th coefficient of the Hermite expan-
sion of h € Lo(R,~) (with ~y the standard Gaussian measure). Then there exists
k1, ko > 2L + Tmax,e(q) §/nq) such that jug, (0'), pux, (0”) # 0 and

p, (2207) , py (2%0)

iy (o) ik (o)

(c) For v > 0 (which is specified in the theorem), we define

K= max k|
keOnT(7)

We assume that o verifies for k < K + 1, pu(0') = pry1(0) # 0. Furthermore we

assume that for k < K + 1, the k-th weak derivative verifies almost surely o*+1) (u)? <
co exp(c1u?/2) for some constants co > 0 and c; < 1.

(40)

Assumption 3.(a) implies that o/ € L2(R,~) where v(dz) = e*"”2/2dx/\/ 27 is the standard
Gaussian measure. We recall the Hermite decomposition of ¢”:

o'(z) = Z Mkk(f/)Hek(x), 1 (0") = Egongo,n [0 (G)Her (G)]. (41)
k=0 ’

In the Assumption 3.(b), it is useful to notice that the Hermite coefficients of 220" () can be computed
from the ones of o’ () using the relation y (220") = ppr2(0’) +[14+2k] pr (') +k(k— 1) pug_2(c”).

Theorem 3 (Risk of the NT model). Let {f; € L*(PSZ, 1u5)}a>1 be a sequence of functions. Let
W = (w;);e(n) with (w;);e(n] ~ Unif (SP~1) independently. We have the following results.

(a) Assume N < 04(d") for a fixed v > 0. Let o satisfy Assumptions 3.(a) and 3.(b) at level ~.
Then, for any € > 0, the following holds with high probability:
R (fa, W) — Rnr(Pafa, W) — |[Pae fall72| < el fall L2]IPoe full 2 (42)
where Q = Onr(7y) is defined in Equation (38).
(b) Assume N > wq(d") for some positive constant vy > 0, and o satisfy Assumptions 3.(a) and
3.(c) at level ~y. Then for any € > 0, the following holds with high probability:
0 < Rnr(Pofa, W) < el|Pofall?:, (43)
where Q = On(7) is defined in Equation (39).

See Section G for the proof of lower bound, and Section H for the proof of upper bound.
Remark 3. This theorems shows that each for each v > 0 such that Qxt(7)¢ N Ont(7) = 0, we
can decompose our functional space as
L(PSE, ug) = F(B,k,7) & F(B, K, 7),
where
]:(/65 nvfy) = @ de7
keOnt ()
]:C(Baﬁ’aly) = @ Vk:d7
kZOnT(7)

such that for N = d7, NT model fits the subspace of low degree polynomials F (8, k,~y) and cannot
fit FE(B,k,y) at dll, i.e.

RNT(fdv W) ~ ||PQNT(’Y)°fd||2L2'

Remark 4. In other words, we can fit a polynomial of degree k € Zgo, if and only if
d€ k. gradke — g d2 s = 0q(d°N),
where 8 = § — mingeg (k) fig-
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C.7 Connecting to the theorems in the main text

Let us connect the above general results to the two-spheres setting described in the main text. We
consider two spheres with n; = 7, k1 = & for the first sphere, and 175 = 1, ko = 0 for the second
sphere. We have £ = max(n + &, 1).

Let wg(d"logd) < n < Od(d"YJ”S ) with 6 > 0 constant sufficiently small, then by Theorem 1
the function subspace learned by KRR is given by the polynomials of degree k; in the first sphere
coordinates and k5 in the second sphere with

maX(n7 1- H)kl + max(n + K, 1)]{32 <.

We consider functions that only depend on the first sphere, i.e., ky = 0 and denote dog = d™a<(11=%),
Then the subspace of approximation is given by the & polynomials in the first sphere such that
d’gﬂ < d". Furthermore, one can check that the Assumptions listed in Theorem 1 in the main text
verifies Assumption 1.

Similarly, for wq(d?) < N < Oq(d'+%) with § > 0 constant sufficiently small, Theorem 2 implies
that the RF models can only approximate k polynomials in the first sphere such that d’gﬂ < d.
Furthermore, Assumptions listed in Theorem 2 in the main text verifies Assumption 2.

In the case of NT, we only consider k = (k;,0) and S(k) = {1}. We get mingec g(x) kg = . The
subspace approximated is given by the k polynomials in the first sphere such that d; < d7d.g.
Furthermore, Assumptions listed in Theorem 3 in the main text verifies Assumption 3.

D Proof of Theorem 1
The proof follows closely the proof of [4, Theorem 4].

D.1 Preliminaries

Let us rewrite the kernel functions {4}4>1 as functions on the product of normalized spheres: for
T = {m(Q)}qe[Q} andy = {y(q)}qe[Q] € PSi:

ha((y, ®)/R?) =ha | D (r3/R*\/dg) - (59, @9)/\/d,
s€l@l (44)

7hd( 7@, z) /\F}qu])

Consider the expansion of hg in terms of tensor product of Gegenbauer polynomials. We have

hal(y,)/R2) = 37 A(ha) B(d QS ({2, 7 }yeran)

keZs,
where
Xi(ha) = Bz ha (21,79 Qi (Vaial, ... Azl ?) |,
where the expectation is taken over = (1), ..., (@) ~ pq.

Lemma 2. Let {hq}q>1 be a sequence of kernel functions that satisfies Assumption 1. Assume

wg(d?) < n < 0g(d™) for some v > 0. Consider Q@ = Qkrr(7) as defined in Eq. (31). Then
there exists constants ¢, C' > 0 such that for d large enough,

max A (ha) <Cd™™,

in A\%(hq) >cd 7.
min Ak (ha) 2c

Proof of Lemma 2. Notice that by Lemma 18,

—(q)y2\ M
A(ha) = | ] ok |- R(d,k)-E II (1_(352l)> . hJ*D 3 a 291,

q€(Q] q€(Q] q€(Q]
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where o, = d;l/zrg/R2 = (1 + 04(1))d"a/?>+*a=¢ By Assumption 1.(a), we have

Ai(ha)B(d,k) < C ] dre=hs.
q€[Q]

Furthermore, by Assumption 1.(b) and dominated convergence,

()2 "
Ex H (1 - LZz ) ) - kD Z a2 | | = nl*0) > ¢ >0,

9€(Q] 1 9€[Q]
for k > K. The lemma then follows from the same proof as in Lemma 9 and Lemma 10, where we
adapt the proofs of Lemma 19 and 20 to hg. O

D.2 Proof of Theorem 1
Step 1. Rewrite the y, E, H, M matrices.
The test error of empirical kernel ridge regression gives
2
Ricrn(fa, X, N) =Eq | (fu(@) —y"(H + L) h(@)) ) |
=Eq[fa(2)?] — 2y"(H + \L,) ' E+y' (H +\L,)""M(H + L)'y,
where E = (B, ..., E,)" and M = (M});je[n)> With
Ei =Eqg[fa(®)ha((@, i) /d)],
Mij =Eg[ha((zi, ) /d)ha((x;, ) /d)].
Let B =), .o B(d, k). Define for any k € Zgo,
Dy, =\t (ha)Ip(am),
Yie =(Vi2o(F:))ie[n) se(p(ar) € R™BER),
Ak =M s(fa) Zeipamy € RZOH,
Do =diag ((Ag(hd)IB(d,k))keg) c RBxB
Yo =(Yi)keo € R™7,
T
Ao =((ADyeo) €R™
Let the spherical harmonics decomposition of f; be

fd(m) = Z Z Ag,s(fd)ylgs(f)a

kez2, sElB(dk)

and the Gegenbauer decomposition of i be

ha (fgﬂ,...,fg@) = Ag(hd)B(d,k)Qg(ﬁT@ﬁ”,...,\/@fg@).

Q
kezs,

We write the decompositions of vectors f, E, H, and M. We have
J =YoXo + Z Yi Ak,

keQe
E =YoDoXo+ Y YiDiy,
keQc
H =YoDoY] + Y YiDpYy,
kcQc
M =YoD3Yg + > YiD}Y,.
keQc
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From Lemma 4, we can rewrite

H =YoDoYg + rin(Ly + Ap),

M =YoD3Y] + kA,
where Rp = Qd(l), Ry = Od(d—m(’Y)), ||Ah||op = Od’p(l) and ||Au||0p = Ody]p(].).
Step 2. Decompose the risk

The rest of the proof follows closely from [4, Theorem 4]. We decompose the risk as follows

Rirr(fa, X, N) = fall32 — 271 + Ty + T — 2T + 2T.

where
=f"(H + \1,)'E,
Ty =f"(H +\L,) 'M(H + )\1,,)"' f,
T3 =e"(H + \L,) *M(H + \I,,)"*
T, =e"(H +\1,,)"'E,
Ts =" (H + \L,) "M (H + \L,)"' f.
Further, we denote fo, fo-, Fo, and Ege,
Jfo =Yoo, Eq =YoDoAo,
for=> Yidp, Ege= > YiDihg.
keQc kcQc

Step 3. Term 15

Note we have
Ty =151 + Too + Tos,

where
T :fg(H + )\In)_lM(H + )‘In)_l.va

Too =2f&(H + AL,) ' M(H + AL,) " fo-,
Toz =f5(H + ML) "M (H + A\L,) "' foe.
By Lemma 6, we have
In(H + AL,) "M (H + AL,) ™' — YoYg /nllop = 0ap(1),

hence
To1 =Yg (H + \L,) "M (H + \L,) " 'YoXo

=A5Yg YoYg Yoro/n? + (| YoXell3/n] - 0ap(1).
By Lemma 3, we have (with ||Al|2 = 04.p(1))
ALY YoY] Yoro/n? =A5(Is + A)* Ao = [|Ag|3(1 + 0ap(1)).

Moreover, we have

1YoXoll3/n = A5(Is + A)Ag = [ Agll3(1 + 0gp(1)).
As a result, we have

Tor =|Aall3(1 + 0ap(1)) = [[Pofall72(1 + 0ap(1)).

By Eq. (45) again, we have

Tos =( 3 A;YkT)(H+AI,L) LM (H + A\L,)~ ( 3 kak)

kcQc¢ keQc
( SCALYT )YQYQ( Z kak)/n n {H Z Y’“)"“H /n] 042 (1).
kecQe
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By Lemma 5, we have

E[( S ALY )YQYQ( 3 kak)}/n = 3 AUE(YYoYI YL /n?)A,

keQc kcQc u,veEQ°
B
== 3 Il
keQe
Moreover )
E[|| 3 ¥ede| /n] = 3 1Akl = IPo- fullfe.
keQc keQe
This gives
Toz = 04p(1) - [Poe fall7- (47)
Using Cauchy Schwarz inequality for 752, we get
Thy < 2(TnTog)"? = 0ap(1) - [PofallL2|IPae fall 2 (48)
As aresult, combining Egs. (46), (48) and (47), we have
Ty = |[Pofallz: + o0ap(1) - || fall 7 (49)

Step 4. Term 7;. Note we have
Ty =T + Tig + Ths,

where . .
T11 zfg(H + A\L,) " Eqg,

Ty =f5-(H + AL,) ' Eq,
13 =FT(H + ) 'Ege.
By Lemma 7, we have
1Yg (H + AL,) ' YoDg — 1plop = 0ap(1).
so that
Ti = ALYZ (H + \L,) " 'YoDoAo = [Aal3(1 + 042(1)) = [IPofal3(1 + 04z(1). (50)

Using Cauchy Schwarz inequality for 75, and by the expression of M = Yo DQQYQT + Ky A, with
|Aullop = Oap(1) and K, = O4(d=™™), we get with high probability

Tial =| > ALY (H + A1)~ YoDoo|

kcQe
<| 3 AW (H +2L) " YoDol| [Aall:
keQe
=[( D AW (H + L) YoD3RYZ (H + L) (3 A;YJ)T/QHAQHQ (51)
keQec keQc

g[( 3 A;Y,J)(HHI ) 'M(H + \L,)" ( > ATYk)} IAall2

keQc keQc
1 2
12 1xallz = 0ap(1) - [IPofall 2 [IPoe fall 2.

For term T3, we have
| Tus| =[£T(H + ML) " Ege| < [|fll2l|(H + ML) ™ [lop || Eoe 2.
Note we have E[|| f[|3] = n|| f4l|2., and ||(H + AL,) ~!{|op < 2/(ks + A) with high probability, and

E[|Bg- 3] =n > Af(ha)?[Prfalli- < n max N (ha)? }HPQ”fd”%Z"
keQe
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As a result, we have
1/2
[Tas] <O4(1) - [P full 2 full 2 | n? max A (ha)?] ™/ (o + )

=0ap(1) - [Pae fall 2 [ fall 2

where the last equality used the fact that n < O4(d"(")~%) and Lemma 2. Combining Egs. (50), (51)
and (52), we get

(52)

Ty = [Pofall?: + oap(1) - |l fall3. (53)
Step 5. Terms 75,7, and 75. By Lemma 6 again, we have
Ee[T3]/7% =te((H + A\L,) "M (H + \L,) ') = tr(Yo Y] /n?) + oap (1),
By Lemma 3, we have
r(YoYg /n?) = (Y3 Yg)/n? = nB/n” + oqp(1) = 04p(1).
This gives
T5 = oqp(1) - 72 (54)

Let us consider T} term:
E.[T?]/7% =Ec[e"(H + \1,,) 'EET(H + \1,,) " 'e] /72
=E"(H + )\I,,) ’E.
For any integer L, denote £ = [0, L]° N Zgo, and Yr = (Yi)ker and Dy = (Dg)ges. Then
notice that by Lemma 3, Lemma 6 and the definition of M, we get
| DY (H + L) Y2 Dellop =I(H + AL) Y2 D2Y (H + AL) ™ lop

<||(H 4 AL,) "M (H + ML) ™ |op-
<IIYQYg /nllop/n + op,a(l) - /n
=0q,p(1)

Therefore,

ET(H +)1,)’E = Jim E}(H +)1,,)2E.

:an AL [DeY/ (H +M1,) " 2Y: DA
—00
<II(H + AL) ™ M(H + ML) lop - lim [|Az]l3

<oar(1) - || fal 72,
which gives
Ty = o0qp(1) - 7| fall L2 = 0ap(1) - (7> + || fall32)- (55)
We decompose Ty using f = fo + foe,
T5 =T51 + Tso,

where
Ts1 = (H 4+ \L,)"'M(H + \L,) "' fo,

Tso =" (H + \L,) "M (H + \L,) " foe.
First notice that
IMY2(H + L) "Ml =||(H + ML) " M(H + ML) lop = 0a,(1).
Then by Lemma 6, we get
Ee[T2)/7* =Ec[e (H + AL) "' M(H + L)~ fo £§(H + AL,) " M(H + AL,)"¢] /72
=f3I(H + AL) "' M(H + \L,) "'’ fo
<||MY?(H + ML) “2M"||op | M'2(H + AL) " fo3
=0qp(1) - T
=o0ap(1) - [IPafal?-
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Similarly, we get
Ee[T5)/m =0ap(1) - Tos = o04p(1) - |Pocfall7e-
By Markov’s inequality, we deduce that

Ts = 04p(1) - T(|Pafallrz + [|Poe fallz2) = oap(1) - (72 + || fall32). (56)

Step 6. Finish the proof.
Combining Egs. (53), (49), (54), (55) and (56), we have
Rirr(fa, X, N) = fallF2: = 210 + To + Ty — 2Ty + 2T5
=[Pge fall7e + 0ar(1) - ([ fallF2 +72),

which concludes the proof.

D.3 Auxiliary results

Lemma 3. Let { Y,gs} kez2, dk)] be the collection of tensor product of spherical harmonics on

18€[B(
PS<. Let (Ti)icin) ~iid Unif(PS?). Denote

Y. = (ngs(fi))ie[n],se[B(d,k)] € R*Bldk),

Assume that n > wq(d" log d) and consider
R = {k € Zgo‘ Z Ngkq < m(’y)}.
q€[Q]
Denote A =, . B(d, k) and
Yr = (Ya)ker € R™,

Then we have
YaYr/n =14+ A,

with A € RA%A and B[||Alop] = 0a(1).

Proof of Lemma 3. Let ¥ = Y] Y /n € RAXA. We can rewrite ¥ as

1 n
T = 5;hihj,

where h; = (Y&, (%:))ker.sc(B(a k) € R*. We use matrix Bernstein inequality. Denote X; =
hih; — 14 € RA%A, Then we have E[X;] = 0, and

[Xillop < IRill3+1=D" > V(@) +1
keR s€[B(d,k)]

=Y Bd.k)QE (& 2"))yera)) +1= A+ 1,
keR

where we use formula (12) and the normalization Qﬁ(dl,...,dQ) = 1. Denote V =
| > E[X2]|lop- Then we have

V = nl[E[(hih{ —14)*][lop = n|[E[R;h] hih] —2h;h] +1a][lop = nl|(A—1)Lallop = n(A-1),
where we used h] h; = ||h;||3 = A and E[h;(Z;)h] (Z;)] = (]E[Y,gs(@)Ylg}s, (Zi))ks. ks = Ia.
As aresult, we have for any ¢ > 0,
P(|® — Lalop > t) <Aexp{—n’t*/[2n(A — 1) + 2(A + 1)nt/3]}
<exp{—(n/A)t?*/[10(1 +t)] + log A}.
Notice that there exists C' > 0 such that A < C'maxger [ €[Q] dnaka < CdY (by definition of
m(7) and R) and therefore n > wy(Alog A). Integrating the tail bound (57) proves the lemma. [J

(57)
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Lemma 4. Let o be an activation function satisfying Assumption 1. Let wy(dYlogd) < n <
O4(d™ M=) for some v > 0 and § > 0. Then there exists sequences ry, and k., such that

H-= Z Yi DY, =YoDoYd + kn(L, + Ap), (58)
kezs,

M= )" YiDYY, =YoD3Y] + kmAp,, (59)
kezgu

where ki, = ©4(1), kpm = Og(d—™),

Apllop = 0ap(1) and | Amllop = Oap(1).

Proof of Lemma 4. Define

R={k 23| 3" noky < m(1)},
a€[Q]

§={k 22| 3 niky 2 m ),
7€[Q]

suchthat RUS = Zgo. The proof comes from bounding the eigenvalues of the matrix Y3 Y, for
k € R and k € S separately. From Corollary 1, we have

sSup ||YkYkT/B(da k) — Lillop = 0ap(1).
keS

Hence, we can write

> YaDLYy = kn(L, + Any), (60)
keS
with K, = > pcsAe(ha)B(d,k) = Og4(1). From Assumption 1.(b) and a proof simi-

lar to Lemma 20, there exists k = (0,...,k,...,0) (for k& > L at position g¢) such that
liminfy_, oo A& (ha)B(d, k) > 0. Hence, rj, = O4(1).

From Lemma 3 we have for k € R N Q°,
Y, Yi/n =1p@ax) + A,
with ||Allop = 04,p(1). We deduce that || Yz Y} [lop = Oap(n). Hence,
1Ye DYy [lop = Oap(nAit(ha)) = oap(1),
where we used Lemma 2. We deduce that

> YaDiYy = rnlna, 61)
kERNQ*C

with ||Ap 2llop = 04,p(1) where we used Ii;l = 04(1). Combining Egs. (60) and (61) yields
Eq. (58).

Similarly, we get

YYD = > Di(ha)’n)YYy /n+ Y [M(ha)’B(d, k) Yi Yy /B(d, k).
keQc keRNQ¢C keS

Using Lemma 2, we have \¢(hg)?n < Cd=2"Mn = Ogp(d=™) and A\ (ha)?B(d, k) <
CN¢(hg) < C"d~™), Hence Eq. (59) is verified with

k= > AR(ha)®n+ Y A(ha)*B(d, k).
keERNQ° keS
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Lemma 5. Let {Yﬁs}kezgo,sew(d,k)] be the collection of product of spherical harmonics on

L*(PS%, jug). Let (%i)ie[n) ~iid Unif (PS%). Denote

Y, = (kavs(Ei))iE[n],sE[B(d,k)] c RM*B(dk)

Then for u,v,t € Zgo and u # v, we have
E[Y,Y;Y,'Y,] = 0.
Foru,t € Zgo’ we have

E[Y, Y:Y,"Y,] = [B(d. t)n + n(n — 1)0ut]lp(du)-

Proof. We have
E[Y,Y,Y, Y]

=Y > ENL @) (Y @)Y @) ) Vil @) pe i aciBdo
i,j€[n] me[B(d,t)]

=3 (EL@) (Y V@@ v, @)])

i1€[n] me([B(d,t)]

+ Z Z (E[Yzﬁp(ji)ygm (@)W,im (@)Yvd,q (®;)])pe[B(d,u)).q€[B(dv)] (62)
i#j€[n] me[B(d,t)]

=B(d,t) Y (Bl (@)Yl (@) peiiau) aciBd.v)]

1€[n]
+ Z Z (6u7t6p,m6t,'u5q,m)pG[B(d,u)},qG[B(d,v)]
i£j€[n] me[B(d,t)]
=(B(d, t)nbu,v0p,q + 1(n = 1)0u.t0t v0p.q) pe[B(d.u)].qe[B(d.v))-

This proves the lemma.

p€[B(d,u)],q€[B(d,v)]

O
Lemma 6. Let o be an activation function satisfying Assumption 1. Assume wq(d” logd) < n <
Oy (d™ =0 for some v > 0 and § > 0. We have

In(H + AL,) "M (H + AL,) ™" — Yo Y3 /nllop = 0a(1).

Proof of Lemma 6. Denote
Yie = (Vo (i))ictn),sc Bd.py € RVPHF). (63)
Denote B = ) ;.o B(d, k), and

Yo = (Yi)keg € R™P,
and
Do = diag((Af(ha)lp(ak))keo) € RP*E.
From Lemma 4, we have
n(H + \L,)""M(H + \I,,)*
=n(YoDoYg + (kn + NI, + £,A,) " (YoD{YJ + knAn)(YoDoYd + (k + AN, + kpAp) 1
:Tl + T27
where ||Apllop = 0a,p(1), [|Ayllop = Oap(1) and K, = Og(d=), and

Ty =nkm(YoDoYJ + (kn + NI, + knAR) 1A, (YoDoYg + (ki + NI, + krAy) 1,
TS :n(YQDQYg + (/Qh + )\)In + HhAh)ilYQDéYg(YQDQYg + (/Qh + )\)In + /QhAh)il.
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Then, we can use the same proof as in [4, Lemma 13] to bound || T} [|op (recall n. = Og(d™(M) 7))
[T1]Jop < 2nkm /(KR + /\)2||Am||0p = oqp(1),
and || T, — YoYJ /nllop = 0ap(1), where we only need to check that

Amin(Do/[(kn + A)/n]) = gleifgl[nxrf(hd)]/(ﬁh +A) = wa(1),

O

which directly follows from Lemma 2.

Lemma 7. Let o be an activation function satisfying Assumption 1. Assume wy(dY logd) < n <
O4(d™=9) for some v > 0 and § > 0. We have

|Yg (H + AL,) 'YoDg — Ilop = 0ap(1).

Proof of Lemma 7.
This lemma can be deduced directly from [4, Lemma 14], by noticing that
Amin(Do/[(rn +A)/n] = min[nAg (ha)l/ (kn + A) = wa(1),

from Lemma 2. O

E Proof of Theorem 2.(a): lower bound for the RF model

E.1 Preliminaries

In the theorems, we show our results in high probability with respect to ®. Hence, in the proof we
will restrict the sample space to the high probability event P. = Py n for ¢ > 0 small enough,
where

Pane = { 7D el —e1+¢,Vie |[N],Vqe [Q}} - (SD—l(\/E))@N. (64)

We will denote ., the expectation over 7 restricted to 7(?) € [1 —¢,1 + €] forall ¢ € [Q], and Eg_
the expectation over ® restricted to the event P.
Lemma 8. Assume N = o(d") for some v > 0. We have for any fixed € > 0,

B(PE) = 04(1).

Proof of Lemma 8. The tail inequality in Lemma 16 and the assumption N = o(d”) imply that there
exists some constants C, ¢ > 0 such that

P(Pin.) < Y NP(Ir'? — 1] >¢) < Y Cexp(ylog(d) — cd™e) = oa(1).
q€(Q] q€[Q]
L]

We consider the activation function o : R — R. Let @ ~ SP~1(v/D) and z = {9} (g, € pse,
We introduce the function og + : ps?® — R such that

o((6,2)/R) =0 7@ (r,/R) - (@7, 2 )/\/d,
1162[6:2] (65)

—q.r ({<E(Q),E<q)>/ @}qe[Q}) :

Consider the expansion of o4 - in terms of tensor product of Gegenbauer polynomials. We have

((6,z)/R) = Z M (og+)B(d, k)Q ({< 9\ $(4)>}q€[Q]>7 (66)
kezg,
where
Noar) =Exloar (71, 7@) Q4 (Varr), .., Vigr?)].
where the expectation is taken over & = (1), ..., (@) ~ pq.
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Lemma 9. Let o be an activation function that satisfies Assumptions 2.(a) and 2.(b). Consider
N < 04(d") and Q = Qrr(7) as defined in Theorem 2.(a). Then there exists £g > 0 and dy and a
constant C > 0 such that for d > do and T € [1 — ¢, 1 + £0]?,

g Z<cd.
max Ay (0a,r)” <

Proof of Lemma 9. Notice that by Assumption 2.(b) we can apply Lemma 19 to any k € Q€ such
that |k| = k1 + ... + kg < L. In particular, there exists C' > 0, &;, > 0 and dj, such that for any
ke Q°with |k| < L,d>dyand T € [1 —e),1+¢]?,

[[ @& merake | B(d, k)Af(0ar)* < C < o0,
q€[Q]
Furthermore, using that B(d, k) = ©(d*dk2 . .. d’gf), there exists C’ > 0 such that for k € Q°
with k| < L,
Mgzt <0 [ dmetre Ok ke = ¢ T de=9% < ', (67)
q€[Q) q€l@]

where we used in the last inequality k ¢ Qgrr(7) implies (§ — k1)k1 + ...+ (£ — kQ)kg > v by
definition.

Furthermore, from Assumption 2 and Lemma 17.(b), there exists e > 0, dj; and C' < oo, such that
sup sup EE[O}LT ({(w(Q),f(Q)>}q€[Q]) } <C.

d>dy Te[l—el,1+el]Q

From the Gegenbauer decomposition (66), this implies that for any k € Zgo, d < djand T €
[1—ey, 1+ el]%, -
B(d, k)Ai(oq,r)* < C.
In particular, for [k| = k1 + ... + kg > L = maxgc(o)[7/n4], we have
c

d 2 / —ngkq ’ —vkg/L /o
Moar) < gy <¢ [l amt<or [Lait <o, (68)
q€(Q)] q€(Q]
Combining Eqs (67) and (68) yields the result. O]

E.2 Proof of Theorem 2.(a): Outline
Let Q = Qgrr(y) as defined in Theorem 2.(a) and ® = /DW such that 8; = v Dw; ~jiq
Unif (SP~1(v/D)).

Define the random vectors V. = (Vi,..., V)T, Vo = (Vig,...,Vno)', Voo =
(VLQCP'-’VN’QC)T’ with

Viio =Eg[[Pofal(x)o((6:, x)/R)], (69)
ch =Ez[[Po: fal(x)o((0i, )/ R)]; (70)
Eq[fa(x)o((0i,2)/R)] = Vi o + Vig-. 1)
Define the random matrix U = (Uij)i,je[N]: with
Uij = Eg[o((®,6:)/ R)o((x,0;)/R)]. (72)

In what follows, we write Rry(f4) = Rrr(fa, W) = Rrr(f4, ®/+/D) for the random features

risk, omitting the dependence on the weights W = ©/y/D. By the definition and a simple
calculation, we have

Rue(fa) = min {Ealfu(@)’] - 2(a. V) + (a,Ua) } = Eo[fu(@)’] - VIU'V,

Rrr(Pofa) :alg]gglv {]Em[PQfd(x)Z] —2(a, V<) + (a, Ua)} =Ey[Pofi(x)’] — VaU 'Vq.
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By orthogonality, we have
Eolfa(2)’] = Ea[[Pofal(®)’] + Ea[[Po: fal (x)?],
which gives
|Ruw(fa) = Rrw(Pofa) — EollPo-fu)(@)?

:)VQTU—lvg . VTU‘1V‘ - ‘VQTU—lvg (Vo + Vo) TU (Vo + Vi)

(73)
—[2VTU Vo - VEU W < 2JU 2V aJU 2V s + U o Ve I
<2 U2 lopl[ Ve 2l fall 22 + 1T [lopl| Ve 13,
where the last inequality used the fact that
0 < Rre(fa) = | fall7: - VUV,
so that
IU=2VI5=VTU 'V < |fal7-.
The Theorem follows from the following two claims
IVaell2/lIPae fall L2 =0ap(1), (74)
HU_1||op :Od,P(1)7 (75)

This is achieved by the Proposition 1 and 2 stated below.

Proposition 1 (Expected norm of V). Let o be an activation function satisfying Assumptions 2.(a)
and 2.(b) for a fixed -y > 0. Denote Q = Qrr (7). Let € > 0 and define Eg- . by

Egee = B, [<PQC,0fd7 o((8, >/R)>%2]7
where we recall that Eg_ = E,_Eg the expectation with respect to T restricted to [1 —e,1 + €]? and
6 ~ Unif (PS?).

Then there exists a constant C' > 0 and £9 > 0 (depending only on the constants of Assumptions 2.(a)
and 2.(b)) such that for d sufficiently large,

Egeeo S Cd77 - |Pgefall 7 -

Proposition 2 (Lower bound on the kernel matrix). Assume N = o04(d") for a fixed integer vy >
0. Let (0;);e(n] ~ Unif(S” ~1(V/D)) independently, and o be an activation function satisfying
Assumption 2.(a). Let U € RN*N be the kernel matrix defined by Eq. (72). Then there exists a
constant € > 0 that depends on the activation function o, such that

)\min(U) Z g,
with high probability as d — oo.
The proofs of these two propositions are provided in the next sections.
Proposition 1 shows that there exists g > 0 such that

Ee.,[|Vo:l3] = NEge ey < CNd™7||Pge fall7-

Hence, by Markov’s inequality, we get for any € > 0,
P([Voell2 > € - [Poc fallL2) <P({[[Voell2 = € - [[Poc fall2 } N Pey) + P(PZ)
NEge g,
~&?|[Poe fall
<C'Nd™7 + 04(1),

+ Od(l)

where we used Lemma 8. By assumption, we have N = 04(d”), hence Eq. (74) is verified. Further-
more Eq. (75) follows simply from Proposition 2. This proves the theorem.
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E.3 Proof of Proposition 1

We will denote:

fa(®@) = fa(x),

sucE that f is a function on the normalized product of spheres PS4 (Note that we defined Py, fa(x) =
Pk f;(T) the unambiguous polynomial approximation of f; with polynomial of degree k). We have

Vi.oe =Eqg |[Po-fal(x)o Z <$((1)’ 0§Q)>/R
q€(Q]

sz [Po-T)@oar, (12, 67)/ g} eerar )|

We recall the expansion of o4 - in terms of tensor product of Gegenbauer polynomials

o((8,2)/R) = > M(oar)BdR)QE ({059} 4eia))

Q
kezl,

M(our) =Es|oar (70, 7@ @i (VazD, ... Vigr?)].

For any k € Zgo, the spherical harmonics expansion of Py f; gives

Pofq(T) = Z er,s(fd)Yk‘fs(f)

s€[B(d,k)]
Using Eq. (27) to get the following property

(@) — 1 7 _ _
B Qb (10" 7 ocia)) V@) =gy D Ve @8 VL @)YV @)]
’ s'€[B(d,k)]
1 _
=— Y2 (0)0p 1
Bld k) ka0 .
we get

By [Prf)@0ar ({0729 }oerar) |
=Y Ma)BEE) Y AMLT)Es [Vi@QE ({07 29)) e

k>0 s€[B(d,k)]
= > M F)M(ear)YE ().
s€[B(d,k)]
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Let ¢g > 0 be a constant as specified in Lemma 9. We consider
— 1 5@ 2
£oer0 =K, [E [PeTd@oar ({E.29)/ Vi) seia)] }
7@
S Ego, [Be [PeTd@oar (107, 29)/\/d}scrar)]

k,k'€Qc
By [Pe Tl @oar (16759 Vi) ieia))] |
= > E., [)\g(ad,))\g,(od,,)]

k,k'cQ¢c

< 3 S ML TN L (FElY 0V . 0)] 7D

s€[B(d,k)] s'€[B(d,k’)]

= Z ]E‘rgo [)‘k(ad,r) } Z kas(?d)Q

keQc s€[B(d,k)]

S{)ﬁ%aQ}EE Ne(oar) ] Z Z )‘g,s(?d)z

ke Qe se[B(d,k)]

~ | B, Doar | - P Tl

From Lemma 9, there exists a constant C' > 0 such that for d sufficiently large, we have for any
k E ch
E-. [Mi(oar)’] < sup M(oar)> <Cd™. (78)
TE€[l—ep,14£0]9

Combining Eq. (77) and Eq. (78) yields
Egeeo < Cd™7 - |[Poe foll e
E.4 Proof of Proposition 2

Step 1. Construction of the activation functions &, &

Without loss of generality, we will assume that g¢ = 1. From Assumption 2.(b), o is not a degree
|v/m |-polynomial. This is equivalent to having m > |v/n1| + 1 such that p,,(c) # 0. Let us

denote
m = inf{k > [v/m] + lpm(o) # 0}.

Recall the expansion of o4 - in terms of product of Gegenbauer polynomials

var ({077 }eera) = 3 Mloar)Bd k)QE ({07 7D)}herq)

kezs,
where
M(oar) = Ez [ad,f (37(1 ey T ) Q¢ (\/>a; ~--,\/%5§Q))} _
Denoting m = (m,0,...,0) € Z9, and using the Gegenbauer coefficients of o4 -, we define an

activation function 64 which is a degree m polynomial in Z™) and do not depend on ' for ¢ > 2.

Gar (10 29)/\/dy}geiqr) = Na(0a.r) B(d, m)Qd (10".29)/Vd,}gera)
=\ (0a.+)B(d1,m)Qid) \Fmﬁ

and an activation function

bar (07,89 Vb)) = Y. Moar) B R)QE ({07 79)/ Vi }yeriar) -

Q
k;émEZZO
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Step 2. The kernel functions u,4, iy and 4.

Let ug, tg and 4,4 be defined by
ug" ({@gq)ﬁéq)ﬂ\/@}qe[cg])
—E,[0((61, %)/ R)o ({62, 2)/ F) 79
a(a)
= 3 MOar N ar) B R)QE (10.,05)/Vdi el

Q
kezg,

iz ™ (101.05")/ Vs boerar
Ea[6((61,)/R)o((63, @)/ ) )
> M Oar )M (ar) B k)L ({6,05)/\dibyeia))

Q
k;émEZzO

and

and
a7 ™ (10.85")/ VY serar ) =Eelo (01, @)/ R)o((02,2) /)
= (ad,nwn(ad,h)B(dl,m)Q D((@",8,")).

We immediately have u}' '™ = 4™ +u}"

kernels.

1)
™2 Note that all three correspond to positive semi-definite

Step 3. Analyzing the kernel matrix.
LetU,U,U € RV*N with

Uiy = (8.8 VTt
UZJ :A;7 T ( e(q) 0(‘1 /\/>}q€[Q )
U’LJ _ﬂ;’“TJ ( 0(‘1) e(q /\/>}qe[Q>

Since U = U — U > 0, we immediately have U > U. In the following, we will lower bound U

By the decomposition of U in terms of Gegenbauer polynomials (81), we have

U = B(d, )dlag()\ (adﬂ)) W, dlag<x\ (O'dn))

where W,,, € RN with W, ;; = 5,?”((651)75%). From Proposition 6 (recalling that by

definition of m > ~/n, i.e.v < mny, we have N < dmm=9 — d’ln_‘;/ for some § > 0), we have
Wi — Inllop = 0a,p(1).
Hence we get
HU B(dy, )dlag()\ (0a, ,.1)2>

From Assumption 2.(a) and Lemma 20 applied to coefficient m, as well as the assumption that
tm (o) # 0, there exists €9 > 0 and C, ¢ > 0 such that for d large enough,

sup B(d1,m)A%, (04.-+)? < C < o0,
TE[l—e0,1+0]?
inf B(d1,m)A2 (0a-+)? > ¢ > 0.

TE€[1l—e0,14€0]?
We restrict ourselves to the event P, defined in Eq. (64), which happens with high probability
(Lemma 8). Hence from Egs. (82) and (83), we deduce that with high probability

— c
T = B(dr, m)diag (A (7a7,)? ) + 04p(1) = SLi.
We conclude that with high probability

:max{ (d1, m)AS, (ad,,)“'}@d,p(l). (82)

op 1€[N]

(83)

U=U+U=>»U*»

l\D\Q
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F Proof of Theorem 2.(b): upper bound for RF model

F.1 Preliminaries

Lemma 10. Let o be an activation function that satisfies Assumptions 2.(a) and 2.(b). Let |[w(? || =

1 be unit vectors of R%, forq = 1,...,Q. Fix~y > 0 and denote Q = Qgrr (7). Then there exists
g0 > 0 and dy and constants C, ¢ > 0 such that for d > dg and 7 € [1 — g9, 1 + EO]Q,

2
E. [Ud,f <{<w(q)’§(q)>}q€[Q]) } < C < oo, (84)

in \¢ )2 >ed™ > 0. 85
ggg k,o(gd,) Z ¢ (85)

Proof of Lemma 10. The first inequality comes simply from Assumption 2.(a) and Lemma 17.(b).
For the second inequality, notice that by Assumption 2.(c¢) we can apply Lemma 19 to any k € Q.
Hence (using that z14(0)? > 0 and we can choose § sufficiently small), we deduce that there exists
¢ > 0,e9 > 0and dy such that for any d > do, T € [1 — ¢, 1 + 0] and k € Q,

[[ @& merak | B(d, k)A(0ar)* > c > 0.
q€(Q]
Furthermore, using that B(d, k) = 9(d]f1d]2€2 .. de), there exists ¢’ > 0 such that for any k € Q,
M(oar)? > J] datraOhaghe = ¢ T d®a 9k > ed ™,
q€(Q] q€(Q]
where we used in the last inequality k € Qry () implies (£ — k1)k1 + ... + (£ — rg)kq < 7 by
O

definition.

F.2 Properties of the limiting kernel

Similarly to the proof of [4, Theorem 1.(b)], we construct a limiting kernel which is used as a proxy
to upper bound the RF risk.

We recall the definition of PS% = [Ticiq Sda=1(,/d,) and pgq = Unif(PS?). Let us de-
note £ = L*(PS% pg). Fix T € RQO and recall the definition for a given 8 = (0, 7) of

UdT e(q) /f} €£
Gar (100 Ngei) =0 | 3 70/ B) @y, 7))

q€(Q]
Define the operator T.- : £ — L, such that for any g € L,
= =(a) _
Tr9(0) = Bz [0ar (107,29)/\/d}}e1a1) 9@)]

It is easy to check that the adjoint operator T : £ — L verifies T* = T with variables Z and 6
exchanged.

We define the operator K, - : L = Las K, .- = T T%,. For g € L, we can write

Kr, 79(01) = Eg, [Kr, +,(01,02)9(02)],
where

Ky v (§1a§2) =Ez |:0.d77'1 ( Ggq)vi /\/7}q€[Q ) 0d, > ( (Q) 7((1) /\/7}q€ Q])}

We recall the decomposition of o4 -~ in terms of tensor product of Gegenbauer polynomials

Od,r ({fg(n}qe[cz]) > A(oar)B(d k)Qf <{33 ! }qe[Q]) ,

kezs,

N (0d.r) =Bz [0ar ({717} oeia)) QF (1VA7 " Ygerar )] -
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Recall that {Yk o) keZ,.s€(B(d,s)] forms an orthonormal basis of £. From Eq. (76), we have for any

k> 0and s € [B(d, k)],
TV, 0) = > M(0ar)Bd KBz [Q ({07 7)} i) Vida(@)]

Kezs,
:/\(kj; (Udﬂ')ykd,s (a) )

where we used

d (/5@ d (= O,k -
B |Q (10,2} cia)) VL (@)] = 555 Yo @)
The same equation holds for T’;. Therefore, we directly deduce that
Kr oYy (0) = (T-T5)Y(0) = Mi(0a.r) Ak (0a.r)Yis ().
We deduce that {Y,js} kez2,,5€(B(d,9)] is an orthonormal basis that diagonalizes the operator K, .

Let £9 > 0 be defined as in Lemma 10. We will consider 7,7’ € [1 — &g, 1 4 0]% and restrict
ourselves to the subspace Vg. From the choice of ¢y and for d large enough, the eigenvalues
A (04.+)AE(0a.+) # 0 for any k € Q. Hence, the operator K |va is invertible.

FE.3 Proof of Theorem 2.(b)

Without loss of generality, let us assume that { f;} are polynomials contained in VS, ie. f,=Pofy

Consider

f(x:0,a) Za, (6;,z)/R).

Define a,(0) = K% T+ f () and choose a* = N~'a.,(0;), where we denoted 0; = (qu))qe[Q]
with 51@ =09 /79 ¢ sda=1(,/d,) and 79 = ||6'?||5//d, independent ofO @,

Let ¢g > 0 be defined as in Lemma 10 and consider the expectation over P, of the RFrisk (in
particular, a* = (af, ..., a} ) are well defined):

Eo., [rr(f1.0)] =Ee., | inf Eu[(fu(x) ~ f(x:©.a))’]
<Ee., |Ex |(fal@) - f(@:©,a(©))?]] .

We can expand the squared loss at a™* as

N
Ex[(fa(@) — f(2:©,a")) =llfallf: =2 Eolaio((6s,2)/R) fa(z)]

i=1

(86)
+ Z Exlajajo((6;,)/R)o((60;,2)/R)].
3,J=1
The second term of the expansion (86) around a* verifies
N
Ee., lZ Eq [a:a<<0i7m>/R>fd(w>]]
i=1
7 7@ <
~E.., [Eg |ar(@)Fz [oar ({07 ,29)/ i} seic) Fa@)| || (87)
:]ETEO [<K;711-T7'7da TT7d>L2:|
:”fd H%Qa
where we used that for each 7 € [1 — g, 1 + £9]%, we have T: K LT, |Vd = I|Vd
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Let us consider the third term in the expansion (86) around a*: the non diagonal term verifies

o., | > Ea [a]ajo((6;,2)/R)o((8;,2)/R)]

i#]
~(1-N"YE,, . 5,5, [arl(él)a 2(83)
% Eg|oar (10.,89)/Vd}eei) oar (105 39)/Vig}eia) |]
(1= N"YE 12 5,5, it Tr Fa@)Ket 1201, 82)K73 . Tr2[4(82)]
(1= N Ery e [T P Ko oK T T
Fork € Qand s € [B(d, k)] and 71,72 € [1 — £, 1 + £9]%, we have (for d large enough)
K K oK LTV, =(THK LT ) - (ThK T ) - il = Vi,

Tl ’Tl
Hence for any 71,72 € [1 — g9, 1 + ]9, T% K; .

K ,_2K7_2 -2 z|V5 = I|Vg. Hence

0., | Y Ex[ajajo((0:i,2)/R)a((6;,2)/R)] | = (1= N7") | fall72- (88)

i#]
The diagonal term verifies

=N~ IE 9[ -(6)? K, -(6,0)]

<SNTH|_ max K- +(8,0)| -Er [IK7 5 Trfyll72].
0,7€[1—¢0,14£0]?

We have by definition of K, ,

sup K- .(0,0) = sup loar|72 < C,
T€[l—€0,1+£0]°9 T€[l—€0,1+£0]°Q

for d large enough (using Lemma 10). Furthermore

e 1 -
K7 AT Fall =D N(oar)? > ML (F)?

keQ s€[B(d,k)]

1
< — 2,
S| Pl

From Lemma 10, we get

Er., [IK; - Tr fall72) < Cd7 - |Pofall7-
Hence,

*\2 2 d’ 2
Fo., | 3 Ea [(a))*0((6s,2)/R)?] | < C5IPoful3 (89)
1E[N]

Combining Eq. (87), Eq. (88) and Eq. (89), we get
Ee.,[Rrr(fa; ©)]
R 2
<Eo,, B | (1u(@) - f(z:0.a"@)) ||
=l fallZ> = 2l fale + (1 = N"HfalZ: + NT'E,_ 3 [(%@)QKT,T(@, 0)

dY 9
<SPt

37



By Markov’s inequality, we get for any € > 0 and d large enough,
d7
P(Rrr(fa,©) > e[ falliz) < P({Rrr(fa,©) > e-[lfall72} NPey) +P(PE) < €' 1 +P(PE,).

The assumption N = wy(d”) and Lemma 8 conclude the proof.
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G Proof of Theorem 3.(a): lower bound for NT model

G.1 Preliminaries

We consider the activation function o : R — R with weak derivative o’. Consider o/, _ : ps¢ — R
defined as follows

o'((6,2)/R) =o' 7@ (r,/R) - (Q) .z /\F
= o
=4, (107 32)/ \/ch}qe[m) :

Consider the expansion of O—:i,r in terms of product of Gegenbauer polynomials. We have

((0.2)/R) = > o) B k)QE ({07 3)} serq)) o1
kezs,
where
M (oly,) = Ei{o;” (x§1>, o ,ng>) Qg(\/dlf?), . de(Q))}
where the expectation is taken over & = (1), ..., @) ~ pgq.

Lemma 11. Let o be an activation function that satisfies Assumptions 3.(a) and 3.(b). Define for
k ezl and T € RS,

A(qk - T [tdmkq—l)\gq, (Ufi,f)QB(dv kq_) + qu,kq-i-l)‘qur (O.:i,r)zB(dv kq-i—)]v (92)
withkgr = (k1,..., kg +1,... . kg) and ky— = (k1,..., kg —1,...,kq), and

k _k+d-2
2% +d—2’ “E T ok +d—2
with the convention ty 1 = 0. Then there exists constants g > 0 and C > 0 such that for d large
enough, we have for any T € [1 — €9, 1+ £9]? and k € Qnt(7)%,

Sdk =

A(‘I)k Cdéd——E—minges ) rq) ifky >0
T, < q 4
B(d,k) = | ggnat2ra—€g—r—(§-minges) Faq) ifkg =0,

where we recall S(k) C [Q) is the subset of indices corresponding to the non zero integers k, > 0.

Proof of Lemma 11. Let us fix an integer M such that @ C [M]?. We will denote Q = O () for
simplicity. Following the same proof as in Lemma 9, there exists g > 0, dy and C' > 0 such that for
any d > dg and T € [1 — &g, 1 + €], we have for any k € Q° N [M]%,

)\d(U:i _’_)2 SCd—’Y—(f—minqes(k) K’q),
M, (o,
/

d,

)\d (0‘ _’_)2 Scd’iqfff"/*(f*minqes(k) Nq),

_’_)2 SCdE*fiq*“/*(E*miﬂqes(k) Nq),

while for k ¢ [M]?, we get
max{ (05 ML, (00,0)% AR, (04,)7} < Cd™(MDminasiarma
Injecting this bound in the formula (92) of A_(r‘{)k, we get for d > do, T € [1 — €9, 1 + £0] and any
ke Qe n[M|9ifk, >0,
A(q)

—TF < O natragé—ra—r—(E-minges@) ma) — (g€ g~ (E-minges k) fa)
B(d, k) ’
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while for £, = 0,

(@)

Ark < O'dNatrag—na gratng—E—y—(§-minges(k) Ka) — (O JMat2rq—E J—7—(E—minges (k) #q)
B(d,k) — ’
where we used that for k, € [M], there exists a constant ¢ > 0 such that sq, x, < cd™" and

ta, &, < c. Similarly, we get for k & [M]?

A(q)k
T, < C//dnq+nq—(M—1) minge(Q) nq7
B(d,k) —
where we used that sq, x, tq, r < 1forany k € Z>o. Taking M sufficiently large yields the result.

O

G.2 Proof of Theorem 3.(a): Outline
The structure of the proof for the NT model is the same as for the RF case, however some parts of
the proof requires more work.
We define the random vector V = (Vi, ..., Vy)T € RV9, where, for each j < N, V; € RP, and
analogously Vo = (Vi g,...,Vn.o)T € RVP Voo = (V) ge, ..., Vivge)T € RVP as follows

Vi.o =Ea[[Po fal(z)o’((6:, @)/ R)],

Vi.ge =Ez[[Po- fa](z)o'((6:, )/ R)],

Eolfa(z)o’((6;,2)/R)@] = Vi o + Vi o-.
We define the random matrix U = (Uy;); jen) € RYP*NP, where for each i,j < N, U;; €
RP*P 'is given by
Uij = Exlo'((x,6,)/R)o’((z,8;)/R)zz]. 93)

Proceeding as for the RF model, we obtain
|Ryt(fa) = Rx1(Pofa) = IPo-fall3:

:‘VQTU’lVQ - VTU*V‘ - ‘VQTU*VQ (Vo + Vo) TU Y (Vo + Vi)

:‘2VTU—1VQC ~V3U Vg
ol fall 2 + V3. U V..

<2 U~Y?Vq.

‘We claim that we have
H Uﬁ 1 /2 VQL

2= V3. U Wae =0ap(||Po fall22). - (94)

To show this result, we will need the following two propositions.
Proposition 3 (Expected norm of V'). Let o be a weakly differentiable activation function with weak
derivative o' and Q C Zgo. Let ¢ > 0 and define S(qc)

£S5 =B, | (Ba[lPo: ful(@)0' ((0,3)/ R)a'")], By [[Po: ful ()’ ((6, ) / R)z)]) |,

where the expectation is taken with respect to x = (:E(l)7 . ,w(Q)) ~ pg. Then,

e, < | BdK) B, 0] IPo-ful
Proposition 4 (Lower bound on the kernel matrix). Let N = 04(d”) for some vy > 0, and (6;);en] ~

Unif (SP~ ,\5 %mdependently Let o be an activation that satisfies Assumptions 3.(a) and 3.(b).
Let U € RNDPXND pe the kernel matrix with i, j block U;; € RP*P defined by Eq. (93). Then there
exists two matrices D and A such that

U*>D+A,
with D = diag(D;;) block diagonal. Furthermore, D and A verifies the following properties:
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(a) ||A||op = Od,]P(d_ maxge(Q] ;;q)

(b) Foreachi € [N), we can decompose the matrix D;; into block matrix form (D ), wcio) €
RONXDN iy DI € R4aN>da N gych that

o For any q € [Q)], there exists constants cq,Cy > 0 such that we have with high

probability
r2 2
0< qu = chnq < 1121[1]{]1] )\mm(D ) < Igg\}f{] )\de(D ) < qui = quﬁq < 00,
95)
as d — oo.
e Forany q # q' € [Q], we have
MAX Opax (D ) = 0a.p(rqrq /\/dedy (96)

1€E[N]

The proofs of these two propositions are provided in the next sections.

From Proposition 4, we can upper bound Eq. (94) as follows

V3U 'Wae 2Vg.(D + A) 'Voe = VgD 'Voe — V3. D 'A(D+ A) V.. (97)

Let us fix €9 > 0 as prescribed in Lemma 11. We decompose the vector V; g = (‘/;'SqQ)C)qe[Q] where

Vifé)c =E4[[Pae fa](x)o" ((6;, )/ R)x(D].

We denote VQ(Z) = (fogu ce V]\(;f)Qc) € R%™_ From Proposition 3, we have
3Ee., IVEY (3] < | max Nd ™ B(d, k)™ Ex., [A7}]| - [Po-fall 32
"q

Hence, using the upper bounds on As_q)k in Lemma 11, we get for k € Q° with £, > 0:

Nd="aB(d,k)'E,_ [AY)] < CNd™Fd 7 mineesoo 5 = 94(1),

where we used that N = 04(d”) and k, > minge (k) 4 (We have k; > 0 and therefore ¢ € S(k)
by definition). Similarly for k € Q° with £k, = 0:

Nd =" B(d, k)" 'En, [A}] < CNdWFra=6q=1=(Eminaeso ) = o,(1),
where we used that by definition of § we have 1 + x4 < § and mingeg(x) g < §. We deduce that
d

1Ee., (VS I3] = 0a(1) - IPo- fullZ,
and therefore by Markov’s inequality that

d
éHVQ@n% = 04p(1) - [|Poe fall2-. (98)

Notice that the properties (95) and (96) imply that there exists ¢ > 0 such that with high probability
Amin(D) > min;e(n] Amin(Dsi) > c. In particular, we deduce that [[(D + A) ™o, < ¢71/2
with high probability. Combining these bounds and Eq. (98) and recalling that ||All,, =
04,p(d™ M*¥acl@l #a) show that

[Vag:DT'A(D + A) "'V | <[ D7 Hopll (D + A) Hop > 1A op | VD12
q€[Q] 99)
=04,p(1) - [[Poe fall7--

41



We are now left to show V3. D~ !'Vge = 0qp(1). For each i € [N], denote B;; = D;;*

that we can apply Lemma 24 to B,; and get

€[N 7’2 1€[N] TqTq
Therefore,
VD Vo= XY (VBB VY
i€[N] ¢,q'€[Q]
1/2 4. (/ 1/2
> od,]pm-(qnv ) (5%‘%) .
4,9'€[Q] 7

Using Eq. (98) in Eq. (100), we get
V50D71V9c = Ody]p(].) . ||Pchd||%2.
Combining Eq. (99) and Eq. (101) yields Eq. (94). This proves the theorem.

G.3 Proof of Proposition 3

d dydy
maxHB ||Op—0dP< q), max | B |0p_0dp<m>.

and notice

(100)

(101)

Proof of Proposition 3. Let us consider £y > 0 as prescribed in Lemma 11. We have for g € [Q)]

£S) ., Fo. [(BallPo- ful(@)o (6, 2)/R)2 V], By [Po- ful (y)o (6, )/ R)y"

~E.., [Ezg|Po-Td@Po-FI@HY @ 7)) |
where we denoted H ,(-q) the kernel given by
H(z,79)

N

~Eg [oa- ({<6(%<q>>/¢d7}qem)a:i,( 075 Vi berar) | @0y ),

Then we have

HY (z Z A q) L Q8 ( {(@ y(q)>}qe[Q]) ’

kezZS,

where A_(,_q)k is given in Lemma 12. Hence we get

582,50 =B, [Bzy|Po- f4(®) Po- f 4(9) HY (. 9)]]

(102)

= > B, A5 | QF (1@, 5} geiq)) [Po-Tal (@) Po-Tol (@)

Q
kezs,
We have

Ezg|Qt (1, 59)}yeiar) [PosTul @) [Po-F ()]

=3 Y Y MM e (T0Bag 0k ({@ .59 eeia)) V@)Yl ()]

Ll€Qe se[B(d,l)] s'€[B(d,l")]

M (fa)?
:5 c 775
keQ Z B(d, k) )
s€[B(d,k)]
where we used in the third line

By Q3 ({<w<q> T }ela)) ViA@Y (@)

g B [Q2 (=, 5 byerar) Vil (@) ¥t ()]

= B?;:lk) Eg |:Yk,s (g)yfl,s’ (y):|

_ Oka0k10s,s
B(d, k)
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‘We conclude that

9 Y g, a0y Y kel
QC7 TE() Tk B(d, k) GQ

kezs, s€[B(d,k)]
E, (QL]
_ 50 T 2
=Y Haw IRl
keQc

< | s B KB, (A0 [P fl

O

Lemma 12. Let o be a weakly differentiable activation function with weak derivative o’. For a fixed
TE Rgo, define the kernels for q € [Q),

HY(z,7)
s (@) A0 @) =
= Eq [0&,7 <{<0 Y ED) )y dq}qE[Q]> O4r ({<9 RTADVRY dq}qE[Q])} @, y').
q
Then, we have the following decomposition in terms of product of Gegenbauer polynomials,

HO@,5) = Y AN ({2,599} he)
kGZQZO
where
AW =12 [ta, k1M, (0022 B(d, kyn) + sa, 00108, (002)? B(d, kg )],
withkgr = (k1,..., kg +1,... ko) and kg = (k1,..., kg —1,...,kq), and

k k+d—2

L — trp = —1 — 2
Sk T oy d—2’ Ak et d—2

with the convention ty _1 = 0.

Proof of Lemma 12. Recall the decomposition of ¢’ in terms of tensor product of Gegenbauer poly-
nomials,

(0.2)/B) = 3 M(0h)Bd RQE ({1 7)) erar).

kez?
Ne(og,) =Bz [a;,, (x§1>, " ,zg@) Qo (@fgm’ - fa:(@)} ’

Injecting this decomposition into the definition of H. S-q) yields

H(Z,7)
ry () (@) -
=B o (07,29 Vi)ger) vir (107 59)/Viboeta)) | @2 5)
q
2
::Tq 3 A0l A (0 1) B(d, k)B(d, k') x
kk’GZQ

By [Q# ({0, 7} yera)) @1 ({075 e ]| (@9, 59).
Recalling Eq. (26), we have

d (f(ga) 5(a) e
o [ (10,3} sera1) @ (107 5} aeiar) | =0 o (1 - (:k)” @),
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Hence,

H(q)(— 7)

=it 2 Mou)*B@ RQE (@5 ela) (@ 5)
keZQ

2 3" Mol )?Bd k) [QU (@, 5)) @D, 59)/a,| T @, (@, 59),
keZQ q'#q

By the recurrence relationship for Gegenbauer polynomials (13), we have

t(d, dy dy
*Q;(Cq )(t) = qu,kqQ;(cq,)l(t) + tdq,kngchzl(t)a

dq
where (we use the convention t4, 1 = 0)
Sdkzikq dekiiktﬂrdqi2
R 2k 4 dy — 27 PR kg +dg— 2
Hence we get,
H{(Z,7)
dq — — — — (Y —(n
=2 3 NohL 2B k) [ (@0, 50) @D, 59) /d,| T @, (@, 5))
kezZs, q'#q
g Z N (0 )P B ) 30,0, Qi) (FD.F) + ta,., QU (@, 7))
kez

XHQk q)yq)>)

q'#q

= > Al (1E9.9)}eial)

where we get by matching the coefficients,

AD =12 [ty kM (00 )2 B(d, kg) + $a, 0,108, (0 2)?B(d, k)],
with kgy = (k1,..., kg +1,..., ko) and kg— = (k1,...,k;—1,...,kQ). O

G.4 Proof of Proposition 4

G.4.1 Preliminaries

Lemma 13. Let 1 : R? — R be a function such that ({(eq, ") }4e(q)) € L* (PS%, 11g). We will
consider for integers t = (i1,...,ig) € Zgo, the associated function %) given by:

3 (= _ D\ " _@\*@ , [—( _
¢( (ml 7”.7335@)) = (a:g )> (ang)> w(xg ),...,mgQ)) .
Assume that 1 ({{eq, ) }4e(q]) € L2(PS% g). Let {\¢(v )}keZ§0 be the coefficients of the

expansion of v in terms of the product of Gegenbauer polynomials

¢(zgl>,...s ) DRYAC dek(\le de“’?))

kezs,

M) =Eg [i (70, 7@) Q¢ (V... Vag#?)]
Then we can write

$@ (70,3 ) = 3 A W) B RQE (Vaa,..., Vigr?),

Q
kezl,
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where the coefficients )\g’i(w) are given recursively: denoting i,y = (i1,...,iq +1,...,iQ), if

kg =0,
d zq+ \/>)\d K

and for kg > 0,
d,ig _ k +d 2 d1 d,i
M) = Vidagg 2 e e W) Vg +d Sy T dy 2 ke (V)
where we recall the notations kg = (k1, ..., kq+1,... kg)and ky— = (k1, ..., kg—1,...,kq).

Proof of Lemma 13. We recall the following two formulas for £ > 1 (see Section B.2):

(@ k (@ k+d—2 )

Q ( ) 2k+d—2 k_l(m)+2k+d 2Qk+1( )
% +d—2(k+d—3

B e .

@ = 22 (M

Furthermore, we have Q(()d)( ) =1, Q(d)( = z/d and therefore therefore a:di)(a:) = ngd) ().
Similarly to the proof of [4, Lemma 6], we 1nsert these expressions in the expansion of the function
1. Matching the coefficients of the expansion yields the result. O
Let u : SP~1(v/D) x SP~1(v/D) — RP*P be a matrix-valued function defined by

w(01,0,) = Ez[o’((01,x)/R)o’ ({6, ) /R)xx"].

We can write this function as a @ by @ block matrix function u = (u(#4)), 4/c(q], where u(99) -
SP=1(y/D) x SP~1(v/D) — R%*%4’ are given by

u99)(0,,0,) = B0’ ({01, ) /R)o’ (62, ) /R)z(® (z(1))T].

We have the following lemma which is a generalization of [4, Lemma 7], that shows essentially the
same decomposition of the matrix (6, 62) as by integration by part if we had « ~ N(0, I).

Lemma 14. For q € [Q), there exists functions ugqq),ugqq) ugqlq)7ugqg) . SP=Y(V/D) x
SP=Y(v/D) = R such that

u(qq)(el’OQ) _— (QQ) (01 02)1(1 + u(QQ)(01’02)[0(Q)(0(‘1))T 0(’1)(0§Q))T]
QQ)(eh 92)9 (B(Q))T qq)(e17 92)9 (95’1))?

For q,q' € [Q), there exists functions uéqf ),u(qu ),uéqf ), (qq ). SP-1(y/D) x SP~1(v/D) » R
such that

u@)(81,8,) =us'y) (61, 62)01 (65"))T + i’y (61,62)65” (6T
+uy’i (01,6201 (017)T + ] (61, 02)057 (057 )T.

Proof of Lemma 14. Denote (9 = (05 ), 0?) /dq. Let us rotate each sphere g € [Q)] such that

61 = (r?\/d,.0,...,0)
(103)
oL — (TQ@ VRO \/@m7 0,... 70) .

Step 1: u(99),

Let us start with w(99), For clarity, we will denote (in the rotated basis (103))

91’ Z Tl \/7/R 1'1 )

q€(Q]

— (On ) /R= Y { (@ /a3 @ R 79 10 a1~ (70)2/R. (q)}

q€(Q]
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Then it is easy to show that we can rewrite

w99 (0y,0,) = Ez[o’ (a1)0 (a2)z(@ (2(9)T w1 0
1,U02) = Lg 1 2 = o s
0 Eglo(cn)o’(az)(25”)?]La, o
with
W00 _ | Ealo' (@)’ (a2) @)Y Eolo’ (1)’ (az)a{”at"] |
212 T g [0 (an)o" (02)2 2] Bglo!(an)o (a2) (257)?]

Case (a): 67 £ 6V
Given any functions u{??, 4{?? ugqf)7ugq2q) SP=Y(v/D) x SP~1(v/D) — R, we define
) (01, 6,) _ugfIQ) (01,05)14, + Uéq(I)(eh 92)[0(Q)(0(Q))T + 0(4)(0§Q))T]
(QQ)(el 02)0 (0%‘1)) (QQ)(01762)0 (aéQ))T
In the rotated basis (103), we have
(a9)
29 (9, g,y — |22 0
u ) )
( 1 2) [ 0 quq)(01>02)1dq72
where (we dropped the dependency on (61, 02) for clarity)
(qq) _u(qq) + 27_ 7_ (@) 4 ,y(q) (99) +(r (q)) d quil) +(r (q)) d (7(4>)2u§?§),

uff? =7V dy 1= (702§ + ({0)2dyy D1 - (v@0)2 ),
ulg? =uf" + (7{)2d, (1 - ()?)uld.
We see that «(79) and @(99) will be equal if and only if we have the following equalities:
'ﬁ(u(qq)(gl’gz)) - (~(qq)(91 6,))
—d uqu) +2T(q 7_(q)d V(q) (99) +(r (q)) d uéqiz) +(r (q)) dqu;(fg),
(017, w0 (61, 65)85") =(61”, ") (6,, )"
:Tl(q)TQ(q)dq,y(q)ugqq) + (Tl(q))2(72(q))2d3(1 + (,y(q) 2)u(2qq)

)
DA EAOUGD 1 70 30

(017, w17 (8, 02)6,") =(61", ") (8., 62)6;")
(Tl(q))quugqq) + Q(Tl(q))37_2(q)d§,y(q)ugqq)

+ () dqug’? + (1) (r ") (/) ),
(057, u19(61,6,)05") =(65”, @1 (61, 6,)85")
:(7_2(4))2dqugqq) + 27_1(@ (Téq))3d37(q)u(qq)
+ ()2 ()2 a2y D2 + () sy
Hence (79 = u(99) if and only if

u{99 Tr(u(99 (61, 65))
(

w q9) G(Q),u(qq) 0.,0 e(q
ot R | L
Uz(a,g) (657, u(49)(6,,6,)65")
where
1 27" 757 () (")
o — |70 (DA (0 ()@ 1 (ry )2 dyy @
(Tl(q))Q 2(T1(q))3T2(q)dq’y(q) ( ) (Tl(Q))Q(B(Q))qu( (q))2
(73")? 27" (r3 ") dyy ) (H 49 Yoy (@) (73")*d,
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is invertible almost surely (for TI(Q), 72((1) #0and (@ #£ 1).
Case (b): 67 = 0\7.
Similarly, for some fixed « and 3, we define
@l19(6,,0,) = al,, + 6. (8\)T.
Then u(99) (61,01) and @99 (61, 6,) are equal if and only if

5] = [<e<qT>r(u<Z§)<(eaf7 o)

Mlae) — l 1 (7'1@)2 ] ]

where
| (7_1(11))2 (Tl(q))4dq

Step 2: u(99) for ¢ # ¢'.

Similarly to the two previous steps, we define for any functions u;qf ),uéqg ),uéqf ), éqg )

SP=1(v/D) x SP~1(V/D) = R,
al1)(01,0,) =ui}) (01,0,)01” (05)T + ufl] (01, 02)07 (67")T
+ gl (81,0267 (61)T + iy (81,6265 (65).

. ~ /
We can rewrite @(97) as

’

o

’ “(qq )
(99 (9, 0,) = |U1:2,1:2
u ( 1, 2) |: 0 0:| )
where

,&(qq’) :uéqq') (9) (Q’) (q’)+u(qq') (9) (Q’) (q)+u(qq') (a) (q')_|_u(qQ’) Q(Q)TQ(QI),y(q),y(q')’

ugq) q) (q) (q /1 — (y(@))2 +u«1<1) (2) (q /1 — (y(@))2
’ngiq) ) (q) (q /1 — (y(@)2 _|_u(qq) (2) (q i — (7(@)24

ug%q ) uéqg )Tg(q)T(q )\/1 _ (,.y(q))Q\/l o (’y(q/))2~

Case (a): 07 £ 6V

We have equality @(?9) = u(29) if and only if

,uéqil ) <0((1)7 u(qq’)(el’ 02)9(‘1:)>
uéqg) _ (dqdq/)*l(M(qq’))A y <0(Q)7u(qq/)(91,92)0(q/)> 7
) (057, u@)(6,,0,)01"))
uéqg ) (057, ula7)(6,6,)85")
where M (24 s given by
(Tl(tI))2T1(q’)T2(q/’),y(q’) (q) (fl)( (q’)) ~ (@) ( (fl)) (r (q’))2 Tl(tz)T2(q)Tl(q’)Tz(q/’),y(q)W(q')
G 1(!1))2( 2(q )) T(Q)T(Q)T(Q) (q )*y( )’y( q) (r! (a) )2 (a") (q ),.Y(q) Tl(q)T2(Q) (le(q ))/2,),((1)
7_( )T(q)T(q) (q") ( ),y(q) (7. (q)) (r! (q )) 7 )T(Q)( (q ))2 (q) (7.2(11))27_1@ )TQ(Q,)’y(q)
1(q) 2(q)( 2( )) 7(q) ( 2(q)) (q") (‘I),y(q) ( ) ( ) (q) (Q),y(q),y(q) (TQ(q))Q(TQ(q))z
which is invertible almost surely (for T(q), ;é 0 and v(9 £ 1).

Case (b): 6.7 = 0%9.
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It is straightforward to check that

w2’ )(0:,6,) = 59((1)(9@ ))

where
B = (dydy) M (r{0r{") 72 (017, w1 (61, 61)0().

G.4.2 Proof of Proposition 4

Step 1. Construction of the activation function &.

Recall the definition of o4 - in Eq. (90) and its expansion in terms of tensor product of Gegenbauer
polynomials:

((8,2)/R) = > M(o),)B(d,k)Qf ({< 6" 2t >}qe[Q)

kezs,
N0r) =B [0, (7, 7)) @i (V.. Vigri®)].

We recall the definition of g¢ = arg max,c(o){n + #q}. Letlo > I3 > 2L + 5 be two indices that
satisfy the conditions of Assumption 3.(b) and we define 1 = (0,...,0,11,0,...,0) ({1 at position
ge)and Iy = (0,...,0,02,0,...,0) (I at position g¢). Using the Gegenbauer coefficients of o/, we
define a new activation function 6’ by

N (@)
F(O.2)/R= 3 ANou)BARQE (107 F ) eq) (09
keZS \ {12}
(de¢) , _
+ 3 (1= SN (0h,0) Bldge 1)@y, (8, 799)), (106)
t=1,2
for some 47, 0 that we will fix later (with |0 < 1).
Step 2. The functions u, & and .

Let w and 4 be the matrix-valued functions associated respectively to o’ and &
w(61,0:) =By [0’ ({61, 2)/R)o’ ((62, )/ R)z], (107)
w(01,0:) = E,[6'((01,x)/R)6’' ({62, ) /R)xx"] . (108)

From Lemma 14, there exists functions u$?, ugf’l, ugfg, ugf’l, u§b2 and 14°, agf’l, agfg, ﬁgf’l, ﬁgf’Q (for

a,b € [Q]), which decompose u and @ along 6, and 05 vectors. We define u = u — ©. Then we

have the same decomposition for uzbj = uzbj —agb ) fora,be QL,k=1,2,3,j=1,2.

Step 3. Construction of the kernel matrices.

Let U,U,U € RNP*ND with i, j-th block (for i, j € [N]) given by

Uij = u(eiv ej) ) (109)
Ui; = u(6;,6;), (110)
Uij :ﬁ(Bl,Oj) :u(BZ,OJ) —ﬁ(Bl,GJ) (111)

Note that we have U = U + U. By Eq. (110) and (108), it is easy to see that U = 0. Then we have
U = U. In the following, we would like to lower bound matrix U.

We decompose U as

U=D+A,
where D € RPNXPN jg 3 block-diagonal matrix, with
D = diag(Uy4,...,Uny), (112)

48



and A € RPN*DPN 5 formed by blocks A;; € RP*P for i, j € [n], defined by
0 i=j
A=< o) (113)
! {Uijv P F J-

In the rest of the proof, we will prove that | A||op = 0g4,p(d™ ™**e€l@l ®a) and the block matrix D
verifies the properties (95) and (96).

Step 4. Prove that ||A ||, = 04p(d™ ™*¥acl@ ”q),

We will prove in fact that || A||% = og4,p(d—2™8*acl@] %), For the rest of the proof, we fix g9 € (0, 1)
and we restrict ourselves without loss of generallty to the set P, .

Let us start with @(%9) for ¢ € [Q)]. Denoting 72] (B(q) >/d < 1, we get, from Eq. (104),

—(ad(p. p. . TICLY
’lf%qq)(olvej) ul(Bi,Oj) — Ifl(ei,aj) (;I)‘I‘(’U(, : (91’02))(q)
Us, (Oi,ej) _ u2(0i,0j) —’lfg(@i,@j) _ d_l(M-(qq))_l « <01 , U aq (91 02)02 >
ﬂé’ff)(Oi, 0;) u3,1(0;,0;) — ’lfs,l(eia 0;) q K <0§q), (19 (0, 02)0§q>>
Wi, 05)) o200 0~ 120000 (647, a4 (01, 0:)01")
(114)
where Mi(jqq) is given by
1 (Q)T(Q)%(jq) (7.1( ))2 (r. (Q))

TI(Q)T(Q),YI(J(I) (7_1((1)) (. (Q))2d (1"‘(’7@(;1)) ) (r (Q))s (q)dq’yqu) (Q)( (Q))qu’yqu)

(r")? 2Py @ (i) d, (P ()

(r")? AOEOPAD PP,y (),

Using the notations of Lemma 13, we get
Tr(U") =Eq[o((0:, @)/ R)o’ ((6,, @)/ R) =23
=2 3 Mo )Mo, ) B R)QE (18,05 cial)

kezs,
<0§q>,U;‘-”>e§q>> 2[0"((60:, )/ R)(60}" <q>> '(0;,)/R) (0, 2 )]
2 (q) (q) Z )\dl 2 dl (a:L,j)B(d,k)Qﬁ <{<§1(‘q)a§§'q)>}q6[Q])v
kez?,
(017, U767) =By [o"((6:, )/ R)(0)7, 2D)?0" ((0;, %)/ R)]
23 AN (0 MK hr, ) B R)QE (107,05 ) geran)
kezs,
(05", Ug”’e;% =Eq [a'<<el-, w>/R>a'<<e- w>/R><0‘-q>,w<q>>21
P Y MO N (0 B R)QE (107,85 erar) -
kezg,

where we denoted 1, = (0,...,0,1,0,...,0) (namely the ¢’th coordinate vector in R?) and
2,=(0,...,0,2,0,...,0) = 21,.

We get similar expressions for U;; with At(07; ) replaced by A(67, ). Because we defined o’ and
&' by only modifying the I;-th and l-th coefficients, we get

rr(aq)y _ (q@) _ yrlaq)
Tr(Uiqu ) *Tr(Uiqu - Ui_]gq )
=12 37 612 = 0 (0 r AL (01,2, ) B, 1)QE ({10 gera ) -

t=1,2

(116)
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Recalling that )\Z’l"‘ only depend on )\ﬁ_lq and )\g+1q, and )\Z’z" on )\ﬁ_%, )\ﬁ and )\Z+2q, (Lemma
13), we get
<0§q) U—(QQ)0§Q)>

d,1, d,1,
=20 N a2 = SN (ol A (0l ) B R)QE ({47 Yeeran)
t={1,2},ke{l;£1,}
<9(q) 0(gq>0(q>>
d,2,
=r2(r ") S a2 SN 0 )Nl B R)QE ({4 Y geian)

te{1,2}, ke{l:,l:£2,}
(9) 77(a9) o(q)
<0j 7Uz'j 0j >

d2,,
=22 Y A= A A () B )RR ({495 Vo)

te{1,2} ,ke{l; 1, £2,}

(117)
where we used the convention )\g(afjﬂ_) = 0 if one of the coordinates verifies k; < 0.
From Lemma 13, Lemma 19 and Lemma 20, we get for t = 1,2 and ¢ # qe:
lim A (0l r )M (0l ) B(d, 1) = (o)
(dyrsm)) = (4o0,1,1) et T . ! S
1. )\d,lq ( / )Ad»lq ( / )B(d l _|_1 ) :ult(o./)Q
im o o ==
(d,Ti,T]‘)*}(JrOO,l,l) lt+1q d»""i lt+1q d7Tj o ! t! ’ (1 18)
. d 2 ’ lult( )2
| A A& B(d,l ,
(d,‘ri,‘rj)i)rr(l-‘roo,l,l) 1y ( ) 1 (Ud 1'7) ( t) lt'
. dz2,
(d,n,v-j)lg?Jroo,l,l) )\ltﬁ (o dT‘)/\l*” (0 dr ) (d,le +2) =0,
while for ¢ = g¢ and u € {—1,1},
.1,
li A L) B(d 1 +ulg, ) (1 /2
(d,n,rj)gr(l-i-ooJJ) lt+u1 ( 0d,r; )[ ( ttu '16)( t+ u) ] (119)
=it +u+1(0") + (e + W), +u—1(0"),
and for v € {—2,0, 2},
d,2,,
lim A o d,l; +v1, )1y 4 v)!]/?
N (G Bl vl ) U+ )] o)

=1, yor2(0") + (2l + 20 + D, 40(0") + (I +0) (e +v — Vg, 4o—2(0”).

From Lemma (26), we recall that the coefficients of the k-th Gegenbauer polynomial Q,(cd) (x) =
Z];:O p,i‘fia:s satisfy
P = Oa(d=+/2=5/2). (121)

Furthermore, Lemma 27 shows that max;; |( Eq) O(Q)>| = Ogp(+/dqlog d,). We deduce that
| =Ousp(d; /) (122)
Plugging the estimates (118) and (122) into Egs. (116) and (117), we obtain that

o
max Q) (@9

(123)
:OdP(d2£d—nql1/2)

From Eq. (115), using the fact that max;; |’le)| = Oqp(+/(logd,)/d,) and Cramer’s rule for
matrix inversion, it is easy to see that

(MUY ] = Ogp(1). 124
I?%leilgfi]| S D] = Oap(1) (124)
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We deduce from (123), (114) and (124) that for a € [3],b € [2],

mﬁx{|u(q4)(0(Q), 0\”)|} = Oup(d*d1/?). (125)

As a result, combining Eq. (125) with Eq. (111) in the expression of (99 given in Lemma 14, we get

max [T |7
_rg?XHu IJQ)I L+ (q9) [e(q (0 q) ) + 0 (9 Q))T] + a:(gqil ez(q)(ez(Q))T + ﬂg?g)QEQ)(gﬁq ) HF

<Ogp(d®d—mal),

A similar computation shows that
I?;?JX ”Ul(Jqq )H% S Odv]p(dfigd*"]qh)'

By the expression of A given by (113), we conclude that

1Az, < A% = Z Z HU(qq = Ogp(N2d0—maly,
4,¢'€[Q] 1,j=1,i#]

By assumption, N = o04(d"”). Hence, since by assumption ngli > 2y + 7€, we deduce that
HAHOP = Od,P(dig) = Od,IP(d_ maxge[Q] “q)_

Step 5. Checking the properties of matrix D.
By Lemma 14, we can express U,; as a block matrix with
UZ_(;‘I) — a(q)qu + ﬁ(q)al(Q)(aZ(Q))T7 Ui(qu') _ B(qq/)egq)(ez(q'))T7
with coefficients given by
() d (D4 (D)2

« _ (Q) (7_7, ) (Tz )

o] =l =) lq(TW L]

ﬁ(qq') :(dqdq/)fl(Ti(Q)Ti(q/))—z<0l(q), l*]i(iqq/)(ei7 oi)gz(q')>.

Tr(U(qQ)) ]

<0(f1) U(‘J‘I)e(‘l)) (126)

Let us first focus on the ¢ = g¢ sphere. Using Eqs. (116) and (117) with the expressions (119) and

(120), we get the following convergence in probability (using that {T(q)} ] concentrates on 1),
sup qgQTr(U(qsqs)) " (5)’ 5o,
i€[N
s . (127
sup r;f(@z(qg), Ui(iq§q§)0£q§)> - Fg(é)’ -0,

1€[N]

where we denoted § = (01, d2) (where d1, 02 first appears in the definition of & in Eq. (105), and
till now 41, do are still not determined) and, similarly to the proof of [4, Proposition 5] and letting

ur = pux(o’), we have

= > a@- 5t (128)
te{1,2}
while, for ly #£ 1y + 2
1
Bo)= Y {(l_l), [+ (@ = Dpag—2)® = (1= 80, + (= Vpa2)?]

te{1,2}

+ ﬁ [(Mzwrz + (e + D) = (2 + (1= 0) (1 + 1)/%)2} } 7
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while, forls =11 + 2

F3(9) :ﬁ [, + (0 = Dy —2)* = (1= 1), + (1 = Vg —2)?]
+ ﬁ [(ﬂll+2 + (I 4 V) = (1= 8o)paay o + (1 —61) (I + 1)%)2]
+ ﬁ [(Mmz + (2 + V) = (2 + (1= 02)(I2 + 1)/”2)2} .

We have from Eq. (126),
)\min(U‘(‘qq))

K3

= min {O((q)’ ol 4 5@ dq(r}‘”)?}

1 =~ 1 _ 1 _
=min Tf(UZ_(Z_qq)) _ = <0§¢1)’ Ui(iqq)el(q)>’ ﬁwgq)’ Ui(iqq)ez(q)> )
dg =1 dq(dgq — 1)(Tiq )? dq(Tiq 2
Hence, using Eq. (127), we get
d _
SUP |2 M\ i (U€9)) — min{ £ (8), F2(8)}] = 0. (129)

i€[N] ' T'ge

Following the same reasoning as in [4, Proposition 5], we can verify that under Assumption 3.(b),
we have VF;(0), VF5(0) # 0 and det(VF1(0), VF5(0)) # 0. We can therefore find § = (1, d2)
such that F';(d) > 0, F5(d) > 0. Furthermore,

d _
SUP |2 Ao (Up75%)) — max{F} (), F2(8)}| -5 0. (130)

i€[N] ' TG,

Similarly, we get for ¢ # g¢ from Eqgs. (116) and (117) with the expressions (118) (recalling that
{Ti(q)}ie[ ~] concentrates on 1),

sup ’rq_QTr(Ui(iqq)) — F1(9) 50,
i€[N]
sup |r, 2(602, U6") — Fy(6)] S0, (131)
1E[N]
sup [(ryry ) 100, TG00 | B,
i€[N]
We deduce that for ¢ # g and ¢ # ¢/,
d _
sup |2 Ain (UF7) — F1(8)| % 0,
i€[N] ' Tg
d _
sup %Amax(Uz‘(/fQ)) - Fl (6) E) 07
i€[N]'Tg
d.d. 1/2 L,
sup (dqdq') Umax(Ui(;]q )) LN 0,
ie[N]! TqTq

which finishes to prove properties (95) and (96).
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H Proof of Theorem 3.(b): upper bound for NT model

H.1 Preliminaries

Lemma 15. Let o be an activation function that satisfies Assumptions 3.(a) and 3.(c) for some level
v > 0. Let Q = Ont(7) as defined in Eq. (39). Define for integer k € Zgo and 7,7 € Rgo,

AL =12 [t M (0o A, (00 Bld, kg )

Sty 110, (T )N, (07 ) B(d Ky

withkgr = (k1,..., kg +1,...,kg) and ky_ = (k1,..., kg —1,...,kg), and

B k k+d—2
T 2%k+d-—2 T okt d—2

(132)

Sd,k

with the convention tq _1 = 0.

Then there exists constants €9 > 0 and C > 0 such that for d large enough, we have for any
7,7 €[l —ep,1+¢0)%,

max M < Cd'Y*"@q.
keQ AE‘?) -

T, 7).k

Proof of Lemma 15. From Assumptions 3.(a) and 3.(c¢) and Lemma 19, there exists ¢ > 0 and
€0 > 0 such that for any 7,7’ € [1 — ¢, 1 +0]? and k € Q,

Ag(J:j,T)/\g(O’:j.ﬁ'/) >c H qu(mqu).

q€[Q]
Hence for k; > 0, we get A(o) )Ai(oy ) > cd 7%, and for k; = 0, we get
)\g(a:jﬁ))\g(a&ﬁ,) > cd= "¢ ma=%a, Carefully injecting these bounds in Eq. (132) yields the
lemma. O

H.2 Proof of Theorem 3.(b): outline

In this proof, we will consider @) sub-classes of functions corresponding to the NT model restricted to
the g-th sphere:

N
Fyrwo W) = { (@) = Y {ar,29)o/ ((wi, @) /) : ai e RY,i e [N]}.

i=1
We define similarly the risk associated to this sub-model

Byro(fa W)= inf  Bl(fu() = f())%]

and approximation subspace

Onr (7) :{k € Zgo

By > 0and 3 kgl€ = g) <7+ (€~ kg) }
q€[Q]

kg =0and Z kq(€ — Kq) SV_(f_’fq_nq)}'
q€[Q]

(133)
u{kezg,

Theorem 4. Let {f; € L?(PS%, 1%%)}a>1 be a sequence of functions. Let W = (w;)ic[ny With
(wi)ie[n) ~ Unif(SP~1) independently. Assume N > wq(d") for some positive constant v > 0,
and o satisfy Assumptions 3.(a) and 3.(c) at level ~y. Then for any € > 0, the following holds with
high probability:

0 < Rypio (Pofa, W) < ellPofalliz, (134)
where Q = @NT@) () is defined in Equation (133).
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Remark 5. From the proof of Theorem 3.(a), we have a matching lower bound for Fy(a) -

We recall 0
Ont(y) = {k EZSO Z — Kg)kg <+ (5— min nq)}

et q€S(k)

Notice that

Ont(y U Onrio (7
qeQ

Denote i = arg minge g(k) kg such that k € Onra forany k € Onr (7). Furthermore, notice
that by definition for any f € L*(PSZ, ;%) and ¢ € [Q),

Bxr(f, W) < Ryroo (f, W).
Let us deduce Theorem 3.(b) from Theorem 4. Denote Q = Onr (). We divide the N neurons in

|Q| sections of size N’ = N/|Q)|, i.e. W = (W) reo where Wy, € RN %4 For any £ > 0, we get
from Theorem 4 that with high probability

Bnr(Pofa, W) <> Rypun (Pef, Wi) < Y elPrfaliz = clPofal?--
keQ keQ

H.3 Proof of Theorem 4

H.3.1 Properties of the limiting kernel

Similarly to the proof of Theorem 2.(b), we construct a limiting kernel which is used as a proxy to
upper bound the NT(? risk.

We recall the definition of PS? = [T 101 5% " (1/dq). We introduce £ = L (PS? = R, q) and

Lq, = L*(PS® — R%, 14). For a given @ € SP~1(v/D) and associated vector T € Rgo, recall the
definition of o, . € L:

O.:iﬂ' <{<§(q)7j(q)>/\/d7q}q6[Q]) = 0'/ Z \a Tq/R 0((1 =(q) /\/—

q€(Q]

For any T € Rgo’ define the operator T : £ — ﬁdq, such that for any g € L,

T _ ) _

T (0 ) o],
q

The adjoint operator Tj. : L4, — L verifies forany h € Ly,

THh(@) = (@) g [ ({68 )/ V& hseror) hE)].

q

Trg(0) =

We define the operator K+ - : Lg, — L4, as K .+ = T, T7,. For h € Ly,, we can write

KT,T’h(él) = ]E§2 [K‘rﬂ" (51762)h(§2>]’
where

KT1,T2 (ala 52)

e () e (@) _ 79 =
——LE5 [0 @) 0y, (1073 Yacia)) 7 r, (103D ocra) |-
q
Define H; - : L = LasH, » = TLT, . For g € £, we can write
H.,.,,./g(fl) = Ez, [HT,T’ (x1,®2)9(72)]
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where
HT,T/ (51 ) j2)
2

T —
ZfEa[U&,f ( 67 2))\/d }qe[Q]> Or <{<9(Q)75§q)>/\/ dq}qE[Q]) } @2, z).
q

We recall the decomposition of ¢/; . in terms of tensor product of Gegenbauer polynomials:

1 _ (1 _
ol @D, B D) = 3 Mol )B(d, k)Qg(\/dlxg - w/anng)),
kezs,
)\ﬁ(agﬂ_) =Fz [ad ,_(xgl), e ,ng))Qg(\/ d@ﬁ”, . de(Q))}
Following the same computations as in Lemma 12, we get
e (@1,%2) = ) AEZ)Tf)k Q% <{<f‘31 .z >}qe[Q)
kezs,
where
2 o =12 [ty -1, (0 )N (o) Bld k)
84, kA ()N, (0 ) B(d i),

with kg = (k1,...,kq+1,...,kg)and kg = (k1,...,kg—1,...,kg), and convention t4, 1 =

>

(135)

kq L kyd, -2
dg,kq

Pdarky = T g tdg -2

2%y +dy— 2]

Recall that for k € Zgo and s € [B(d, k)], Y, = ® 4€(Q] Yk(j;j forms an orthogonal basis of £
and that

Ex, [Qﬁ ({(@1,%2)}ge1q) Ygs(@)} Zﬁyﬁs@l)%&
We deduce that
A(‘I) ,
e V@)= Y AL B, [Q (@1, 82))geiq) Vida@)] = ﬁygs(@)

k'€ZS,

Consider {']I‘TY,;‘Es Y ez

Q,.5€[B(d.k)]" We have:

(q)

A
(T, 7).k
(T2 Tr Vi e =(Vi o Hre 2 Y3 )12 = W&“’k/és’sl’

(a)
(Tl ,T”),k

Kr o Trn Yy =TrHp 70 Vi, = Bl k)

T, Y2

SS.

Hence {’]I'T//Yk(i)} forms an orthogonal basis that diagonalizes K, - (notice that ']I‘TY,gS is parallel
to ']T.,./Yk for any 7,7’ € ]RQO) Let us consider the subspace TT(VS), the image of Vg by the
operator T,. From Assumptions 3.(a) and 3.(b) and Lemma 19, there exists g € (0,1) and dp
such that for any 7,7’ € [1 — €, 1 4+ £0]? and d > dj, we have A () ke > 0 for any k € Q, and

therefore the inverse K (V) (restricted to T (VQ ) is well deﬁned.

‘r‘r’| T-

H.3.2 Proof of Theorem 4

Let us assume that { fy} is contained in @, .o Vi&.ie. f4 = Pofy

Consider
N

f(®:0,a) = (a;, &)o' ((6;,2)/R).

i=1
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Define o (0) = K% T+ f4(0) and choose a} = N~ ar, (6;), where we denoted 6; = (Eﬁq)) 7€[Q]
with 51@ =69 /77 ¢ §da=1(, /d,) independent of ;.

Fix g9 > 0 as prescribed in Lemma 15 and consider the expectation over P, of the NT@ risk (in

particular, a* = (aj,...,a%) € RNV are well defined):
Fe., Ryt (f1:0)] =Fe., [ inf Eu[(fu(@) - f(2:©,a))]
acR™%

<Fe., |E:|(fa(@) - f(2:©,a°(©)))?]].

We can expand the squared loss at a as

Eo[(fa(z) — f(2)) ]_||fd||L2_QZE [(a;, D)o’ ((6;, ) /R) fa(x)]
=t (136)

N
+ Y Egl(ai, 29)(a;, 2 )0’ ((6;, ) /R)o’ ((6;,@)/R)].
i,j=1
The second term of the expansion (136) around a* verifies

N
Fo., [ Eollal, 2" (6:,2)/R) fulw)]

=1
&, [B5[ar O) B2 Do, (160, 79)/ Vi}se) Ta@]]] a1
:ETEO [<K1_-,17-TT?¢11 TT?d>L2}
= £all3

where we used that for each 7 € [1 — £, 1 + £0]%, we have T; K7L T, = I\VS.

Let us consider the third term in the expansion (136) around a*: the non diagonal term verifies

Ee., | Y Eella, =) (a;, @ )0’ (61, @) /R)o" ((6;.2) /)]
i#£]
:(]. — N_l)ETlo,Tfo,ehez |:a‘r (91) |:Jd T ({<§§q)75(q)>/\/@}q€[Q]>

X 0l < 0. 79)/\/dy}eer0] ) (@)( <q))T} e (52)]
1 Fa(0) Kot 281, 02)K T2 74(0)]
=(1-N"YEn 2 [(K;})Tﬂrﬂ 7 K,lvfzK;g,#TTJdm]
Fork € Qand s € [B(d, k)] and 71,72 € [1 — g9, 1 + £9]%, we have
T K ! Ko 2K T Vi, =(THKC LT ) - (T3K T ) - Vi, = Vi,

:(]‘ - N_l)Erlo,‘r ,01,05 |:K !

1'7'1

Hence for any 71,72 € [1 — g, 1 + £9]%, Tz K_ K, ~2 K2

Eo., | Y Eal(ai,2?)(a;, 2?)"(0: x>/R>a'<<ej,w>/R>1} = (1= N falfe (138)
i#j
The diagonal term verifies
Fo., [ 3 Eallal, 20)20'((6;,2)/R)o'((8;,2) /R
i€[N]

=N"'E, 3 [a,(ﬁ)TK,,(é, §)a,(§)}

T, = I\VS. Hence

T2 72

<N max Ky (8,9)lop) - B (KL TS T3]
0,7€[1—e0,14¢0]?
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We have, from Lemma 14,

KT).,.(g’ a) = a(Q)qu + B(q)g(‘l) (§(Q))2
where
ol i d, (7@t —(r(@)2
[ﬂ(Q) :[dtI(dq_l)(T(Q))4] ! j((T(q)))Z <1 )
Em[<$(q),m(q)>(féﬂ_(fgl)’_._7

E(IQ))2}
| —(1 — .
Eo[(@?)%0y ;... 7))

Hence from Lemma 17 and for ¢ small enough, there exists C' > 0 such that for d large enough

2
_ r
sup IK+.+(0,0)|lop < Cd—q = Cd"s.

TE[l—e0,14€0]9 q

Furthermore

o B(d. k _
AT Tl = 0 S S A

kecQ (r,7),k s€[B(d,k)]

B(d, k)
< max -t NPafallZe-
(r,7),k

From Lemma 15, we get
E-. [IK: 5T fall72] < CdV ™% - [P fal|7--

Hence,

Bo., [ 3 Eal(at,20)20'(6:,2)/R)o' (8, )/R)]| < O Pofallie:  (139)

Combining Eq. (137), Eq. (138) and Eq. (139), we get
Fo., [Es [(fa@) — f(2;0,a"(©)))?]]
=lfalz> = 2llfallz> + (1 = NI fallZ + NT'E, 5|a-(0) K, (8, 5)07(5)}
dY 9

<CSIPofals.
By Markov’s inequality, we get for any € > 0 and d large enough,

P(Ryrw (fa,©) > - | fal12) SP{Ryro (fa, ©) > - [ fall12} N Pey) + P(PE,)

dy .
SC’N +P(PS).

The assumption that N = w4(d”) and Lemma 8 conclude the proof.
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I Proof of Theorem 4 in the main text

Step 1. Show that RNN’QN (f*) < ianERNxd RNT,N(fm W).

Define the neural tangent model with N neurons by fxr n(x; s; W) = Zfiﬂsi, xz)o' ((w;, x))

and the neural networks with N neurons by fun n(a; W,b) = Zszl bio((w;, x)
W e RV*d g e RN ande > 0, we define

an(x; W, s,e) =t (fNN,N(iB; W +es,1) — fann (2 W, 1))7
E(x; W, s,2) = gn(z; W, s,2) — farn (58 W).

For any

Then by Taylor expansion, there exists (W;);e[] such that

N
€@ W,s,0)| = 2| S (si,@)20" (ab, )|
=1

By the boundedness assumption of sup,, < |0” ()|, we have
; . 2 _
51_1>%1+ ”5(7 W.s, E)HL? =0,

and hence .
lim £ = gn (W, s,0)[ 72 = [Ife = fnrn (3 8 W) L2
e—0+
Note that gy can be regarded as a function in F2Y and fNT, N € FRy (W), this implies that

Rynon(fe) < inf Ryt n(fe, W). (140)
WE]RNXd

Step 2. Give upper bound of infyy cpnxe RnT N (fi, W). We take W = (w;);<n with w; =
U®;, where v; ~ Unif(S%~1(r~1)), and denote V' = (¥;);<n. Then we have

N
G (V) = {f(@) = [(UT@) : [(2) = 3 (51, 2)0' (51, 2)). 5 € B0 < N | © FE(W).

It is easy to see that, when f.(z) = ¢(U ), we have

inf _ E[(f(x) - f()*]= nf _El(e(2) - f(2))%],

fegi (V) feri, (V)

where 3 (V) is the class of neural tangent model on R

N

Fh(V) = {7(z) = Y (s02)0'(0:.2)) - 5 e R*.i < N .

i=1

Moreover, by Theorem 3 in the main text, when d€+5 <NKL df)“*‘S for some § > 0 independent of
N, d, we have

inf _ E[(p(2) = f(2))*] = (L +0ap()) - IP>er10ll7e = (14 04p(1) - [PserrfelZ.
FeF (V)

As a consequence, we have

il Ryew(fo W) < inf_ E[(f(@) - f@)?] < inf_ E[(f.(e) - f@))]

WERN % feFN, (W) - fegiL (V)
= inf _ E[(p(2) — f(2))%] = (1 +0ap(1) - [Pse1fello-
feFRr (V)

Combining with Eq. (140) gives that, when d€+5 <NL d€+1—5’ we have

Ranov (fe) £ (14 04(1)) - Psesr foll7e-
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Step 3. Show that Ry v (f.) is independent of .

We let # = d*/? and # = d'/? for some & # /. Suppose we have & = Uz, + U'z, and
& = Uz, + Utzy, where 2, ~ Unif(S©—Y(7#Vdy)), 21 ~ Unif(S®~1(#/dy)), and zy ~
Unif (S?=90=1(y/d — dy)). Moreover, we let f.(%) = (U &/7) and f.(z) = ¢(U z/r) for
some function ¢ : R% — R,

Then, for any W = (w;)i<y C R? and b = (Ei)igN C R, there exists (91,)i<y C R%
and (ﬁQ,i)iSN - R4=do gych that w; = U’l~)17i + UL’I~)27Z'. We define '1071,,‘ =7- ’l~71,i/7°‘, w; =
Uvi; + UJ-f;gﬂ;, W = (w;)i<n, and b = b. Then we have

Es[(f.(2) — fan,n (& W, 0))°] = Ea[(fu(®) — fan,n (@& W, ))%].

On the other hand, for any W = (w;)i<n C RY and b = (bz)zSN C R, we can find W =
(wi)i<y € R%and b = (b;);<nx C R such that the above equation holds. This proves that
Rnw,n(f«) is independent of .
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J Convergence of the Gegenbauer coefficients

In this section, we prove a string of lemmas that are used to show convergence of the Gegenbauer
coefficients.

J.1 Technical lemmas

First recall that for ¢ € [Q] we denote 7(9) = [|0(9)||y//d, where 8(9) are the d, coordinates of

6 ~ Unif(SP~1(v/D)) associated to the ¢-th sphere of PS%. We show that 7() is (1/d,)-sub-
Gaussian.

Lemma 16. There exists constants ¢, C' > 0 such that for any € > 0,
P(|7D — 1| > ) < C exp(—cd,e?).

Proof of Lemma 16. Let G ~ N(0,1p). We consider the random vector U = G/||G||2 € RP. We
have U ~ Unif(SP~"(1)). We denote Ng, = G +... + G3 and Np = G + ... + G},. The

random variable 7(9) has the same distribution as
@) = 0|,/ /dqgi\/qu/dq.
/Np/D

Hence,
VN /d
P(|r@ — 1] > ¢) = (’ 40/ s 1>a>
V/Np/D (141)

<p( ‘,/Nd Jdy — 1‘ >5/2>+P(‘\/m—1‘ >e/(2+2)),

where we used the fact that

\a—l\ggand|b—1|§

4 1‘<5
2+ 2¢ -

Let us first consider Ny, with e € (0, 2]. The G? are sub-exponential random variables with

E{e*@?—l)] < Y < 1/4
From standard sub-exponential concentration inequality, we get
]P)(‘qu/dq - 1) > a) < 2exp ( —dge min(l,a)/8). (142)
Hence, for € € (0, 2], we have

P(‘,/qu/dq - 1’ > 5/2) < P(‘qu/dq - 1‘ > 5/2) < 2exp ( - dq52/32),

while for e > 2,
P(‘./qu/dq - 1‘ > 5/2) < P(qu/dq > (e/2 + 1)2) gIF’(qu/dq 1> 52/4)
<exp ( - dq52/32>.
In the case of Np, applying (142) with £/(2 + 2¢) < 1 shows that
P(|VNo/D — 1| > £/(2+29)) <P(|Np/D 1| > /(2 + 2¢))
<2exp ( — De?/(32(1 + 5)2)).
Combining the above bounds into (141) yields for € > 0,
P(]7@ — 1] > €) <2exp ( - dq52/32) + 2exp ( — De?/(32(1 + 5)2))

<4exp ( — &2 min (dq, D/(1+ 6)2)/32>.
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Notice that |7(9) — 1| < y/D/d, — 1 and we only need to consider ¢ € [0, /D/d, — 1]. We conclude
that for any € > 0, we have

P(j7@ —1] > ¢) < 4exp<— dq52/32).

O

We consider an activation function ¢ : R — R. Fix 8§ € SP~!(/D) and recall that =
(M, ... 2@) ¢ PS% We recall that = ~ Unif(PS%) = uf while & ~ Unif(PS%) = pugq.

Therefore, for a given 6, {(5((1)75(‘1)} /\/dq}qeiq) ~ [y as defined in Eq. (23). Therefore we
reformulate o((0,-)/R) as a function o4  from ps? to R:

o((0.2)/R) =0 | 3 70 (ry/R)- @7 FD)/ /4,

4€(Ql (143)
_ —(q) _
=oar ({0, 39)/Vigboera)) -
We will denote in the rest of this section oy = T(Q)rq /R forq=1,...,Q. Notice in particular that

arg o< daTFa=¢ where we recall that £ = max,e(g){ny + fq}. Without loss of generality, we will
assume that the (unique) maximum is attained on the first sphere, i.e.{ = 11 + K1 and & > 1g + K,
for g > 2.

Lemma 17. Assume o is an activation function with o(u)? < coexp(ciu?/2) almost surely, for

some constants co > 1 and ¢y < 1. We consider the function oq - : ps?® — R associated to o, as
defined in Eq. (65).

Then
(a) EGNN(OJ)[U(G)Z] < o0.

(b) Let w'? be unit vectors in R% for q = 1,...,Q. There exists ¢g = £o(c1) and dy = do(c1)
such that, for T = (V... (@) ~ e,

2
sup sup Ef[ad,.,. ({(w(Q),E(Q)>}qe[Q]) } < 00. (144)
d>do T€[l—e0,14c0]°9

(¢) Let w'? be unit vectors in R% for ¢ = 1,...,Q. Fix integers k = (ki,. .., kq) € Zgo-
Then for any 6 > 0, there exists constants €9 = £¢(c1,0) and dy = do(c1,0), and a
coupling of G ~ N(0,1) and ® = (2, ..., 2 @) ~ u% such that for any d > dy and
TE€[l—e0,1+¢&0]%

Eaa[([ T (1 @@ 29)/d,)" |our (1@ 29} e0)) —0(@) ] <6

q€(Q]
(145)

Proof of Lemma 17. Part (a) is straightforward.
For part (b), recall that the probability distribution of (w9, Z(®) when Z@ ~ Unif(S%~(,/d,))
is given by

dg—3

_ .762 2
74,-1(dz) = Cq, (1 - d) Lo/ /apde (146)
q

B r(d, - 1)
s = S0 T, T((dy — 1)/2? (147
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A simple calculation shows that C,, — (27)~/2 as n — oo, and hence sup,, C,, < C < oc.
Therefore for 7 € [1 — &, 1 + £]9, we have

o {ad,f ({<w(‘”@(q>> }qe[@ﬂ

dg—3
—(@)y2) 2
T
-/ ar (70, 7OV qu<1—(;)> 470
o)~V da:\/dd] q

q€(Q]
2
_ dg
<C? | coexp | e Z @ | /2 H (eXP(—Qd( [0)? )dxgq))
RQ
q€[Q] q€[Q]

=coC / exp ( :clel/Q) de

q€[Q]

where we denoted 7, = (z\”,...,7\?)) and M € R2*@ with

dg — 3
ch - c%ag, My = —craqaqy, forq # ¢ € [Q].

Recalling the definition of o, = 7(@r, /R, withr, = d"a+%4)/2 and R = d*/?(1+404(1)). Hence for
any € > 0, uniformly on 7 € [1—¢,1+¢]9, we have o, — 0 for ¢ > 2 and lim sup,_, . |a1 —1] < e.
Hence if we choose ¢p < 01_1 — 1, there exists ¢ > 0 such that for d sufficiently large M > cIg and
forany T € [1 — ¢, 1 4 £0]?

Myq =

Ez {ad,.,. ({(w(q D)} e Q])Q} < ¢oC / exp (—c|Z1(|3/2) H dx(Q) < 0.

q€(Q]

Finally, for part (c), without loss of generality we will take w(?) = eg(n so that (w9 () = 7
From part (b), there exists € > 0 and d; such that

2kq 2
sup sup EzEzc [ H (1 - <w(Q),§(q)>2/dq> ]Ud,,- ({(w(q),f(q)ﬂqe[@)
d>do T€[1—e,14€] a€lQ]

2
<sup sup [Ez [Ud).,. ({('w(q),im)}qe[@]) } < 0.
d>do T€[1—e,14€]
Consider G ~ N(0,I¢) and an arbitrary coupling between Z and G. For any M > 0 we can choose
o, bounded continuous so that for any d and 7 € [1 — ¢, 1 + €] @,

Ezc || ] (1—(f§q>)2/dq)k“-o— Yoa@? | - [ 0-G2d)" " o | 3 oG,

q€(Q] q€(Q] q€(Q] q€(Q]

q€[Q] q€[Q] q€[Q] q€[Q]

(148)
It is therefore sufficient to prove the claim for oj;. Letting £, ~ N(0, I, 1) independently for each
q € [Q] and independent of G, we construct the coupling via

Ggv/d, v/ d
70 = Sovle g SVh g (149)
Ga+ €411 Gg + &3
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<Ezc || [] (1 - (fgq))Q/dq)kq con | D a@? | = T (1=G2/do)™ -onr | D auG

2

2

+
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where we set 29 = (29, 7'9) for each ¢ € [Q]. We thus have (z\, %)) — G almost surely,
hence the limit superior of Eq. (148) is by weak convergence bounded by 1/M for any arbitrary M.
Furthermore, noticing that oy — 0 uniformly on 7 € [1—¢14 5]Q for ¢ > 2, we have by bounded
convergence

2

lim  sup  Eza || [] (- G2/d,)" ol Y oG o (1 Gy) =0.
4700 Tell—e,14<]0 q€(Q] q€(Q]
(150)
We further have lim; ;1)) (00,1) @1 = 1. Hence, by bounded convergence,
. 21
woalm | Ea, [(a (1G1) — o(G1)) } = 0. (151)
Combining Eq. (148) with the coupling (149) and Eqs (150) and (151) yields the result. O

Consider the expansion of 04 - in terms of tensor product of Gegenbauer polynomials. We have

(0.2)/R) = > Moar)BldK)QE ({0 7)) yer0)) .

kczS,

where
M(oar) = Bzloar (7, 7P) @iV, . Vigr?)].

with the expectation taken over T = (ZV,..., & @) ~ pg = Unif(PS%). We will need the
following lemma, which is direct consequence of Rodrigues formula, to get the scaling of the
Gegenbauer coefficents of og .

Lemma 18. Let k = (k1,...,kg) € Z‘;?o and denote |k| = ki + ... + kg. Assume that the

activation function o is |k|-times weakly differentiable and denote o*V) its |k|-weak derivative. Let
g = T(q)rq/Rforq =1,...,Q. Then

()2 \ Fa
X
Moar) = [ TT o' | - Rk B || ] <1_< L ) > (S ]|

q

q€[Q] q€(Q] q€[Q]
(152)
where & ~ Unif (PS%) and
dq**T((dg — 1)/2)
R(d,k) =[] = .
AL ST+ (d,— 1)/2)
Furthermore,
lim B(d, k:)R(d,k:)2 = — (153)

d—o0 k!’
where k! = ki!.. kgl
Proof of Lemma 18. We have

)‘g (Ud,‘r)

:Ei{a'd,‘r (.135 ), . ,ng)) QZ(\/ dlfgl), ceey degQ)>:|
=Ezo) @ E_o |0 Z OéqT(Q) +ag —(Q) (dQ) \/733(@)) H Ql(fqu)( /dquln) 7

q€[Q—1] qelQ—1]
(154)
where we used the definition (24) of tensor product of Gegenbauer polynomials.
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Consider the integration with respect to Z(@). Denote for ease of notations u = alfgl) + ...+

ag— 1m(Q D We use the Rodrigues formula for the Gegenbauer polynomials (see Eq. (14)):

E @) unitsia- <W>>{ (u+an(Q)) d@(\ﬁx(cz )}

=M/ a(aQ th+u> o) (dgt) (1 - 12)de=)/2qy
Wdg-1 J[-1,]

- Wdg— ko
g S s [y (Vs ) () e

koo—ko Ho/2  L((dg —1)/2) WdQ*2/ kg (k 2y (do—3)/2
=an,’27"d . 1—1t%) egke) (qg\/dot +u —t7)\%e dt
@ @ T(kq + (dg —1)/2) wag-1 Ji 11]( ( evHa ) )

kq/2
A2 T((dg —1)/2) kq
— kQ Q Q E 1— —(Q)\2 d (k@) (Q)
%@ 2Rl (kg + (dg — 1)/2) = ~UmifE"e (/o) [( A tda) "t (ot 4 (155) !
Iterating Eq. (155) over ¢ € [Q] and Eq. (154) yield the desired formula (152).
Furthermore, for each q € [Q)],
kq—2
kq!B(dqa kq) :(qu + dq - 2) H (.7 + dq - l)a
j=0
kq—1
I((dg—1)/2) _ 11 o
2k (kq + (dg — 1)/2) o 2j+dy—1
Combining these two equations yields
dy'T((dg —1)/2)?
kq!B(dg, k 1 1
a!Bldy, Q)QQ’%F(k + (dg — 1)/2)?
by - (156)
2kg +dg — 3 2j+d—1 iz 2j+dg—1
which converges to 1 when d;, — oo. We deduce that
lim B(d,k)R(d, k) = 1
d—o0 ’ ’ - k! ’
O

J.2 Proof of convergence in probability of the Gegenbauer coefficients

Lemmal9. Letk = (kq,...,kg) € Zgo and denote |k| = k1+. . .+kq. Assume that the activation

function o is |k|-times weakly differentiable and denote cI*) its |k|-weak derivative. Assume

furthermore that there exist constants co > 0 and ¢; < 1 such that o/*D (u)? < ¢q exp(ciu?/2)
almost surely.

Then for any & > 0, there exists ¢o € (0, 1) and dy such that for any d > dg and T € [1 —eg, 1 +0]%,

2
H d(g_nq_ﬁq)kq B(d;k))\g(gd,‘r)z _ M‘k‘k('a—) S 5.
a€[Q] '
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Proof of Lemma 19. From Lemma 18, we have

[[ d& e | B(d, k)M (0a.r)?
q€(Q]

= | [I aztedc-ma=roka | . [B(d, k)R(d, k)] (157)
q€(Q]

()42 Fa
<Es | T1 (1_@”; >> SUON P
]

€@ ¢ 7€[Q)]
Recall a, = 7@r, /R with r, = d®a+74)/2 and R = d/2(1 + 04(1)). Hence, we have

lim H agkqd(f—nq_ﬁq)kq = 1.

s (00 (158)
(d,7)—( J)qe[Q]
Furthermore, from Lemma 18, we have
1
lim B(d, k)R(d, k) (159)
d— oo k'

We can apply Lemma 17 to the activation function o(/¥l)_ In particular part (c) of the lemma implies
that there exists £ € (0, 1) such that for d sufficiently large, we have for any 7 € [1 — ¢, 1 + 50]Q,

qu
Ex || I] (1- @)’ oD (3™ a7 | | ~Ealo®D(@))| < 6/2. (160
T d GO ] = / ( )

7€lQ] 1 7€(Q]

From Eq. (18), we have Eg[oc(kD(G)] = tk| (o). Combining Eqgs. (158) and (160) into Eq. (157)
yields the result. O

Lemma 20. Let k be a non negative integer and denote k = (k,0,...,0) € Zgo, where we recall
that without loss of generality we choose q = 1 as the unique arg maxqc(o){7q + Kq}. Assume that

the activation function o verifies o(u)? < co exp(ciu?/2) almost surely for some constants co > 0
and cq < 1.

Then for any § > 0, there exists €9 = o(c1,90) and dy = do(c1,0) such that for any d > dy and
T € [1 — €, 1 +50]Q,
pi(0)?

k! <0

B(dy, k)\¢(0a.,)* -

Proof of Lemma 20. Recall the correspondence (19) between Gegenbauer and Hermite polynomials.

Note for any monomial m;(x) = 2*, we can apply Lemma 17.(c) to m;(T (qg))

such that for any 1 > 0, there exists g > 0 and

o and find a coupling

2
lim sup e [(mk(fgqf))ad,.r(fgl), . ,ng)) — mk(G)o(G)) } <n. (161)

d—=00 re[l—eg,l4€0]@
‘We have
[B(dy, k)K" A (0ar) = Ezloa-@", ..., Q) (Vi z\")[B(dy, k)k!]/?].

Using the asymptotic correspondence between Gegenbauer polynomlals and Hermlte polynomials
(19)

; 1/2 1
dlg& Coeff{Qéd)(\/gx)B(d,k) 2y = Coef'f{(k')l/2 Hey(x )} ,

and Eq. (161), we get for any 6 > 0, there exists 9 > 0 such that for d sufficiently large, we have for
any T € [1 —go, 1+ &0]9,

’Ef [adf(xgl,...,*@) QU (/a7 k']l/Q] [o(G)Hek(G)]‘gé,

which concludes the proof. O
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K Bound on the operator norm of Gegenbauer polynomials

Proposition 5 (Bound on the Gram matrix). Let k € Zgo and denote y =3 Q] Ngkq. Letn <

g€
d’y/eAdlegdfor any Ag — oo. Let (T;);c[y) with T; = ({f(-q)}qe[Q]) ~ Unif(PS?) independently,
and Q Ky ) be the k, 'th Gegenbauer polynomial with domain [—d, d,). Consider the random matrix

W = (VVZJ)ZJG[H] € R™*"™, with
= Q@ 7" gera) = ] @i (@ 7).
q€(Q]
Then we have
lim E[|W —1,]|lop] =0
d,n—o00

Corollary 1 (Uniform bound on the Gram matrix). Let n < d”/eA¢V1°ed for some v > 0 and any
Agq — oo. Let (T;);e[n) With T; = ({fl(-q)}qe[@]) ~ Unif(PS%) independently. Consider for any
ke Zgo, the random matrix Wy, = (W)ij); jen) € R"*™ as defined in Proposition 5. Denote:

Q= {k: € Zgo’ > gk < 7}.
q€[@]

Then we have
sup E[||[Wy — In”Op] = 04,p(1).
keQc

Proof of Corollary 1. For each ¢ € [Q], we consider A9 = Wk(q) — I,, where Wk(q) =
(Wi?)is)i sl with
dg) 1 )—(q) —
Wi = Qi (@ 7))
Then, defining v, = 7/7,, we have

E| sw W L3 <E[ 3 W - L
k22vq+ k>2vq+3

=n(n—1) Y EQ (@9 g?) =nn-1) Y B

k>2v,+3 k>2v,+3

For d sufficiently large, there exists C' > 0 such that for any p > m = [2v, + 3]:

dq,m (2k +dq —2) (k+1) =
<

iun) [ Gt o -,;; AT
b~ _om41 C
< dq 24m k+1 <7

Hence, there exists constant C”, such that for large d, we have

> B(dg, k)™t <C"- B(dg,m)”"

k>2v,+3

Recalling that B(dg, m) = ©4(d"™) = wy(d??), and n = 04(d”), we deduce

E[ sup ||W,§q>—1n||§p}:od(1). (162)
E>2vq+3

Let us now consider A = W}, — I,,. We will denote A9 = Wk(j) — I,,. Then it is easy to check
(recall the diagonal elements of Wk(,:lq) are equal to one) that for any g € [Q)]

A=(OWD)oaw

q'#q
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where A® B denotes the Hadamard product, or entrywise product, (A® B); jen] = (AijBij)i,jen)-
We recall the following inequality on the operator norm of Hadamard product of two matrices, with
A positive definite:

|46 Blop < (max Ay )| Bllo

Hence, in particular
18 llop < ( TT maxl W) 1A oy
q'#q
Consider Z = [0,2y1 + 3[x ... x [0,2v¢ + S[QZgo. Then, from Eq. (162), we get directly

sup Wi — I |lop = 0ap(1). (163)
keZc

Furthermore, Z N Q is finite and from Proposition 5, we directly get

sup HWk - In”op = Od,ﬂ”(l)' (164)
keZINQ

Combining bounds (163) and (164) yields the result.

K.1 Proof of Proposition 5

The proof follows closely the proof of the uniform case presented in [4]. For completeness, we copy
here the relevant lemmas.

Step 1. Bounding operator norm by moments.

Denote A = W — I,. We define for each ¢ € [Q], Wk(j‘Z) = (in”((igq),fg-‘”)))ije[n] and
A = Wk(;i“) —I,,. Then it is easy to check (recall the diagonal elements of Wk(jQ)
one)

are equal to

A=ADo. . . 0A@,

where A® B denotes the Hadamard product, or entrywise product, (A® B); jem] = (Aij Bij)i,jeln)-
For any sequence of integers p = p(d), we have

E[|Allop] < E[TH(A™)"/P)] < E[Tx(A%)]"/ (P (165)
To prove the proposition, it suffices to show that for any sequence A; — oo, we have

lim E[Tr(A2%P))Y/ P =, (166)
d,n—oo,n=04(dve~AdViced)

In the following, we calculate E[Tr(A??)]. We have

E[TI‘(A2P)] = Z ]E[A’i1’i2Ai2i3 e Ai2pi1]
i:(ilv"':iQP)e[an
= 3 11 E[AY Al Al
1112 2213 """ 22p1 ’
]

i:(il,...ﬂgp)e[n]r‘)p QG[Q

where we used that Z(?) and () are independent for g # ¢'.

We will denote for any ¢ = (iy,...,ix) € [n]*, define for each ¢ € [Q)]

@ {E[A§§’L~-~AEZL] >
B 1 k=1.

Similarly, we define M; associated to A,

M; = ] M.
q€[Q]
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To calculate these quantities, we will apply repeatedly the following identity, which is an immediate
consequence of Eq. (11). For any 41, i2, ¢3 distinct, we have

@ A@q_ 1 ()
EGQ [AilizAigig] - B(dq, kq) A1,11,3'

Throughout the proof, we will denote by C, C’, C" constants that may depend on % but not on p, d, n.
The value of these constants is allowed to change from line to line.

Step 2. The induced graph and equivalence of index sequences.

For any index sequence & = (i1, 42,...,i2p) € [n]°?, we defined an undirected multigraph G; =
(Vi, E;) associated to index sequence . The vertex set V; is the set of distinct elements in 41, . . ., i2p.
The edge set E; is formed as follows: for any j € [2p] we add an edge between ¢; and ;41 (with
convention 2p + 1 = 1). Notice that this could be a self-edge, or a repeated edge: G; = (V;, E;)
will be —in general— a multigraph. We denote v(z) = |V;| to be the number of vertices of G;, and
e(i) = | E;| to be the number of edges (counting multiplicities). In particular, e(3) = k for i € [n]*.
We define
T+(p) = {3 € [n]*" : G; does not have self edge}.

For any two index sequences %1, ¢2, we say they are equivalent 2; < %o, if the two graphs G;, and
G, are isomorphic, i.e. there exists an edge-preserving bijection of their vertices (ignoring vertex
labels). We denote the equivalent class of 2 to be

Cit)y={j:73 =1}
We define the quotient set Q(p) by
Qp) = {C(3) i € [n]*"}.

The following Lemma was proved in [4, Proposition 3]

Lemma 21. The following properties holds for all sufficiently large n and d:

(a) For any equivalent index sequences i = (i1,...,i2) < j = (j1,...,J2p), we have
(@ _ yr@
MY = qu .

b) For any index sequence i € [n)? \ T,(p), we have M; = 0.

d

(b)
(¢) For any index sequence © € T,(p), the degree of any vertex in G; must be even.
(d) The number of equivalent classes |Q(p)| < (2p)?P.

(e)

Recall that v(i) = |V;| denotes the number of distinct elements in i. Then, for any
i € [n]?P, the number of elements in the corresponding equivalence class satisfies |C(i)| <
0(i)@ - v < o,

(&

In view of property (a) in the last lemma, given an equivalence class C = C(i), we will write
M = M; for the corresponding value.

Step 3. The skeletonization process.

For multi-graph GG, we say that one of its vertices is redundant, if it has degree 2. For any index
sequence © € T, (p) C [n]? (i.e. such that G; does not have self-edges), we denote by r(7) € N
to be the redundancy of ¢, and by sk(¢) to be the skeleton of ¢, both defined by the following
skeletonization process. Let 49 = 4 € [n]?P. For any integer s > 0, if G;, has no redundant
vertices then stop and set sk() = 4,. Otherwise, select a redundant vertex i, (¢) arbitrarily (the ¢-th
element of 7). If i5(¢ — 1) # 45(¢ + 1), then remove 24(¢) from the graph (and from the sequence),
together with its adjacent edges, and connect ¢5(¢ — 1) and 45(¢ + 1) with an edge, and denote 451
to be the resulting index sequence, i.e., 2541 = (25(1),...,2s(¢ — 1),25({ + 2),...,%5(end)). If
is(0 — 1) = i5(£ + 1), then remove i4(¢) from the graph (and from the sequence), together with its
adjacent edges, and denote ¢, to be the resulting index sequence, i.e., ¢541 = (25(1),...,8:(f —
1),25(+1),35(£+2),...,45(end)). (Here £ + 1, and ¢ — 1 have to be interpreted modulo |3, the
length of ¢,.) The redundancy of %, denoted by r(), is the number of vertices removed during the
skeletonization process.
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It is easy to see that the outcome of this process is independent of the order in which we select
vertices.

Lemma 22. For the above skeletonization process, the following properties hold

(a) Ifi < j € [n]?, then sk(i) < sk(j). That is, the skeletons of equivalent index sequences
are equivalent.

(b) Foranyi = (iy,...,i1) € [n]¥, and q € [Q], we have

()
v~ Mt

Y B(dg k)"

(c) Forany i € T,(p) C [n]??, its skeleton is either formed by a single element, or an index
sequence whose graph has the property that every vertex has degree greater or equal to 4.

Given an index sequence i € T, (p) C [n]?P, we say i is of type 1, if sk(4) contains only one index.
We say i is of type 2 if sk(4) is not empty (so that by Lemma 22, G5y can only contain vertices with
degree greater or equal to 4). Denote the class of type 1 index sequence (respectively type 2 index
sequence) by 71 (p) (respectively T2(p)). We also denote by 7, (p), a € {1, 2} the set of equivalence
classes of sequences in 7, (p). This definition makes sense since the equivalence class of the skeleton
of a sequence only depends on the equivalence class of the sequence itself.

Step 4. Type 1 index sequences.

Recall that v(%) is the number of vertices in G;, and e(%) is the number of edges in G; (which
coincides with the length of 4). We consider ¢ € 71 (p). Since for 2 € T;(p), every edge of G; must
be at most a double edge. Indeed, if (uq,u2) had multiplicity larger than 2 in G;, neither u1 nor usy
could be deleted during the skeletonization process, contradicting the assumption that sk(z) contains
a single vertex. Therefore, we must have min;c7; v(¢) = p 4+ 1. According the Lemma 22.(b), for
every ¢ € T1(p), we have

v(t)— 1
Mi= [[ a7 = I VB k)™ = g
q€[Q] q€[Q] ’

Note by Lemma 21.(e), the number of elements in the equivalence class of 4 is |C(4)| < p? - n?(®),
Hence we get

max [|C()[|Ms]] < sup [p"n*®)/B(d, k)" O] = pPuP T/ B(d, k)P (167)
i€Ti(p) i€T1(p)

Therefore, denoting K = 3~ ) Mgk

YooM= Y || M] (168)

i€T1(p) CeTi(p)
D nPt 3p.p+1 j—Kp
S\Q(p)lpWS(Cp) nPHia—Kr. (169)

where in the last step we used Lemma 21 and the fact that for ¢ € [Q)], B(dg, kq) > C’od’;“ for some
Co > 0.

Step 5. Type 2 index sequences.

We have the following simple lemma bounding M;, copied from [4, Proposition 3]. This bound is
useful when 1 is a skeleton.

Lemma 23. For any q € [Q), there exists constants C' and dy depending uniquely on k, such that,
forany d > dy(k,), and any index sequence ¢ € [n]"™ with 2 < m < d,/(4k,), we have

m/2

|qu)| S (ka:q . d;kq)
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Suppose @ € T2(p), and denote v(%) to be the number of vertices in G;. We have, for a sequence
p = 04(d), and each g € [Q)]

W _| sk(z)'
M= ( )r(z)

(2) kq-e(sk(2))/2 o
) (C/dq) r(2)kq

(3) k -e(sk(z))/2 )
< ( ) (C'dy) TPk

kq-v(sk(2))
> (C'dg) "

% cv 'L) kq-v(sk(z)) d (v(sk(2))+7r(2))-kq
% (Cp)k v z)d (i)kq.
Here (1) holds by Lemma 22.(b); (2) by Lemma 23, and the fact that sk(i) € [n]¢®<(9), together by
B(dy, kq) > Cod];q; (3) because e(sk(i)) < 2p; (4) by Lemma 22.(c), implying that for ¢ € T3(p),
each vertex of Gy ;) has degree greater or equal to 4, so that v(sk(z)) < e(sk(z))/2 (notice that for
d > do(kq) we can assume Cp/d, < 1). Finally, (5) follows since (%), v(sk(z)) < v(¢), and (6)
the definition of r(¢) implying (i) = v(2) — v(sk(¢)).
Hence we get

pi < [T (Cp)fr@age @t

q€lQ]

Note by Lemma 21.(e), the number of elements in equivalent class |C(3)| < p*(®) - n*(®). Since
v(2) depends only on the equivalence class of ¢, we will write, with a slight abuse of notation
v(4) = v(C(%)). Notice that the number of equivalence classes with v(C) = v is upper bounded
by the number multi-graphs with v vertices and 2p edges, which is at most v*?. Denoting o =
maxge(o{1/n,}, we have

S oM< D> [ClMc| (170)

i€T2(p) ceTz(p)
v(C)
< Z (Cpa)(K-‘rl)v(C) <d£K) 171
CET2(p)
2p a(K+1)
<X o (P ) - (72)
Define ¢ = Cnp®K+1) /dK . We will assume hereafter that p is selected such that

a(K+1)
C"p) . (173)

By calculus and condition (173), the function F'(v) = v*P&? is maximized over v € [2,2p] atv = 2,
whence

2
ie;(p) M; < 2pF(2) < CP (df{) . (174)

Step 6. Concluding the proof.
Using Egs. (169) and (174), we have, for any p = o4(d) satisfying Eq. (173), we have

E[Tr(A%P)] = Z M; = Z M; + Z M; (175)
i=(i1,...,i2p) E[N]?P 1€T1(p) i€T2(p)
+1 2
3pnp p(
< (Cp) "+ O () (176)



Form Eq. (165), we obtain

n n \1/p
E[llA]lop] < C {pi”/?n”(?m\/d}{ + (%) } . am

Finally setting n = de=24vIogd and p = (K/A)\/log d, this yields
EllAllop] < € {e™# VBT 4 o=247/K Y (178)

Therefore, as long as A — oo, we have E[||A||op] — 0. It is immediate to check that the above
choice of p satisfies the required conditions p = 04(d) and Eq. (173) for all d large enough.
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L Technical lemmas

We put here one technical lemma that is used in the proof of Theorem 3.(a).

Lemma 24. Let D = (qu/)qu/E[Q] € RPNXDN pe g symmetric Q by Q block matrix with
D19 ¢ R4N*da' N Depote B = D~1. Assume that D satisfies the following properties:

1. Forany q € [Q)], there exists c¢q, Cy > 0 such that we have with high probability
2
r
cg = d"cqg < Apin (D7) < Apax (D) < d—qu =d"C, < o0,
q

QN

0<

Q&.‘ 3

as d — oo.
2. Forany q # q' € [Q], we have 0max (D) = 0q.p(ryry | \/dqdy ) = 0qp(d"atra)/2),

Then for any q # q' € [Q], we have

d ’ \/d d ’
1B lop = Oa,p ( q) = Oap(d"), 1B |lop = 0a,p ( T ) = 0g p(d~Fatra)/?),

2
s TqTq’

179)
Proof of Lemma 24. Let us show the result recursively on the integer (). Note that the case Q = 1 is
direct.
Consider D = (qu/)q,q’e[Qy Denote D = D — dg, A = (qu,)q,q’e[Q—l] € RON*DN ang
C =[(D)T,... (D@ DYTT ¢ RI@QNXDN gych that
A C
D = [CT DQQ}
Assume that A~! verifies Eq. (179). Denote
R T
From the two by two blockmatrix inversion, we have:
B9Q —(D®? _cCcTA )Y,
T =-A"'CB“.

We have
HCTA_lC < Z H(DqQ)T(A_l)qquq,Q
P gaelQ-1] v
L (29 ) o () ()
7,9’ €[Q—1] ’ \/% ’ e’ | \/m
=04p(r%/dq);

where we used in the second line the properties on D and our assumption on A~'. Hence D% —
CTA™IC = (rg/dy)(cq — oap(1))Land [ B9Clop = Oap(dy/r7).

Furthermore, for ¢ < @,

BI? = — Z (Ail)qq'cq’BQQ
q'€lQ-1]
Hence
HBQQ < Z H(A—l)qq/Dq’QBQQ
op op
7'€[lQ-1]
dgdy d dqd
_ Z Od,IP(H)'Od,ﬂ)(w>'0dm<2@>=0d,p< qQ>’
0.0 €[0-1] TqTq dgdq rQ e,
which finishes the proof. O
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L.1 Useful lemmas from [4]

For completeness, we reproduce in this section lemmas proven in [4].
Lemma 25. The number B(d, k) of independent degree-k spherical harmonics on S is non-
decreasing in k for any fixed d > 2.

Lemma 26. For any fixed k, let Q;d) (z) be the k-th Gegenbauer polynomial. We expand

k
d d) s
D) =Y plas.
s=0

Then we have «
pk,i = Og(d=F/?7%/2),

Lemma 27. Let N = 04(d"™") for a fixed integer (. Let (w;);c(n) ~ Unif(S*~1) independently.
Then as d — oo, we have

e [(w;, w;)| = Ogp((logd)*2d=*/?).

Proposition 6 (Bound on the Gram matrix). Let N < d¥/ eAaviogd for a fixed integer k and any
Ag — oo. Let (0;)icin) ~ Unif (S 1(\/d)) independently, and Q,(Cd) be the k’th Gegenbauer
polynomial with domain [—d, d). Consider the random matrix W = (W;); jein) € RNV N, with
Wi = éd)(wi, 0,)). Then we have

Jlim (W —Tilop] = 0.
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