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Abstract

Spectral clustering and k-means, both as two major traditional clustering methods,
are still attracting a lot of attention, although a variety of novel clustering algorithms
have been proposed in recent years. Firstly, a unified framework of k-means and
ratio-cut is revisited, and a novel and efficient clustering algorithm is then proposed
based on this framework. The time and space complexity of our method are both
linear with respect to the number of samples, and are independent of the number
of clusters to construct, more importantly. These properties mean that it is easily
scalable and applicable to large practical problems. Extensive experiments on 12
real-world benchmark and 8 facial datasets validate the advantages of the proposed
algorithm compared to the state-of-the-art clustering algorithms. In particular, over
15x and 7x speed-up can be obtained with respect to k-means on the synthetic
dataset of 1 million samples and the benchmark dataset (CelebA) of 200k samples,
respectively [GitHub].

1 Introduction

As one of fundamental technologies in the fields of pattern recognition, machine learning, data
mining, and others, clustering is getting more and more attention in recent years [29, 31]. A series of
algorithms have been proposed for cluster analysis and applied to various areas successfully, such as
document clustering [18], image segmentation [17], and social networks [20].

Given a set of input patterns, the purpose of clustering is to group the data into a certain number of
clusters so that the samples in the same cluster are similar to each other, and the samples in different
clusters are not. Among various algorithms, the classical ratio-cut and k-means are almost the two
most popular clustering approaches.

Ratio-cut and its related algorithms: Given a set of samples X = [x1, · · · ,xn]T ∈ Rn×d and
the number c of clusters to construct, the classical ratio-cut usually consists of the following four steps:
1. Calculate the similarity matrix W ∈ Rn×n where wij denotes the similarity between xi and xj .
2. Compute the Laplacian matrix L = ∆−W, where ∆ is a diagonal matrix, and ∆ii =

∑n
j=1 wij .
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3. Compute the first c eigenvectors of its Laplacian matrix. 4. Separate these samples into c classes
by running k-means on these features. In spite of its good (promising) performance, ratio-cut and
other traditional spectral clustering methods (SC) suffer from the following drawbacks: (1) The
time complexity of traditional spectral clustering is O(n2c), which is one of significant drawbacks
of SC. Much effort has been devoted to accelerate the process. [13] computed the approximate
solution of the eigenvalue decomposition by using the classical Nyström algorithm. Based on the
randomized low-rank matrix approximation method, [21] proposed a scalable Nyström scheme to
further accelerate the algorithm. In addition, the anchor-based strategy [42, 41, 36] is also a very
popular method for accelerating the spectral clustering method. In these methods, a similarity matrix
between samples and anchors, whose size is smaller usually, to approximate the original similarity
matrix. Then the clustering algorithm is performed on the reduced data. However, the performance
of these methods is sensitive to how anchor-graphs are constructed and a lot of information will be
lost in the sampling step. (2) To obtain the final solution, most of SC algorithms follow a two-stage
approach, which may result in bad clustering structure and deviations from the solution of the original
problem. Therefore [8, 48] proposed the methods where the discrete solution can be obtained directly.

k-means and its related methods: As a well-regarded and standard approach to cluster analysis,
the traditional k-means groups input dataset X into c clusters by assigning each data point to the
cluster with the nearest centroid. Let A1, · · · ,Ac denote c disjoint sets, the objective function of
k-means can be formulated as

min
A1,A2,··· ,Ac

c∑
i=1

∑
xj∈Ai

‖xj −mi‖22, (1)

where mi =
∑

xj∈Ai
xj/ni is the centroid of cluster Ai containing ni samples.

Although the problem (1) is NP-hard, many efficient optimization algorithms [24, 34, 12] are proposed,
and converge quickly to a local optimum.

(1) A major disadvantage of k-means is that it cannot separate clusters non-linearly separable in
input space. To this end, [38, 19] proposed the kernel k-means where a feature function φ : Rd → F
is adopted to map the input vectors non-linearly into feature vectors. Then traditional k-means is
performed in the feature space instead of the input space. However, the kernel-based methods do
not scale well in terms of the computational overhead. [9] proposed an approximation scheme by
employing a randomized approach, to reduce the computational overhead. In addition, the Nyström
and incomplete cholesky factorization methods have been adopted in [44, 16, 7] to solve kernel
learning problems approximately. (2) The clustering results will be affected by the initialization of
cluster centers. To this end, k-means++, the state-of-the-art algorithm, is proposed in [1], and its
solution quality has a theoretical guarantee. Despite its strong empirical performance, k-means++
is difficulty scalable to large-scale problems due to its high computational complexity. A Markov
chain Monte Carlo method is adopted in [3] to approximate k-means++ efficiently. In [2], a fast
seeding approach is proposed, where a provably good clustering can be achieved even without any
assumption on the dataset. More improvements can be found here [49, 28].

As can be seen from the afore-said related research, these two algorithms are only loosely related. In
order to explore the relationship between kernel k-means and spectral clustering, much effort has
been devoted, which narrows the gap between traditional k-means and spectral clustering to some
extent [10].

In this paper, a unified framework between the traditional k-means and ratio-cut is firstly revisited,
and an efficient clustering algorithm is then proposed based on this framework. It is worthwhile to
highlight the main contributions of this paper as follows:

• The computational and memory overhead of our method are both linear with respect to
the number of samples, and are independent of the number of clusters to construct. These
properties mean that it is easily scalable and applicable to large practical problems.

• The optimization algorithm employed guarantees that no empty cluster will occur, with any
initialization. In particular, our algorithm tends to produce a balanced partition.

• Extensive experiments on several real-world benchmark and facial datasets validate the
advantages of the proposed algorithm compared to the state-of-the-art clustering algorithms.
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Notations: Throughout the paper, matrices are written in boldface uppercase letters, and the vectors
are denoted in boldface lowercase letters. For matrix M = [m1, · · · ,mn]T ∈ Rn×c, mij , mi and
Tr(M) are used to represent the (i, j)-th entry, transpose of the i-th row and trace of M, respectively.
The L2 norm of the vector v ∈ Rn is defined as ‖v‖2 =

√∑n
i=1 v

2
i . A matrix is referred to cluster

indicator matrix, if each row of it has one and only one element equal to 1 which indicates the cluster
membership and the rest elements are all 0. The set of all cluster indicator matrices is denoted by
Φn×c. 1 is the column vector of all ones. x

(j)
i denotes the j-th nearest neighbor of sample xi.

2 An efficient clustering method

For convenience, let Y = [y1, · · · ,yn]T ∈ Φn×c be an indicator matrix, i.e., yij = 1 if xi ∈ Aj ,
yij = 0 otherwise. Then the problem of classical ratio-cut can be written in the matrix form as

min
Y∈Φn×c

Tr
((

YTY
)− 1

2 YT (∆−W)Y
(
YTY

)− 1
2

)
. (2)

Many studies [25, 51, 45] have shown that the performance of graph-based clustering models can
be enhanced by employing the doubly stochastic matrix, i.e.,

∑
i wij = 1,

∑
j wij = 1. Therefore,

we only focus on the graph-based method using the doubly stochastic matrix. With the definition of
doubly stochastic matrix, the objective function of ratio-cut (2) can be simplified as

max
Y∈Φn×c

Tr
((

YTY
)− 1

2 YTWY
(
YTY

)− 1
2

)
. (3)

Now, we turn our attention to the traditional k-means. For convenience, two lemmas are given firstly.

Lemma 1. For any vector p ∈ Rn, p ≥ 0, pT1 = 1, the following equation holds [30].
n∑

i=1

pi (xi − x̄)
T

(xi − x̄) =
1

2

n∑
i=1

n∑
j=1

pipj (xi − xj)
T

(xi − xj) , (4)

where x̄ =
∑n

i=1 pixi.

Lemma 2. For any vector v ∈ Rn and Y ∈ Φn×c, we have

Tr
((

YTY
)− 1

2 YT
(
v1T + 1vT

)
Y
(
YTY

)− 1
2

)
= 2

n∑
i=1

vi. (5)

The proofs of the two lemmas above are shown in the supplementary material.

According to Lemma 1, the objective function of k-means (1) can be rewritten into

min
A1,A2,··· ,Ac

c∑
i=1

1

|Ai|
∑

xj ,xl∈Ai

‖xj − xl‖22 (6)

⇔ min
Y∈Φn×c

(
diag

(
YTY

)−1
)T

diag
(
YTDY

)
(7)

⇔ min
Y∈Φn×c

Tr
((

YTY
)− 1

2 YTDY
(
YTY

)− 1
2

)
, (8)

where D ∈ Rn×n denotes the squared Euclidean distance matrix, dij = ‖xi − xj‖22. And diag(M)
represents a column vector consisting of diagonal elements of M. According to Lemma 2 and the
fact of D = v1T + 1vT − 2XXT , where v = [v1, · · · , vn]T , vi = ‖xi‖22, the problem (8) then can
be formulated as follows

max
Y∈Φn×c

Tr
((

YTY
)− 1

2 YTXXTY
(
YTY

)− 1
2

)
. (9)

Obviously, both of the two (k-means, ratio-cut) can be unified into the following framework.

max
Y∈Φn×c

Tr
((

YTY
)− 1

2 YTGY
(
YTY

)− 1
2

)
, (10)

where G = XXT for k-means, and G = W for ratio-cut. It is worth mentioning that SC aims
to maximize the mean of similarities between points in the same cluster, while k-means aims to
minimize the mean of distances between points in the same cluster, as shown in Eq. (3) and Eq. (8).
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2.1 Our model

From the unified view between ratio-cut and traditional k-means , we have the following observations:
1. Ratio-cut adopted doubly stochastic matrix shares the same framework as the traditional k-means.
2. The mere difference between the two is that a heat kernel is usually adopted to measure the
similarity in ratio-cut, but k-means uses the inner product to measure the similarity between samples.
3. The computational overhead of k-means is linear with respect to the number of samples, which
should be credited to the property of the square Euclidean distance described in Lemma 1.

Although the models employing k-nearest neighbors graph (k-NNG) often yield more superior
experimental performance compared to other algorithms, the optimization algorithm of them often
has a high time complexity. In this paper, we focus on the situation where the number of samples in
each cluster is strictly equal, with this assumption, the problem (10) can be convert to

max
Y∈Φn×c

Tr
((

YTY
)− 1

2 YTGY
(
YTY

)− 1
2

)
s.t.YTY = n̄I (11)

⇔ max
Y∈Φn×c

Tr(YTGY) s.t.YTY = n̄I, (12)

where n̄ is a constant. Note that problem (12) is still difficult to solve, so the balance constraint is
removed making the problem easy to solve, and a distance matrix D = (dij)n×n is adopted to avoid
the trivial solution. Therefore, our model can be simplified as follows

min
Y∈Φn×c

Tr(YTDY). (13)

with

dij =

{
d̃ij f(xi,xj) = 1
γ f(xi,xj) = 0

, d̃ij =

{
‖xi − xj‖22 f(xi,xj) = 1

0 f(xi,xj) = 0
,

γ represents the maximum value of all the elements in D̃, and f(xi,xj) = 1 if xi is among the
k-nearest neighbors of xj and vice versa. It is worth noting that there will be a trivial solution, i.e.,
all samples are grouped into the same cluster, if a similarity matrix W is adopted in Eq. (13), i.e.
maxY∈Φn×c Tr(YTWY). It is not difficult to see that our model aims to minimize the sum of the
distances between samples in the same cluster. We term our algorithm as k-sums.

Graph construction. If only the similarity between samples is provided by the graph, then d̃ij =
−log(sij) is recommended to compute the distance between samples, where sij denotes the similarity
between samples xi and xj . If the graph is not available, it is recommended to use the approximate
nearest neighbor algorithm to construct the distance matrix. In this paper, k-d tree and EFANNA[14]
are used for synthetic and benchmark datasets, respectively.

Balanced partition. It is worth noting that even without the constraint, YTY = n̄I, the model still
tends to produce a balanced partition. Assuming that the distance between any two data points is
approximately equal to α, then we have the following equation.

min
Y∈Φn×c

Tr(YTDY) ≈ min
Y∈Φn×c

Tr(YTα(11T − I)Y) (14)

⇔ min
Y∈Φn×c

α1TYYT1− αTr(YYT ) (15)

⇔ min
Y∈Φn×c

α(n2
1 + · · ·+ n2

c − n). (16)

Obviously, ni = n/c is the optimal solution of the problem.

There are three advantages of our model. Efficient: The problem (13) can be solved by a standard
coordinate descent algorithm, and the optimization algorithm will have a low time and space com-
plexity owing to sparsity of D and Y. In fact, both computational and memory overhead are O(nk),
which are independent of the number of clusters to construct. Effective: Benefiting from the use of
k-nearest neighbors graph, k-sums can be adopted to identify clusters that are non-linearly separable
in input space. Robust: A constant γ is used to replace the squared Euclidean distance between xi

and xj if f(xi,xj) = 0, which means that our algorithm is not sensitive to outliers. In addition, only
the Euclidean distance is involved in our model, so it avoids the trouble of measuring the similarity
between samples.
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3 Optimization

A standard coordinate descent algorithm is employed to optimize problem (13). For example, to
solve the 1-th row of Y, we fixed the other rows as constants. Let YT

r be the matrix Y with the first
row removed, Dr be the matrix D with the first row and column removed. With these notations, the
problem (13) then becomes

min
y1

Tr
(
YTDY

)
(17)

⇔min
y1

Tr

(
[ y1 Yr ]

[
d1,1 vT

v Dr

] [
yT

1

YT
r

])
(18)

⇔min
y1

Tr
(
y1d1,1y

T
1

)
+ 2Tr(YrvyT

1 ) (19)

⇔min
y1

Tr(YrvyT
1 )⇔ min

y1

yT
1 ỸTd1, (20)

where vT = [ d1,2, d1,3, · · · , d1,n ], d1,1 = 0, Ỹ represents the indicator matrix before y1

is updated. The update rules for other rows of Y can be similarly derived. Therefore, the optimal
solution of yi can be then obtained by

yil =

{
1 l = arg minj(Ỹ

Tdi)j
0 otherwise.

, (21)

Despite problem (21) is very simple, O(kc) time is needed to obtain the optimal solution, which is
very time-consuming, when the number of clusters to construct is large.

3.1 Acceleration

The meaning of the symbols involved in this subsection is given first. For any vector v ∈ Rn, vi and
v[i] are both used to represent the i-th element of v, for convenience. Let n ∈ Rc be the number of
samples in each cluster. p, q are vectors obtained by sorting n, that is to say, n[pi] = qi and qi is the
i-th smallest element in n.

Let t be the product of ỸT and di, i.e. t = ỸTdi. That is to say, tj represents the sum of the
elements of di belonging to the j-th cluster. There are at most k elements in t, called t(1), which
consists of values of di that are smaller than γ, and the remaining elements, called t(2), are all integer
multiples of γ. Next, we first find the minimum of t(1) and t(2), then compare the two to get the
minimum value in t. Obviously, O(k) time is needed to find the minimum value in t(1). What we
care about is the time complexity of finding the minimum value in t(2).

The cluster with the smallest number of samples in t(2) corresponds to its minimum value, since the
elements in t(2) are all integer multiples of γ. In this way, we can easily find the minimum value of
t(2), but we have an easier way to implement it.

Based on the following facts, we found that the minimum value of t can also be obtained by directly
comparing γq1 and the minimum value of t(1).

• The cluster p1 is involved in t(1) instead of t(2). Then the minimum value of t is the
minimum value of t(1), and γq1 < min(t(1)) does not hold. The above conclusion holds.

• The cluster p1 is involved in t(2) instead of t(1). Then γq1 is the minimum value of t(2).
Therefore we can found the minimum value of t by comparing γq1 and min(t(1)). The
above conclusion holds.

Fortunately, with the help of Lemma 3, we can always find the cluster with the least number of
samples in O(1) time. The detailed algorithm to solve problem (21) is summarized in Algorithm 1.

Lemma 3. Let n = [n1, · · · , nc]T ∈ Rc be an ordered sequence consisting of positive integers,
where 0 ≤ ni ≤ N , where N < +∞ is a positive integer. p, q are vectors obtained by sorting n,
i.e., n[pi] = qi. Only O(1) time is required to maintain its order if ni is increased (reduced) by 1.

The proof of this lemma is shown in the support material again.
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Algorithm 1: An efficient program for solving problem (21).

Data: D ∈ Rn×k, where dij denotes the squared Euclidean distance between xi and x
(j)
i .

C ∈ Rn×k, where cij denotes the cluster to which x
(j)
i currently belongs. n, p, q ∈ Rc,

Auxiliary vectors u, t, v ∈ Rc. the parameter γ.
Result: The position of the minimum value of t = ỸTdi, l.
for j = 1, · · · , k do { t[cij ] = 0; u[cij ] = 0; v[cij ] = 0; }
for j = 1, · · · , k do { t[cij ]+ = dij ; u[cij ]+ = 1; }
for j = 1, · · · , k do

if v[cij ] == 0 then
v[cij ] = 1;
t[cij ]+ = γ(n[cij ]− u[cij ]);

Find index l such that tl is the smallest in set {t[ci1], · · · , t[cik]}, i.e. t(1);
Modify the value of l to p1 if γq1 < tl;

3.2 Time and space complexity

(1) The memory space is mainly occupied by the variables D ∈ Rn×k, C ∈ Rn×k, and vectors of
length c, if the problem (21) is optimized with our algorithm. And c is always less than n, so its space
complexity is O(nk). (2) O(n) time is needed to initialize the vectors, v, u, y and n. It takes O(n)
time to sort n using bucket sort algorithm. Note that once n is ordered, only O(1) time is needed to
hold its order in accordance with Lemma 2. O(k) time is needed to update the label of the sample
xi, seen from Algorithm 1. Once more, as c is always smaller than n, therefore the computational
complexity of our algorithm is O(nk).

4 Experiments

In this section, we are going to show the performance of the proposed clustering method, k-sums,
on six synthetic data sets and twenty benchmark data sets (12 middle-scale and 8 large-scale face
datasets). The rest of this section is organized as follows: The description of the data sets are firstly
represented, and then the comparison algorithms are introduced secondly and finally, clustering
performance of all algorithms on both synthetic and real world data sets is shown.

4.1 Data sets

We conduct experiments on 6 synthetic data sets: Grid-10w, Grid-20w, Grid-40w, Grid-80w, Grid-
100w, Outlier. The first 5 data sets are randomly generated multi-cluster data. In these data sets, there
are 10k, 20k, 40k, 80k, and 100k clusters distributed in a spherical way, respectively, and each cluster
contains 10 samples. We compare the running time of k-sums and k-means on the first 5 data sets to
verify the efficiency of k-sums. The last toy dataset, Outlier, is designed to verify the robustness of
k-sums against outliers.

The effectiveness of k-sums is mainly supported by the following benchmark datasets: Face-94,
Face-95, Grimace, MPEG-7, JAFFE[26], FERET[35], FEI, Finger, GTdb, IMM, Olivetti[11] and
Palm. The first three are widely used for face recognition, whose introduction and detailed statistics
can be found here 2. MPEG-7 is a widely used data set for shape matching evaluation consisting of
70 shape classes, each of whom is represented by 20 different images with high intra-class variability.
In order to promote the research of individual facial expressions detection and facial recognition
system evaluation, JAFFE containing 213 images of 7 facial expressions and FERET containing
11,338 samples of 994 subjects have been constructed, respectively. EFI, Finger, GTdb, and IMM are
high-dimensional data sets with 307200, 65536, 21600, and 307200 respectively. Palm is a dataset
used for gender recognition consisting of 2,000 hand images of 100 subjects. The detailed statistics
of these datasets are summarized in Tab.5 shown in support material, and the 8 large-scale datasets
for face recognition will be introduced in the next section.

2https://cswww.essex.ac.uk/mv/allfaces/
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Table 1: Performance of k-sums and k-means (Time: k-sums = k-d tree + Algo. 1).
Time (s) # Clusters k-d tree Algo. 1 k-sums k-means Speed-up

Grid-10w 10k 03.90 0.17 4.07 56.28 13.85x
Grid-20w 20k 11.89 0.39 12.28 218.70 17.81x
Grid-40w 40k 39.89 0.85 40.74 491.37 12.06x
Grid-80w 80k 143.47 2.01 145.48 2948.56 20.27x

Grid-100w 100k 219.05 2.45 221.50 3416.70 15.43x
Precision Recall F1 score

Datasets k-sums k-means k-sums k-means k-sums k-means

Grid-10w 0.979 0.760 0.980 0.854 0.980 0.804
Grid-20w 0.940 0.757 0.942 0.851 0.941 0.801
Grid-40w 0.940 0.738 0.941 0.837 0.940 0.784
Grid-80w 0.855 0.736 0.857 0.836 0.856 0.783

Grid-100w 0.887 0.702 0.889 0.809 0.888 0.752

(a) Running time: k-means / k-sums (b) k-means (c) k-sums

Figure 1: Performance of k-sums k-means.

4.2 Experimental settings

We compared our method with several clustering algorithms, including traditional k-means [12],
traditional Spectral Clustering (SC) [27], Scalable Spectral Clustering with cosine similarity (SSC)
[6], Improved Anchor-based Graph Clustering based on multiplicative update optimization (AGC-I)
[52], Fast Spectral Clustering with anchor graph for large hyperspectral images (FSC) [43], and Large
scale Spectral Clustering via landmark-based sparse representation (LSC-R, LSC-K) [4].

To make a fair comparison with k-means implemented by scikit-learn [33], our code is implemented
in C++. Both k-means and our code run on the Arch machine with 3.20 GHz i7-8700 CPU, 32 GB
main memory. The parameters involved in these methods are described below.

In all anchor-based algorithms, the anchors are always generated in a random way if not explicitly
stated in their papers, and the number of anchors m is always set by m = min(n/2, 1024). In all
graph-based algorithms, the method of constructing graphs follows the original paper, and the number
of nearest neighbors k is fixed at 20 for 6 synthetic and 12 middle-scale real world datasets. The
k-means initialized in a random way is used, in these two-step algorithms. Every method takes 50
runs. The average results are reported.

4.3 Experimental results on synthetic data sets

It can be seen from Tab. 1 and Fig. 1(a) that our algorithm has a significant speed advantage over
k-means and it is especially obvious when the number of samples is large. Specifically, over 15x
and 13x speed-up can be obtained with respect to k-means on the synthetic dataset of 1 million
and 1 hundred thousand samples, respectively. The speed-up of dc/k can not be obtained, since the
k-means is accelerated by triangle inequality [12] and the number of iterations of the two algorithms
is different. As shown in Tab. 1 (part 2) and Fig. 1(b) and 1(c), k-sums shows good performance on
both Grid-x and Outlier, which verifies the effectiveness and robustness of our model.

7



Table 2: Clustering accuracy on 12 real world datasets.
Datasets SC k-means LSC-R LSC-K SSC AGCI FSC k-sums

Face-94 0.734 0.722 0.617 0.601 0.583 0.596 0.569 0.961
Face-95 0.480 0.424 0.410 0.428 0.300 0.435 0.446 0.471

FEI 0.509 0.446 0.438 0.437 0.026 0.462 0.465 0.557
FERET 0.293 0.267 0.256 0.249 0.163 0.256 0.259 0.321
Finger 0.495 0.311 0.402 0.334 0.130 0.371 0.332 0.395

Grimace 0.785 0.733 0.666 0.705 0.741 0.654 0.655 0.983
GTdb 0.536 0.447 0.463 0.447 0.134 0.456 0.466 0.543
IMM 0.535 0.444 0.430 0.460 0.106 0.494 0.487 0.553

JAFFE 0.812 0.714 0.658 0.647 0.262 0.724 0.689 0.888
MPEG-7 0.511 0.475 0.482 0.454 0.316 0.453 0.452 0.554
Olivetti 0.703 0.462 0.538 0.569 0.172 0.581 0.612 0.367
Palm 0.727 0.694 0.628 0.618 0.589 0.595 0.579 0.796

4.4 Experimental results on benchmark data sets

As shown in Tab. 2, it is clearly seen that k-sums achieves the highest performance in most cases
comparing to the other clustering algorithms, showing the effectiveness of clustering based on
k-nearest neighbors graph. Specifically, k-sums exceeds the second-best results 22.7%, 19.8%,
6.9%, 7.6% and 4.3% on Face-94, Grimace, Palm, JAFFE, and MPEG-7 datasets respectively,
measured by clustering accuracy (ACC), and similar results can be obtained in terms of ARI and NMI
shown in supplementary material. More importantly, k-sums has a lower computational complexity
than traditional k-means, which has been verified theoretically and experimentally. However, it is
meaningless to compare the running time on these middle-scale data sets, as the running time is not
dominated by the number of samples on small-scale datasets.

(a) Image preprocessing (b) Deep learning model (c) Clustering

Figure 2: Flow chart of deep clustering of unconstrained faces

5 Application: Face clustering

Clustering unconstrained faces is a important research topic in computer vision research and many
algorithms have been proposed [40, 39, 46]. Among them, the two-stage framework is attracting
more and more attention owing to its simplicity and efficacy [22, 32, 37]. Therefore, we employ it to
verify the performance of the algorithm, i.e. 1. A deep model is adopted to map the face images into
feature vectors. 2. The clustering model is performed in the feature space instead of the face images.

The experiment is conducted on 8 unconstrained facial datasets. The description of them as follows.
WebFace [50] and CelebA [23] are two large-scale public datasets available for face recognition
and verification problems. CALFW [54] and CPLFW [53] are two variants of LFW aiming at
cross-age and cross-pose face recognition, respectively. CACD [5], Adience [15], and FERET [35]
are constructed for cross-age face retrieval, age and gender recognition, and facial recognition system
evaluation. A detailed description of them is given in the support material.

As shown in Fig. 2 The preprocessing process of data is as follows: Firstly, the pre-trained facial
landmark detector in Dlib, is used to estimate the location of 68 facial landmarks. Then the images
are rotated so that 20-th and 25-th facial landmarks are located on the same horizontal line, and cut
out a square with a length of 3d centered on 31-th landmark (d is the vertical distance from points 31
to 25). A trained deep model [47] is then employed to extract the features of the image. The k-nearest
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Table 3: Running time (s) of k-sums and k-means (k-sums = EFANNA + Algo. 1).
Datasets # Samples EFANNA Algo. 1 k-sums k-means Speed-up

Adience 19,370 2.60 0.25 2.85 33.2 11.65x
CPLFW 11,652 1.60 5.23 6.83 28.4 4.158x
FERET 11,338 1.50 0.15 1.65 7.10 4.303x
CACD 163,446 17.9 2.70 20.6 2.7E3 131.1x

CALFW 12,174 1.50 7.90 9.40 27.5 2.926x
WebFace 494,414 93.7 16.7 1.1E2 5.7E2 5.182x

PEAL 30,863 3.30 0.65 3.95 19.2 4.861x
CelebA 202,599 26.9 4.30 31.2 2.3E2 7.372x

Table 4: Clustering performance of k-sums and k-means.
Precision Recall F1 score

Datasets k-sums k-means k-sums k-means k-sums k-means

Adience 0.807 0.791 0.443 0.502 0.572 0.614
CPLFW 0.404 0.398 0.404 0.594 0.404 0.477
FERET 0.662 0.623 0.641 0.618 0.651 0.620
CACD 0.809 0.772 0.821 0.810 0.815 0.789

CALFW 0.760 0.693 0.748 0.749 0.754 0.719
WebFace 0.644 0.546 0.572 0.547 0.606 0.546

PEAL 0.861 0.735 0.881 0.842 0.871 0.785
CelebA 0.445 0.276 0.486 0.469 0.464 0.347

neighbors graphs are generated by EFANNA [14] with k = 100 for all facial datasets. Finally, the
proposed algorithm is performed on those graphs to verify its performance.

From the results shown in Tab. 3, and Tab. 4, it shows to us that k-sums gains better performance
in most of the cases, compared to k-means. And over 5x and 7x speed-up is obtained with respect
to k-means on the two large-scale datasets (WebFace and CelebA). One more time, the speed-up of
dc/k can not be obtained, since the k-means is accelerated by triangle inequality [12] and the number
of iterations of the two algorithms is different.

6 Conclusions

In this paper, we proposed an efficient clustering algorithm based on the unified view of k-means and
ratio-cut. Both the computational and memory overhead of our method are linear with respect to the
number of samples. Beside the linear computational complexity, the proposed algorithms have many
other good properties. 1) The time complexity is not dependent on the number of clusters to construct,
indicating that it is easily scalable and applicable to large practical problems; 2) The optimization
algorithm employed guarantees that no empty cluster will occur, with any initialization. Specifically,
our algorithm tends to produce a balanced partition; 3) Extensive experiments have been conducted
on 20 real-world benchmark data sets to demonstrate the effectiveness and efficiency of our model.
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