
We thank the reviewers for their time and insightful feedback. We now address the concerns. C - Concern, R - Response1

(*) To all reviewers. C: Dataset choices and the scale of the experiments. R: While our proposed method is more2

generally applicable, we showcased it for experience replay-based continual learning and streaming, where the idea of3

coresets is largely under-explored. In these scenarios, the standard datasets used for evaluation are SplitMNIST and4

PermMNIST and their variations, see [44, 16, 2, 9], and the standard architectures are fully-connected nets or simple5

CNNs. Commonly, the experience replay size is also restricted to a few samples to emulate a memory-constrained6

environment. Thus, we decided to use the same setup also in our paper to conform to the practices in the field and to be7

easily comparable to competing methods, e.g., VCL. For the final version of paper we will add more summarization and8

continual learning experiments of CIFAR. C: Proxy kernels and ResNets. R: With recent libraries (e.g., [45] used in9

our work), the CNTK can be calculated efficiently even for ResNets. To prove this point, we repeated our imbalanced10

streaming experiment with the CNTK of ResNet-18 and report the results in Table 1. This kernel provides an accuracy11

improvement 1.7% over the kernel used in the submission at the expense of moderately increased runtime, as shown in12

Table 2. However, CNTK is only one particular proxy choice. For the revised paper, we will expand our discussion and13

results on the proxy choices. C: Theoretical guarantees. R: We proved in the paper that with L2 loss and infinitely14

wide neural networks our coreset construction provides convergence of order 1/T as per Theorem 1. However, with15

other losses and finite-width neural networks both the bilevel coreset and neural network optimization problems become16

NP-hard in general, thus convergence guarantees are not easily obtainable. We will clarify this in the paper.

Table 1: New imbalanced CIFAR-10 streaming results.

SplitCIFAR-10
Coreset + SimpleCNTK (original) 32.30 ± 0.84

Coreset + ResNet-18CNTK 33.98 ± 1.44
OCL [A] 32.25 ± 1.69

Table 2: Runtimes for generating a coreset of size 100
out of 1000 points with CNTK.

SimpleCNTK ResNet-18CNTK
Coreset gen 57.3 s 63.1 s
Kernel calc 6.3 s 56.2 s

17

Reviewer #1. C: Uniformly sampled, weight-optimized CNTK summary performs better than RBF coreset. R:18

This is indeed the case, since the CNTK is better suited for images than the RBF kernel, as it takes into account the19

inductive biases of locality and translation invariance. Thus, the performance gap is due to the kernel choice rather than20

the bilevel optimization scheme. For choosing the right kernel, we opt in the paper for choosing the CNTK equivalent21

to a neural network that works well for the specific problem.22

Reviewer #2. C: Dataset choices (mostly MNIST) and further theoretical guarantees. R: Please see (*). C:23

Evaluation with ResNets and CIFAR-10. R: Please see (*). You correctly observe that we used “proxy of a proxy” in24

the imbalanced streaming experiment. We used it for keeping the coreset generation time the lowest possible, while still25

achieving good results. In our new CIFAR-10 experiments shown in Table 1, the CNTK corresponding to ResNet-1826

provides an additional 1.7% compared to the SimpleCNTK proxy reported in the paper, but is 50 s slower in generating a27

coreset of size 100 (Table 2). We have also performed the continual learning experiments on SplitCIFAR with ResNet-1828

and ResNet-18CNTK as proxy, and observe a 1.9% improvement with coresets over uniform sampling; we will report29

the rest of the results and provide a more detailed discussion on the proxy choices in the final version of our paper.30

Reviewer #4. C: Coreset generation time burden. R: Please see (*). We restricted the coreset sizes to the order31

of hundreds as this is the standard evaluation practice in the continual learning literature. In this setting, our coreset32

construction time is lower than the training time, thus our method is at most twice as slow as the fastest competing33

method. We will provide wall-clock time measurements for summary generation sizes of the different methods in the34

final version of the paper. C: Imbalanced Streaming comparison to [2]. R: Similarly as reported in the streaming35

setting (line 302), we did perform such an experiment, but we were not able to tune the method of [2] to outperform36

reservoir sampling - this is in line with the observation of the authors in [2] that their method requires a summary of37

size at least 1k to work on CIFAR-10. We will include this observation together with the time comparison.38

Reviewer #5. C: Hardness of the baselines, CNTK choice, ResNets and further theoretical guarantees. R: Please39

see (*) and the new ResNet results in Table 1. C: More challenging imbalanced streaming baselines. R:. You40

suggest to improve reservoir sampling by a method "that samples from every class not uniformly but propositional to41

class frequency" - we note that this is exactly what reservoir sampling is doing on an imbalanced stream, i.e., keeps42

more samples from more representative classes, thus under-representing minority classes. We believe you intended43

to propose a class-balancing version of reservoir sampling similar to the Algorithm 1 of the concurrent work of [A].44

We implemented this strategy designed for imbalanced streaming and report the results in Table 1, where we find it to45

match the performance of our method with the SimpleCNTK kernel, and slightly underperforming compared to the46

ResNet-18CNTK. We note that our method is general, and was not purposefully designed for imbalanced streams.47

[A] Chrysakis et al. Online Continual Learning from Imbalanced Data, ICML 202048


