
Supplementary Material

A Connections to Experimental Design

In this section, the weights are assumed to be binary, i.e., w ∈ {0, 1}n. We will use a shorthand XS

for matrix where only rows of X whose indices are in S ⊂ [n] are selected. This will be equivalent to
selection done via diagonal matrix D(w), where i ∈ S corresponds to wi = 1 and zero otherwise.

Additionally, let θ̂ be a minimizer of the following loss,

θ̂ = arg min
θ

n∑
i=1

wi(x
>
i θ − yi)2 + λσ2||θ||22 (7)

which has the following closed form,

θ̂S = (X>S XS + λσ2I)−1X>S yS . (8)

Frequentist Experimental Design. Under the assumption that the data follows a linear model
y = Xθ+ε, where ε ∼ N (0, σ2), we can show that the bilevel coreset framework instantiated with the
inner objective (7) and λ = 0, with various choices of outer objectives is related to frequentist optimal
experimental design problems. The following propositions show how different outer objectives give
rise to different experimental design objectives.

Proposition 2 (A-experimental design). Under the linear regression assumptions and when g(θ̂) =

1
2Eε

[∥∥∥θ − θ̂∥∥∥2

2

]
, with the inner objective is equal to (7) with λ = 0, the objective simplifies,

G(w) =
σ2

2
Tr((X>D(w)X)−1).

Proof. Using the closed from in (8), and model assumptions, we see that θ̂ = θ+ (X>S XS)−1X>S εS .
Plugging this in to the outer objective,

g(θ̂) =
1

2
Eε
[∥∥∥θ − θ̂∥∥∥2

2

]
(9)

=
1

2
Eε
[∥∥(X>S XS)−1X>S εS

∥∥2

2

]
(10)

=
1

2
Eε
[
Tr
(
ε>SXS(X>S XS)−2X>S εS

)]
(11)

=
σ2

2
Tr
(
(X>S XS)−1

)
(12)

=
σ2

2
Tr
(
(X>D(w)X)−1

)
(13)

where in the third line we used the cyclic property of trace and subsequently the normality of ε.

Proposition 3 (V-experimental design). Under the linear regression assumptions and when g(θ̂) =

1
2nEε

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
and the inner objective is equal to (7) with λ = 0, the objective simplifies,

G(w) =
σ2

2n
Tr(X(X>D(w)X)−1X>).

13

Proof. Using the closed from in (8), and model assumptions, we see that θ̂ = θ+ (X>S XS)−1X>S εS .
Plugging this in to the outer objective g(θ̂),

G(w) =
1

2n
Eε
[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
(14)

=
1

2n
Eε
[∥∥X(X>S XS)−1X>S εS

∥∥2

2

]
(15)

=
1

2n
Eε
[
Tr
(
ε>SXS(X>S XS)−1X>X(X>S XS)−1X>S εS

)]
(16)

=
σ2

2n
Tr
(
X(X>S XS)−1X>

)
(17)

=
σ2

2n
Tr
(
X(X>D(w)X)−1X>

)
(18)

where in the third line we used the cyclic property of trace and subsequently the normality of ε.

Infinite data limit. The following proposition links the data summarization objective and V-
experimental design in infinite data limit n→∞.
Proposition 4 (Infinite data limit). Under the linear regression assumptions, let gV be

gV (θ̂) =
1

2n
Eε
[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
the V-experimental design outer objective, and let the summarization objective be,

g(θ̂) =
1

2n
Eε

[
n∑
i=1

(x>i θ̂ − yi)2

]
.

Let Θ be the set containing random variables θ̂ representing the inner problem’s solution on a finite
subset of the data. Thus each θ̂ depends on a finite set of εS := ∪i∈S{ei}, where S ⊂ [n]. Then

lim
n→∞

g(θ̂)− gV (θ̂)− σ2

2
= 0, ∀θ̂ ∈ Θ.

Proof. Since yi = x>i θ + εi, we have,

g(θ̂) =
1

2n
Eε

[
n∑
i=1

(x>i θ̂ − x>i θ − εi)2

]

=
1

2n
Eε
[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
− 1

n
Eε
[
ε>(Xθ̂ −Xθ)

]
+

1

2n
Eε
[
‖ε‖22

]
= gV (θ̂)− 1

n
Eε
[
ε>(Xθ̂ −Xθ)

]
+
σ2

2

= gV (θ̂)− 1

n
Eε

[∑
i∈S

εi(x
>
i θ̂ − x>i θ)

]
− 1

n
Eε

 ∑
i∈[n]\S

εi(x
>
i θ̂ − x>i θ)

+
σ2

2

Under the infinite data limit as n→∞, we have limn→∞
1
nEε

[∑
i∈S εi(x

>
i θ̂ − x>i θ)

]
= 0 since S

is a finite set. Since θ̂ only depends on εS , the independence of θ̂ and εi, i ∈ [n]\S can be established.
Thus,

Eε

 ∑
i∈[n]\S

εi(x
>
i θ̂ − x>i θ)

 =
∑

i∈[n]\S

Eε [εi]Eε
[
x>i θ̂ − x>i θ

]
= 0.

As a consequence, as limn→∞ g(θ̂)− gV (θ̂)− σ2

2 = 0 for all θ̂ ∈ Θ.

14

Note that the Proposition 4 does not imply that our algorithm performs the same steps when used
with gV instead of g. It only means that the optimal solutions of the problems are converging to
selections with the same quality in the infinite data limit.

Bayesian V-Experimental Design. Bayesian experimental designs [8] can be incorporated as well
into our framework. In Bayesian modelling, the “true” parameter θ is not a fixed value, but instead
a sample from a prior distribution p(θ) and hence a random variable. Consequently, upon taking
into account the random nature of the coefficient vector we can find an appropriate inner and outer
objectives.
Proposition 5. Under Bayesian linear regression assumptions and where θ ∼ N (0, λ−1I), let the
outer objective

gV (θ̂) =
1

2n
Eε,θ

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
,

where expectation is over the prior as well. Further, let the inner objective be equal to (7) with the
same value of λ, then the overall objective simplifies to

G(w) =
1

2n
Tr

(
X

(
1

σ2
X>D(w)X + λI

)−1

X>

)
. (19)

Proof. Using the closed from in (8), and model assumptions, we see that θ̂ = (X>S XS +

λσ2I)−1X>S (XSθ + εS). Plugging this in to the outer objective gV (θ̂),

G(w) =
1

2n
Eε,θ

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
=

1

2n
Eε,θ

[∥∥X((X>S XS + λσ2I)−1X>S (XSθ + εS)− θ)
∥∥2

2

]
=

1

2n
Eε,θ

[∥∥X(X>S XS + λσ2I)−1X>S εS − σ2λX(X>S XS + λσ2I)−1θ
∥∥2

2

]
=

1

2n
Eθ
[∥∥λσ2X(X>S XS + λσ2I)−1θ

∥∥2

2

]
+

1

2n
Eε
[∥∥X(X>S XS + λσ2I)−1X>S εS

∥∥2

2

]
=
σ2

2n
Tr
(
λσ2(X>S XS + λσ2I)−1X>X(X>S XS + λσ2I)−1

)
+

+
σ2

2n
Tr(XS(X>S XS + λσ2I)−1X>X(X>S XS + λσ2I)−1X>S)

=
σ2

2n
Tr
(
(X>S XS + λσ2I)−1X>X(X>S XS + λσ2I)−1

(
λσ2I +X>S XS

))
=
σ2

2n
Tr
(
X(X>S XS + λσ2I)−1X>

)
=
σ2

2n
Tr
(
X(X>D(w)X + λσ2I)−1X>

)
where we used that Eε[ε] = 0, and cyclic property of the trace, and the final results follows by
rearranging.

Similarly to the case of unregularized frequentist experimental design, in the infinite data limit, even
the Bayesian objectives share the same optima. The difference here is that the true parameter is no
longer a fixed value and we need to integrate over it using the prior.
Proposition 6 (Infinite data limit). Let gV be

gV (θ̂) =
1

2n
Eε,θ

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
the Bayesian V-experimental design outer objective, and let the summarization objective be,

g(θ̂) =
1

2n
Eε,θ

[
n∑
i=1

(x>i θ̂ − yi)2

]
.

15

Under the same assumptions as in Proposition 4 and θ ∼ N (0, λ−1I)

lim
n→∞

g(θ̂)− gV (θ̂)− σ2

2
= 0, ∀θ̂ ∈ Θ

.

Proof. The proof follows similarly as in Proposition 4.

Weak-submodularity of Bayesian V-experimental design. The greedy algorithm is known to
perform well on A-experimental design due to the function G(w) being weakly-submodular and
monotone [6]. Cardinality-constrained maximization of such problems with greedy algorithm is
known to find a solution which 1− e−γ [15] approximation to the optimal subset. The parameter γ
is known as weak submodularity ratio.

Following the analysis of [26], which derives the weak submodularity ratio of A-experimental design,
we show that V-experimental design surprisingly has the same submodularity ratio as well, and hence
we expect greedy strategy to perform well. We follow slightly different nomenclature than [26].
Proposition 7. The function R(w) = G(0) − G(w) as in (19) is non-negative, monotone and
γ-weakly submodular function with

γ =

(
1 + s2 1

σ2λ

)−1

where s = maxi∈D ‖xi‖2.

Proof. We employ exactly the same proof technique as [26] relying on Sherman-Morison identity.

Let A and B be disjoint sets without loss of generality. Also, let MA := Iλ + 1
σ2XAX

>
A , which

positive definite by definition. Following the line of proof in [26], it can be shown that a marginal
gain of an element e ∈ B is equal to

R(e|A) =
x>e M

−1
A XX>M−1

A xe

σ2 + x>e M
−1
A xe

(20)

In order to derive the weak-submodularity ratio we need to lower bound,∑
e∈B R(e|A)

R(B ∪A)−R(A)
. (21)

Note the observation made by [26] that σ2 + x>e M
−1
A xe ≤ σ2 + s2λ−1 in their Equation 13.

∑
e∈B

R(e|A) =
∑
e∈B

x>e M
−1
A XX>M−1

A xe

σ2 + x>e M
−1
A xe

(22)

=
∑
e∈B

Tr(x>e M
−1
A XX>M−1

A xe)

σ2 + x>e M
−1
A xe

(23)

as above
≥

∑
e∈B

Tr(x>e M
−1
A XX>M−1

A xe)

σ2 + s2λ−1
(24)

=
Tr(X>BM

−1
A XX>M−1

A XB)

σ2 + s2λ−1
(25)

Now the denominator which is a more general version of (20)

R(B ∪A)−R(A) = Tr
(
(σ2I +X>BM

−1
A XB)−1X>BM

−1
A XX>M−1

A XB

)
(26)

≤ 1

σ2
Tr(X>BM

−1
A XX>M−1

A XB) (27)

where we used the fact that the (σ2I + X>BM
−1
A XB) � σ2I . Note that the result follows by

plugging (27) and (25) to the expression (21) and observing that the fraction can be simplified. The
simplification finishes the proof.

16

Lemma 8. Assume ‖xi‖2 < L <∞ for all i ∈ [n] and w ∈ Rn+ s.t. ‖w‖2 <∞. The function

G(w) =
1

2n
Tr

(
X

(
1

σ2
X>D(w)X + λI

)−1

X>

)
is convex and smooth in w.

Proof. We will show that the Hessian of G(w) is positive semi-definite (PSD) and that the maximum
eigenvalue of the Hessian is bounded, which imply the convexity and smoothness of G(w) .

For the sake of brevity, we will work with the function Ĝ(w) =

Tr
(
X
(
X>D(w)X + λσ2I

)−1
X>
)

where σ2

2n Ĝ(w) = G(w). Also, let us denote

F (w) = X>D(w)X + λσ2I and F+(w) =
(
X>D(w)X + λσ2I

)−1
s.t. F (w)F+(w) = I . First,

we would like to calculate ∂Ĝ(w)
∂wi

, for which we will make use of directional derivatives:

DvĜ(w) = lim
h→0

Ĝ(w + hv)− Ĝ(w)

h

= Tr

(
X

(
lim
h→0

F+(w + hv)− F+(w)

h

)
X>
)

= Tr

(
X

(
lim
h→0

F+(w + hv) · F (w)− F (w + hv)

h
· F+(w)

)
X>
)

def. of F
= −Tr

(
X

(
lim
h→0

F+(w + hv) · 6 hX
>D(v)X

6 h
· F+(w)

)
X>
)

= −Tr
(
XF+(w)X>D(v)XF+(w)X>

)
In order to get ∂Ĝ(w)

∂wi
, we should choose as direction vi := (0, . . . , 0, 1, 0, . . . , 0)> where 1 is on the

i-th position. Since X>D(vi)X = xix
>
i , we have that:

∂Ĝ(w)

∂wi
= DviĜ(w) = −Tr

(
XF+(w)xix

>
i F

+(w)X>
)

cyclic prop Tr
= −x>i F+(w)X>XF+(w)xi

We will proceed similarly to get ∂
2Ĝ(w)
∂wj∂wi

.

Dv
∂Ĝ(w)

∂wi
= −x>i

(
lim
h→0

F+(w + hv)X>XF+(w + hv)− F+(w)X>XF+(w)

h

)
xi

= −x>i
(

lim
h→0

F+(w + hv) · X
>XF+(w + hv)F (w)− F (w + hv)F+(w)X>X

h
· F+(w)

)
xi

= x>i

(
lim
h→0

F+(w + hv) · F (w + hv)F+(w)X>X −X>XF+(w + hv)F (w)

h
· F+(w)

)
xi

Now, since,

F (w + hv)F+(w) = (F (w) + hX>D(v)X)F+(w) = I + hX>D(v)XF+(w)

F+(w + hv)F (w) = F+(w + hv)(F (w + hv)− hX>D(v)X) = I − hF+(w + hv)X>D(v)X

we have

Dv
∂Ĝ(w)

∂wi
= x>i F

+(w)
(
X>D(v)XF+(w)X>X +X>XF+(w)X>D(v)X

)
F+(w)xi

= 2x>i F
+(w)X>D(v)XF+(w)X>XF+(w)xi

17

Choosing vj as our directional derivative, we have:

∂2Ĝ(w)

∂wj∂wi
= Dvj

∂Ĝ(w)

∂wi
= 2

(
x>i F

+(w)xj
) (
x>j F

+(w)X>XF+(w)xi
)

= 2
(
x>j F

+(w)xi
) (
x>j F

+(w)X>XF+(w)xi
)

from which we can see that we can write the Hessian of Ĝ(w) in matrix form as:

∇2
wĜ(w) = 2

(
XF+(w)X>

)
◦
(
XF+(w)X>XF+(w)X>

)
where ◦ denotes the Hadamard product. Since F+(w) is PSD it immediately follows that
XF+(w)X> and XF+(w)X>XF+(w)X> are PSD. Since the Hadamard product of two PSD
matrices is PSD due to the Schur product theorem, it follows that the Hessian ∇2

wĜ(w) is PSD and
thus G(w) is convex.

As for smoothness, we need the largest eigenvalue of the Hessian to be bounded:

λmax(∇2
wĜ(w)) ≤ Tr(∇2

wĜ(w)) = 2

n∑
i=1

(
XF+(w)X>

)
ii

(
XF+(w)X>XF+(w)X>

)
ii

= 2

n∑
i=1

(
x>i F

+(w)xi
) (
x>i F

+(w)X>XF+(w)xi
)

= 2

n∑
i=1

(
x>i F

+(w)xi
) ∥∥XF+(w)xi

∥∥2

2

Rayleigh q.
≤ 2

n∑
i=1

λmax(F+(w)) ‖xi‖22
∥∥XF+(w)xi

∥∥2

2

≤ 2

n∑
i=1

λmax(F+(w)) ‖xi‖22 ‖X‖
2
2

∥∥F+(w)
∥∥2

2
‖xi‖22

= 2λ3
max(F+(w)) ‖X‖22

n∑
i=1

‖xi‖42 ≤
2

λ3σ6
‖X‖22

n∑
i=1

‖xi‖42

≤ 2

λ3σ6
‖X‖2F nL

4 ≤ 2n2L6

λ3σ6

Thus G is nL6

λ3σ4 -smooth.

B Connections to Influence Functions.

We show that our approach is also related to incremental subset selection via influence functions.
Let us consider the influence of the k-th point on the outer objective. Suppose that we have already
selected the subset S and found the corresponding optimal weights w∗S . Then, the influence of point
k on the outer objective is

I(k) := −
∂
∑n
i=1 `i(θ

∗)

∂ε

∣∣∣∣
ε=0

s.t. θ∗ = arg min
θ

n∑
i=1

w∗S,i `i(θ) + ε`k(θ).

Proposition 9. Under twice differentiability and strict convexity of the inner loss, argmaxk I(k)
corresponds to the selection rule in Equation (5).

18

Proof. Following [34] and using the result of [14], the empirical influence function at k is

∂θ∗

∂ε

∣∣∣∣
ε=0

=−

(
∂2
∑n
i=1 w

∗
S,i`i(θ

∗)

∂θ∂θ>

)−1

∇θ`k(θ∗). (28)

Now, we use the chain rule for I(k):

I(k) = −
∂
∑n
i=1 `i(θ

∗)

∂ε

∣∣∣∣
ε=0

= −

(
∇θ

n∑
i=1

`i(θ
∗)

)>
∂θ∗

∂ε

∣∣∣∣
ε=0

Eq. 28
= ∇θ`k(θ∗)>

(
∂2
∑n
i=1 w

∗
S,i`i(θ

∗)

∂θ∂θ>

)−1

∇θ
n∑
i=1

`i(θ
∗).

C Merge-reduce Streaming Coreset Construction

Algorithm 2 streaming_coreset

Input: stream S, number of slots s, β
buffer = []
for Xt in stream S do
Ct = construct_coreset(Xt)
buffer.append((Ct, β))
if buffer.size > s then
k = select_index(buffer)
C′ = construct_coreset((Ck, βk), (Ck+1, βk+1))
β′ = βk + βk+1

delete buffer[k + 1]
buffer[k] = (C′, β′)

end if
end for

Algorithm 3 select_index

Input: buffer = [(C1, β1), . . . , (Cs+1, βs+1)] containing an extra slot
if s == 1 or βs−1 > βs then

return s
else
k = arg mini∈[1,...,s] (βi == βi+1)
return k

end if

D Continual Learning and Streaming Experiments

We conduct an extensive study of several selection methods for the replay memory in the continual
learning setup. We compare the following methods:

• Training w/o replay: train after each task without replay memory. Demonstrates how
catastrophic forgetting occurs.

• Uniform sampling / per task coreset: the network is only trained on the points in the replay
memory with the different selection methods.

19

Table 5: Continual learning with replay memory size of 100 for versions of MNIST and 200 for
CIFAR-10. We report the average test accuracy over the tasks with one standard deviation over 5
runs with different random seeds. Our coreset construction performs among the best.

Method PermMNIST SplitMNIST SplitCIFAR-10
Training w/o replay 73.82 ± 0.49 19.90 ± 0.03 19.95 ± 0.02

Uniform sampling, train at the end 34.31 ± 1.37 86.09 ± 1.84 28.31 ± 0.94
Per task coreset, train at the end 46.22 ± 0.45 92.53 ± 0.53 31.01 ± 1.16

Uniform sampling 78.46 ± 0.40 92.80 ± 0.79 36.20 ± 3.19
k-means of features 78.34 ± 0.49 93.40 ± 0.56 33.41 ± 2.48

k-means of embeddings 78.84 ± 0.82 93.96 ± 0.48 36.91 ± 2.42
k-means of grads 76.71 ± 0.68 87.26 ± 4.08 27.92 ± 3.66
k-center of features 77.32 ± 0.47 93.16 ± 0.96 32.77 ± 1.62

k-center of embeddings 78.57 ± 0.58 93.84 ± 0.78 36.91 ± 2.42
k-center of grads 77.57 ± 1.12 88.76 ± 1.36 27.01 ± 0.96

Gradient matching 78.00 ± 0.57 92.36 ± 1.17 35.69 ± 2.61
Max entropy samples 77.13 ± 0.63 91.30 ± 2.77 27.00 ± 1.83

Hardest samples 76.79 ± 0.55 89.62 ± 1.23 28.10 ± 1.79
FRCL’s selection 78.01 ± 0.44 91.96 ± 1.75 34.50 ± 1.29
iCaRL’s selection 79.68 ± 0.41 93.99 ± 0.39 34.52 ± 1.62

Coreset 79.26 ± 0.43 95.87 ± 0.20 37.60 ± 2.41

• Training per task with uniform sampling / coreset: the network is trained after each task and
regularized with the loss on the samples in the replay memory chosen as a uniform sample /
coreset per task.

• k-means / k-center in feature / embedding / gradient space: the per-task selection retains
points in the replay memory that are generated by the k-means++ [4] / greedy k-center
algorithm, where the clustering is done either in the original feature space, in the last layer
embedding of the neural network, or in the space of the gradient with respect to the last layer
(after training on the respective task). The points that are the cluster centers in the different
spaces are the ones chosen to be saved in the memory. Note that the k-center summarization
in the last layer embedding space is the coreset method proposed for active learning by [49].

• Hardest / max-entropy samples per task: the saved points have the highest loss after training
on each task / have the highest uncertainty (as measured by the entropy of the prediction).
Such selection strategies are used among others by [12] and [1].

• Training per task with FRCL’s / iCaRL’s selection: the points per task are selected by FRCL’s
inducing point selection [53], where the kernel is chosen as the linear kernel over the last
layer embeddings / iCaRL’s selection (Algorithm 4 in [46]) performed in the normalized
embedding space.

• Gradient matching per task: same as iCaRL’s selection, but in the space of the gradient
with respect to the last layer and jointly over all classes. This is a variant of Hilbert coreset
[7] with equal weights, where the Hilbert space norm is chosen to be the squared 2-norm
difference of loss gradients with respect to the last layer.

We report the results in Table 5. We note that while several methods outperform uniform sampling on
some datasets, only our method is consistently outperforming it on all datasets. We also conduct a
study on the effect of the replay memory size shown in Table 6.

Table 6: Replay memory size study on SplitMNIST. Our method offers bigger improvements with
smaller memory sizes.

Method / Memory size 50 100 200
CL uniform sampling 85.23 ± 1.84 92.80 ± 0.79 95.08 ± 0.30

CL coreset 91.79 ± 0.71 95.87 ± 0.20 97.06 ± 0.30
Streaming reservoir sampling 83.90 ± 3.18 90.72 ± 0.97 94.12 ± 0.61

Streaming coreset 85.68 ± 2.05 92.59 ± 1.20 95.64 ± 0.68

20

RBF kernel as proxy. In our experiments we used the Neural Tangent Kernel as proxy. It turns out
that on the datasets derived from MNIST simpler kernels such as RBF are also good proxy choices.
To illustrate this, we repeat the continual learning and streaming experiments and report the results
in Table 7. For the RBF kernel k(x, y) = exp(−γ ‖x− y‖22) we set γ = 5 · 10−4. While the RBF
kernel is a good proxy for these datasets, it fails on harder datasets such as CIFAR-10.

Table 7: RBF vs CNTK proxies.

Method PermMNIST SplitMNIST

C
L Coreset CNTK 79.26 ± 0.43 95.87 ± 0.20

Coreset RBF 79.89 ± 0.87 96.18 ± 0.33
V

C
L Coreset CNTK 86.18 ± 0.21 84.66 ± 0.63

Coreset RBF 86.13 ± 0.31 82.37 ± 1.40

St
r. Coreset CNTK 74.44 ± 0.52 92.59 ± 1.20

Coreset RBF 75.93 ± 0.59 92.61 ± 0.83

Inspecting the coreset. We provide further insights for the large gains obtained by our method
by inspecting the resulting coreset when summarizing MNIST in Figure 5. We can notice that in
each step, the method selects the sample that has the potential to increase the accuracy by the largest
amount: the first 10 samples (first row) are picked from different classes, after which the method
diversifies within the classes. Even though the dataset is balanced, our method chooses more samples
from more diverse classes, e.g., it picks twice as many 8s than 1s.

Figure 5: Coreset of size 40 of MNIST produced by our method: samples are diverse within class,
and harder classes are represented with more samples.

E Speedups, Data Preprocessing, Architectures and Hyperparameters

Speedups. We now discuss several speedups. Since the number of parameters in the inner opti-
mization problem in Eq. 6 is small, we can use quasi-Newton methods such as L-BFGS [36] for
faster convergence. For the outer level optimization we use Adam [31]. After a step on the outer level,
we can reuse the result from the last inner iteration to restart the optimization of the inner variable.
For additional speedup in the streaming and continual learning setting, we use binary weights and
consequently do not perform weight optimization.

Bilevel optimization. When the inner optimization problem cannot be solved in closed form,
we solve it using L-BFGS using step size 0.25, 200 iterations and 10−5 tolerance on first or-
der optimality. For the inner optimization problem we report the best result obtained for λ ∈
{10−6, 10−5, 10−4, 10−3, 10−2}. The number of conjugate gradient steps per approximate inverse
Hessian-vector product calculation is set to 50.

For the outer level we use Adam, with learning rate 0.05 and 10 iterations for the CNN on MNIST
experiment, and with learning rate 0.02 and 200 iterations for the KRR with CNTK on CIFAR-10 ex-
periment — here we can afford more outer iterations as the inner problem can be solved in closed form.
When applying the gradient on weights, we ensure the positivity of weights by projection. In continual
learning and streaming we use unweighted samples, so we do not perform outer iterations. When ap-
plying our incremental selection of points, we select the best candidate out of a random sample of 200.

Data preprocessing. For all datasets, we standardize the pixel values per channel for each dataset
separately. For the CIFAR-10 streaming experiment we perform the standard data augmentations of
random cropping and horizontal flipping.

21

Training details. In the continual learning experiments, we train our networks for 400 epochs
using Adam with step size 5 · 10−4 after each task. The loss at each step consists of the loss on a
minibatch of size 256 of the current tasks and loss on the replay memory scaled by β. For streaming,
we train our networks for 40 gradient descent steps using Adam with step size 5 · 10−4 after each
batch. For [2], we use a streaming batch size of 10 for better performance, as indicated in Section 2.4
of the supplementary materials of [2].

Hyperparameter selection in continual learning and streaming. The replay memory regulariza-
tion strength β was tuned separately for each method from the set {0.01, 0.1, 1, 10, 100, 1000} and
the best result on the test set was reported.

Computational resources. The neural networks are trained on a single GeForce GTX 1080 Ti.
(C)NTK kernels are calculated on the same GPU. The coreset generation is performed with a single
CPU thread.

22

