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Abstract

Causal discovery aims to recover causal structures or models underlying the ob-
served data. Despite its success in certain domains, most existing methods focus
on causal relations between observed variables, while in many scenarios the ob-
served ones may not be the underlying causal variables (e.g., image pixels), but are
generated by latent causal variables or confounders that are causally related. To
this end, in this paper, we consider Linear, Non-Gaussian Latent variable Models
(LiNGLaMs), in which latent confounders are also causally related, and propose a
Generalized Independent Noise (GIN) condition to estimate such latent variable
graphs. Specifically, for two observed random vectors Y and Z, GIN holds if and
only if ω⊺Y and Z are statistically independent, where ω is a parameter vector
characterized from the cross-covariance between Y and Z. From the graphical
view, roughly speaking, GIN implies that causally earlier latent common causes of
variables in Y d-separate Y from Z. Interestingly, we find that the independent
noise condition, i.e., if there is no confounder, causes are independent from the
error of regressing the effect on the causes, can be seen as a special case of GIN.
Moreover, we show that GIN helps locate latent variables and identify their causal
structure, including causal directions. We further develop a recursive learning
algorithm to achieve these goals. Experimental results on synthetic and real-world
data demonstrate the effectiveness of our method.

1 Introduction

Identifying causal relationships from observational data, known as causal discovery, has drawn
much attention in the fields of empirical science and artificial intelligence [Spirtes et al., 2010, Pearl,
2019]. Most causal discovery approaches focus on the situation without latent variables, such as
the PC algorithm [Spirtes and Glymour, 1991], Greedy Equivalence Search (GES) [Chickering,
2002], and methods based on the Linear, Non-Gaussian Acyclic Model (LiNGAM) [Shimizu et al.,
2006], the Additive Noise Model (ANM) [Hoyer et al., 2009], and the Post-NonLinear causal model
(PNL) [Zhang and Chan, 2006, Zhang and Hyvärinen, 2009]. However, although these methods
have been used in a range of fields, they may fail to produce convincing results in cases with latent
variables (or more specifically, confounders), because they do not properly take into account the
influences from latent variables as well as many other practical issues [Zhang et al., 2018].
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Causal discovery with latent variables has attracted much attention. Some approaches attempt to han-
dle the question based on conditional independence constraints, including the FCI algorithm [Spirtes
et al., 1995], RFCI [Colombo et al., 2012], and their variants. They focus on estimating the causal
relationships between observed variables rather than that between latent variables. However, in
real-world scenarios, it may not be the case—there are also causal relationships between latent
variables. Later, it was shown that by utilizing vanishing Tetrad conditions [Spearman, 1928] and,
more generally, t-separation, one is able to identify latent variables in linear-Gaussian models [Silva
et al., 2006, Sullivant et al., 2010]. Furthermore, by leveraging an extended t-separation [Spirtes,
2013], a more reliable and faster algorithm, called FindOneFactorClusters (FOFC), was developed
[Kummerfeld and Ramsey, 2016]. However, these methods may not be able to identify causal
directions between latent variables, and they require strong constraints that each latent variable should
have at least three pure measurement variables.2 Such limitation is because they only rely on rank
constraints on the covariance matrix, but fail to take into account higher-order statistics. To make use
of higher-order information, one may apply overcomplete independent component analysis [Hoyer
et al., 2008, Shimizu et al., 2009], but it does not consider the causal structure between latent variables
and the size of the equivalence class of the identified structure could be very large [Entner and
Hoyer, 2010, Tashiro et al., 2014]. Another interesting work by Anandkumar et al. [2013] extracts
second-order statistics in identifying latent factors, while using non-Gaussianity when estimating
causal relations between latent variables. Zhang et al. [2017] and Huang* et al. [2020] considered a
special type of confounders due to distribution shifts.

Recently, a condition about a particular type of independence relationship between any three variables,
called Triad condition, was proposed [Cai et al., 2019], together with the LSTC algorithm to discover
the structure between latent variables. Nevertheless, this method does not apply to the case where
there are multiple latent variables behind two observed variables.

It is well known that one may use the independent noise condition to recover the causal structure
from linear non-Gaussian data without latent variables [Shimizu et al., 2011]. Then a question
naturally rises: is it possible to solve the latent-variable problem, by introducing non-Gaussianity and
a condition similar to the independent noise condition? Interestingly, we find that it can be achieved
by testing the independence between ω⊺Y and Z, where Y and Z are two observed random vectors,
and ω is a parameter vector based on the cross-covariance between Y and Z. If ω⊺Y and Z are
statistically independent, we term this condition Generalized Independent Noise (GIN) condition.
We show that the well-known independent noise condition can be seen as a special case of GIN.
From the view of graphical models, roughly speaking, if the GIN condition holds, then in the Linear
Non-Gaussian Latent variable Model (LiNGLaM), the causally earlier latent common causes of
variables in Y d-separate Y from Z. By leveraging GIN, we further develop a practical algorithm to
identify important information of the LiNGLaM, including where the latent variables are, the number
of latent variables behind any two observed variables, and the causal order of the latent variables.

The contributions of this work are three-fold. 1) We define the GIN condition for an ordered pair of
variables sets, provide mathematical conditions that are sufficient for it, and show that the independent
noise condition can be seen as its special case. 2) We then further establish a connection between the
GIN condition and the graphical patterns in the LiNGLaM, including specific d-separation relations.
3) We exploit GIN to estimate the LiNGLaM, which allows causal relationships between latent
variables and multiple latent variables behind any two observed variables. Compared to existing work,
a uniquely appealing feature of the proposed method is that it is able to identify the causal order of
the latent variables and determine the number of latent variables behind any two observed variables.

2 Problem Definition
In this paper, we focus on a particular type of linear acyclic latent variable causal models. We use
V = X ∪ L to denote the total set of variables, where X denote the set of observed variables, with
X = {X1, X2, ...Xm}, and L denote the set of latent variables, with L = {L1, L2, ...Ln}. We assume
that any variable in V satisfy the following generating process: Vi = ∑k(j)<k(i) bijVj + εVi

, i =

1, 2, ...,m+ n, where k(i) represents the causal order of variables in a directed acyclic graph, so that
no later variable causes any earlier variable, bij denotes the causal strength from Vj to Vi, and εVi

are
independent and identically distributed noise variables. Without loss of generality, we assume that all
variables have a zero mean (otherwise can be centered). The definition of our model is given below.

2The variable is neither the cause nor the effect of other measurement variables.
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Definition 1 (Linear Non-Gaussian Latent Variable Model (LiNGLaM)). A LiNGLaM, besides linear
and acyclic assumptions, has the following assumptions:

A1. [Measurement Assumption] There is no observed variable in X being an ancestor of any
latent variables in L.3

A2. [Non-Gaussianity Assumption] The noise terms are non-Gaussian.
A3. [Double-Pure Child Variable Assumption] Each latent variable set L

′, in which every latent
variable directly causes the same set of observed variables, has at least 2Dim(L′) pure
measurement variables as children.4

A4. [Purity Assumption] There is no direct edge between observed variables.
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Figure 1: A causal structure involving 4
latent variables and 8 observed variables,
where each pair of observed variables in
{X1, X2, X3, X4} are affected by two latent
variables.

The key difference to existing researches considering
linear latent models, such as Bollen [1989], Silva et al.
[2006], is that we introduce the assumptions A2∼A4,
allowing us to identify the casual structure over latent
variables, including casual directions. Figure 1 shows
a simple example that satisfies the LiNGLaM. For
Non-Gaussianity Assumption, the non-Gaussian distri-
bution are expected to be ubiquitous, due to Cramér
Decomposition Theorem [Cramér, 1962], as stated in
Spirtes and Zhang [2016]. Notice that the Double-
Pure Child Variable Assumption is much milder than
that in Tetrad-based methods: for latent variable set
L
′, we only need 2Dim(L′) pure observed variables,

while Tetrad needs 2Dim(L′) + 1 pure observed vari-
ables. In Section 6, we will briefly discuss the situation where Assumption A4 is violated.

3 GIN Condition and Its Implications in LiNGLaM
In this section, we first briefly review the Independent Noise (IN) condition in linear non-Gaussian
causal models with no latent variables. Then we formulate the Generalized Independent Noise
(GIN) condition and show that it contains the independent noise condition as a special case. We
further illustrate how GIN is applied to identify causal relations between latent variables of any
two considered groups of observed variables. Finally, we present theoretical results regarding the
graphical implications of the GIN condition, which can be used to discover latent variable structures.

3.1 Independent Noise Condition in Functional Causal Models
Below, we give the independent noise condition, which has been used in causal discovery of linear,
non-Gaussian networks without confounders (e.g., in Shimizu et al. [2011]).
Definition 2 (IN condition). Let Y be a single variable and Z be a set of variables. Suppose
all variables follow the linear non-Gaussian acyclic causal model and are observed. We say that
(Z, Y ) follows the IN condition, if and only if the residual of regressing Y on Z is statistically
independent from Z. Mathematically, let ω̃ be the vector of regression coefficients, that is, ω̃ ≔

E[Y Z
⊺]E−1[ZZ

⊺]; the IN condition holds for (Z, Y ) iff ẼY ∣∣Z = Y − ω̃
⊺
Z is independent from Z.

Lemma 1 in Shimizu et al. [2011] considers the case where Z is a single variable and shows that
(Z, Y ) satisfies the IN condition if and only if Z is an exogenous (or root) variable relative to Y ,
based on which one can identify the causal relation between Y and Z. As a direct extension of this
result, we show that in the case where Z contains multiple variables, (Z, Y ) satisfies the IN condition
if and only if all variables in Z are causally earlier than Y and there is no common cause behind any
variable in Z and Y . This result is given in the following Proposition.
Proposition 1. Suppose all considered variables follow the linear non-Gaussian acyclic causal
model and are observed. Let Z be a subset of those variables and Y be a single variable. Then the
following statements are equivalent.

(A) 1) All variables in Z are causally earlier than Y , and 2) there is no common cause for each
variable in Z and Y that is not in Z.

(B) (Z, Y ) satisfies the IN condition.
3Here, this assumption follows the definition in Silva et al. [2006] and it is equivalent to say that there is no

observed variable in X being an parent of any latent variables in L.
4
2Dim(L′) denotes 2 times the dimension of L′.
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3.2 Generalized Independent Noise Condition

Below, we first give the definition of the GIN condition, followed by an illustrative example.
Definition 3 (GIN condition). Let Y and Z be two observed random vectors. Suppose the variables
follow the linear non-Gaussian acyclic causal model. Define the surrogate-variable of Y relative to
Z, as

EY∣∣Z ≔ ω
⊺
Y, (1)

where ω satisfies ω⊺E[YZ
⊺] = 0 and ω ≠ 0. We say that (Z,Y) follows the GIN condition if and

only if EY∣∣Z is independent from Z.

In other words, (Z,Y) violates the GIN condition if and only if EY∣∣Z is dependent on Z. Notice
that the Triad condition [Cai et al., 2019] can be seen as a restrictive, special case of the GIN
condition, where Dim(Y) = 2 and Dim(Z) = 1. We give an example to illustrate that there is a
connection between this condition and the causal structure. According to the structure in Figure 1 and
by assuming faithfulness, we have that ({X4, X5}, {X1, X2, X3}) satisfies the GIN condition, as
explained below. The causal models of latent variables is L1 = εL1

, L2 = αL1 + εL2
= αεL1

+ εL2
,

and L3 = βL1 + σL2 + εL3
= (β + ασ)εL1

+ σεL2
+ εL3

, and {X1, X2, X3} and {X4, X5} can
then be represented as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÏ
Y

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1
a2 b2
a3 b3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[L1

L2
] +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

εX1

εX2

εX3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
EY

, [X4

X5
]

ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÏ
Z

= [ a4 b4
βc1 σc1

] [L1

L2
] + [εX4

ε
X
′
5

]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒ Ï

EZ

, (2)

where ε
X
′
5
= c2εL3

+ εX5
. According to the above equations, ω⊺E[YZ

⊺] = 0 ⇒ ω = [a2b3 −
b2a3, b1a3 − a1b3, a1b2 − b1a2]⊺. Then we can see EY∣∣Z = ω

⊺
Y = ω

⊺
EY, and further because

EY ⫫ Z, we haveEY∣∣Z ⫫ Z. That is to say, ({X4, X5}, {X1, X2, X3}) satisfies the GIN condition.
Intuitively, we have EY∣∣Z ⫫ Z because although {X1, X2, X3} were generated by {L1, L2}, which
are not measurable, EY∣∣Z, as a particular linear combination of Y = {X1, X2, X3}, successfully
removes the influences of {L1, L2} by properly making use of Z = {X4, X5} as a “surrogate".

Next, we discuss a situation where GIN is violated. For example, in this structure,
({X3, X6}, {X1, X2, X5}) violates GIN. Specifically, the corresponding variables satisfy the follow-
ing equations:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X5

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÏ
Y

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1
a2 b2
βc1 σc2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[L1

L2
] +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

εX1

εX2

ε
X
′
5

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
EY

, [X3

X6
]

ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÏ
Z

= [ a3 b3
βc2 σc2

] [L1

L2
] + [εX3

ε
X
′
6

]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒ Ï

EZ

, (3)

where ε
X
′
6
= c2εL3

+ εX6
. Then under faithfulness assumption, we can see ωTY é Z because

EY é EZ (there exists common component εL3
for ε

X
′
5

and ε
X
′
6
), no matter ω⊺E[YZ

⊺] = 0 or not.

In Section 3.3, we will further investigate graphical implications of GIN in LiNGLaM. For the example
given in Figure 1, we have the following observation. ({X4, X5}, {X1, X2, X3}) satisfies the GIN
condition, and {L1, L2}, the latent common causes for {X1, X2, X3}, d-separate {X1, X2, X3} from
{X4, X5}. In contrast, ({X3, X6}, {X1, X2, X5}) violates GIN, and {X1, X2, X5} and {X3, X6}
are not d-separated conditioning on {L1, L2}, the latent common causes of {X1, X2, X5}.

The following theorem gives mathematical characterizations of the GIN condition, by providing
sufficient conditions for when (Z,Y) satisfies the GIN condition. In the next subsection, we give its
implication in LiNGLaM; thanks to the constraints implied by the LiNGLaM, one is able to provide
sufficient graphical conditions for GIN to hold.
Theorem 1. Suppose that random vectors L, Y, and Z are related in the following way:

Y = AL +EY , (4)
Z = BL +EZ . (5)

Denote by l the dimensionality of L. Assume A is of full column rank. Then, if 1) Dim(Y) > l, 2)
EY ⫫ L, 3) EY ⫫ EZ ,5 and 4) The cross-covariance matrix of L and Z, ΣLZ = E[LZ

⊺] has rank
l, then EY∣∣Z ⫫ Z, i.e., (Z,Y) satisfies the GIN condition.

5Note that we do not assume EZ ⫫ L.
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Theorem 1 gives the mathematical conditions, under which (Z,Y) satisfies the GIN condition.
Continue the example in Figure 1. Let Z = {X4, X5} and Y = {X1, X2, X3}, and thus L =

{L1, L2}. One then can find the following facts: Dim(Y) = 2 > l, EY ⫫ L and EY ⫫ EZ

according to Eq. 2, and ΣLZ = E[LZ
⊺] has full row rank, i.e., 2. Therefore, (Z,Y) satisfies the

GIN condition. All proofs are given in Supplementary Material.

The following proposition shows that the IN condition can be seen as a special case of the GIN
condition with EZ = 0 (i.e., Z and L are linearly deterministically related).

Proposition 2. Let Ÿ ≔ (Y,Z). Then the following statements hold:
1. (Z, Ÿ ) follows the GIN condition if and only if (Z, Y ) follows it.
2. If (Z, Y ) follows the IN condition, then (Z, Ÿ ) follows the GIN condition.

Proposition 2 inspires a unified method to handle causal relations between latent variables and those
between latent and observed variables. Please see the discussion in Section 6 for more details.

3.3 Graphical Criteria of GIN in Terms of LiNGLaM
In this section, we investigate graphical implications of the GIN condition in LiNGLaM, which then
inspires us to exploit the GIN condition to discover the graph containing latent variables. Specifically,
first, the following theorem shows the connection between GIN and the graphical properties of the
variables in terms of LiNGLaM. We denote by L(Xq) the set of latent variables that are the parents
of Xq and by L(Y) the set of latent variables that are parents of any component of Y. We say
variable set S1 is an exogenous set relative to variable set S2 if and only if 1) S2 ⊆ S1 or 2) for any
variable V that is in S2 but not in S1, according to the causal graph over {V } ∪ S1 and the ancestors
of variables in {V } ∪ S1, V does not cause any variable in S1, and the common cause for V and
each variable in S1, if there is any, is also in S1 (i.e., relative to {V } ∪ S1, V does not cause and
is not confounded with any variable in S1). For instance, according to the structure in Figure 1, let
S1 = {L1} and S2 = {L3, L4}, S1 is an exogenous set relative to S2. In constrast, if S1 = {L2, L3}
and S2 = {L3, L4}, S1 is not an exogenous set relative to S2, because L4, which is in S2 but not in
S1, and L2 (as well as L3), which is in S1, has a common cause, L1, that is not in S1.
Theorem 2. Let Y and Z be two disjoint subsets of the observed variables of a LiNGLaM. Assume
faithfulness holds for the LiNGLaM. (Z,Y) satisfies the GIN condition if and only if there exists a
k-size subset of the latent variables L, 0 ≤ k ≤ min(Dim(Y) − 1,Dim(Z)), denoted by SkL, such
that 1) SkL is an exogenous set relative to L(Y), that 2) SkL d-separates Y from Z, and that 3) the
covariance matrix of SkL and Z has rank k, and so does that of SkL and Y.

Roughly speaking, S1 is an exogenous set relative to S2 if S1 contains causally earlier variables
(according to the causal order) in or before S2. Hence, intuitively, the theorem states that (Z,Y)
satisfies the GIN condition when causally earlier common causes of Y d-separate Y from Z. We
can then see the asymmetry of this condition for (Z,Y) relative to L(Y) and L(Z). For instance,
assuming faithfulness, according to the structure in Figure 1, ({X1, X2}, {X3, X4, X5}) satisfies
GIN (with S2

L = {L1, L2}), but ({X1, X6}, {X3, X4, X5}) does not.

Next, we discuss how to identify the group of observed variables that share the same set of latent
direct causes; we call such a set of observed variables a causal cluster. The following theorem
formalizes the property of causal clusters and gives a criterion for finding such causal clusters.
Theorem 3. Let X be the set of all observed variables in a LiNGLaM and Y be a proper subset of
X. If (X \ Y,Y) follows the GIN condition and there is no subset Ỹ ⊆ Y such that (X \ Ỹ, Ỹ)
follows the GIN condition, then Y is a causal cluster and Dim(L(Y)) = Dim(Y) − 1.

Consider the example in Figure 1, for {X5, X6}, one can find ({X1, ..., X4, X7, X8}, {X5, X6})
follows the GIN condition, so {X5, X6} is a causal cluster and Dim(L({X5, X6})) =

Dim({X5, X6}) − 1 = 1(i.e., L3). But, for {X1, X2, X5}, ({X3, X4, X6, X7, X8}, {X1, X2, X5})
violates the GIN condition, thus {X1, X2, X5} is not a causal cluster.

Furthermore, we discuss how to identify the causal direction between latent variables based on their
corresponding children. The following theorem shows the asymmetry between the underlying latent
variables in terms of the GIN condition.
Theorem 4. Let Sp and Sq be two causal clusters of a LiNGLaM. Assume there is no la-
tent confounder behind L(Sp) and L(Sq), and L(Sp) ∩ L(Sq) = ∅. Further suppose that
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Sp contains 2Dim(L(Sp)) number of variables with Sp = {P1, P2, ..., P2Dim(L(Sp))} and that
Sq contains 2Dim(L(Sq)) number of variables with Sq = {Q1, Q2, ..., Q2Dim(L(Sq))}. Then if
({PDim(L(Sp))+1, ...P2Dim(L(Sp))}, {P1, ...., PDim(L(Sp)), Q1, ...QDim(L(Sq))}) follows the GIN condi-
tion, L(Sp)→ L(Sq) holds.

Consider the example in Figure 1. For two clusters {X1, X2, X3, X4} and {X5, Y6}, where their
sets of latent direct causes do not have confounders, one can find ({X3, X4}, {X1, X2, X5}) follows
GIN condition, so {L1, L2}→ {L3}.

4 GIN Condition-Based Algorithm for Estimating LiNGLaM
In this section, we leverage the above theoretical results and propose a recursive algorithm to discover
the structural information of LiNGLaM. The basic idea of the algorithm is that it first finds all causal
clusters from the observed data (Step 1), and then it learns the causal order of the latent variables
behind these causal clusters (Step 2). The completeness of the algorithm is shown in sections 4.1
(Theorem 3 and Proposition 3 for step 1) and 4.2 (Proposition 4 for step 2).

4.1 Step 1: Finding Causal Clusters
To find causal clusters efficiently, one may start with finding clusters with a single latent variable
and merge the overlapping culsters, and then increase the number of allowed latent variables until all
variables are put in the clusters. We need to consider two practical issues involved in the algorithm.
The first is how to find causal clusters and determine how many latent variables they contain, and
the second is what clusters should be merged. Theorem 3 answers the first question. Next, for the
merge problem, we find that the overlapping clusters can be directly merged into one cluster. This is
because the overlapping clusters have the same latent variable as parents in LiNGLaM. The validity
of the merging step is guaranteed by Proposition 3, with the algorithm given in Algorithm 1.
Proposition 3. Let S1 and S2 be two clusters of a LiNGLaM and Dim(L(S1)) = Dim(L(S2)). If
S1 and S2 are overlapping, S1 and S2 share the same set of latent variables as parents.

Algorithm 1 Identifying Causal Clusters
Input: Data set X = {X1, ..., Xm}
Output: Causal cluster set S
1: Initialize S = ∅, Len = 1, and P = X;
2: repeat
3: repeat
4: Select a variable subset P from P such

that Dim(P) = Len;
5: if EP∣∣(P\P) ⫫ (P \ P) holds then
6: S = S ∪ P;

7: end if
8: until all subsets with lengthLen in P have

been selected;
9: Merge all the overlapping sets in S;

10: P← P \ S, and Len← Len + 1;
11: until P is empty or Dim(P) ≤ Len;
12: Return: S

To test the independence (line 5 in Algorithm 1) between two sets of variables, we check for the
pairwise independence with the Fisher’s method [Fisher, 1950] instead of testing for the independence
between EY∣∣Z and Z directly. In particular, denote by pk, with k = 1, 2, ..., c, all resulting p-values
from pairwise independence tests. We compute the test statistic as −2∑c

k=1 log pk, which follows
the chi-square distribution with 2c degrees of freedom when all the pairs are independent.
Example 1. Consider the example in Figure 1. First, we set Len = 1 to find the clusters with a
single latent variable, i.e., we find {X5, X6} and {X7, X8} based on Theorem 3 (Line 4-9). Then we
set Len = 2 and find the clusters {X1, X2, X3, X4} with two latent variables.

4.2 Step 2: Learning the Causal Order of Latent Variables
After identifying all clusters, next, we aim to discover the causal order of the set of latent variables of
corresponding causal clusters. As an immediate consequence of Theorem 4, the root latent variable
can be identified by checking the GIN condition, as stated in the following lemma.
Lemma 1. Let Sr be a cluster and Sk, k ≠ r, be any other cluster of a LiNGLaM. Suppose
that Sr contains 2Dim(L(Sr)) number of variables with Sr = {R1, R2, ..., R2Dim(L(Sr))} and
that Sk contains 2Dim(L(Sk)) number of variables with Sk = {K1,K2, ...,K2Dim(L(Sk))}. if
({RDim(L(Sr))+1, ...R2Dim(L(Sr)), {R1, ...., RDim(L(Sr)),K1, ...KDim(L(Sk))}) follows the GIN condi-
tion, then L(Sr) is a root latent variable set.
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Now, the key issue is how to use this lemma to recursively discover the “root variable"6 until
the causal order of latent variables is fully determined. Interestingly, we find that in every iter-
ation, we only need to add the children (i.e., the corresponding causal cluster) of the root vari-
able set into the testing set, such that the number of testing latent variables increases when test-
ing the GIN condition in the following steps. Recall the example discussed in Figure 1. For
L3, we find that ({X6, X3, X4 }, {X5, X7, X1, X2 }) satisfies the GIN condition, while for L4,

({X8, X3, X4 }, {X5, X7, X1, X2 }) violates the GIN condition,7 which means that L3 is the “root
variable". Intuitively speaking, adding the children of the root variable includes the information of the
root variable set and create a new “root variable", which helps further remove the effect from them.
Accordingly, we have the following proposition to guarantee the correctness of the above process.
The details of the process are given in Algorithm 2.
Proposition 4. Suppose that {S1, ...Si, ...,Sn} contains all clusters of the LiNGLaM. Denote T =

{L(S1), ...L(Si)} and R = {L(Si+1), ...L(Sn)}, where all elements in T are causally earlier than
those in R. Let Ẑ contain the elements from the half set of the children of each latent variable set in
T, and Ŷ contain the elements from the other half set of the children of each latent variable set in T.
Furthermore, Let L(Sr) be a latent variable set of R and Sr = {R1, R2, ..., R2Dim(L(Sr))}. If for any
one of the remaining elements L(Sk) ∈ R, with k ≠ r and Sk = {K1,K2, ...,K2Dim(L(Sk))} such
that ({RDim(L(Sr))+1, ...R2Dim(L(Sr)), Ẑ}, {R1, ...., RDim(L(Sr)),K1, ...KDim(L(Sk)), Ŷ}) follows the
GIN condition, then L(Sr) is a root latent variable set in R.

Algorithm 2 Learning the Causal Order of Latent Variables
Input: Set of causal clusters S
Output: Causal order K
1: Initialize L with the root variable sets of each

cluster, T = ∅, and K = ∅;
2: while L ≠ ∅ do
3: Find the root node L(Sr) according to

Proposition 4;

4: L = L \ L(Sr);
5: Include L(Sr) into the K;
6: T = T ∪ Sr;
7: end while
8: Return: Causal order K

Example 2. Continue to consider the example in Figure 1. We have found the three causal clus-
ters in step 1, i.e., S1 = {X1, X2, X3}, S2 = {X5, X6}, and S3 = {X7, X8}. Now, we first find
that L(S1) is the root variable because ({X3, X4}, {X1, X2, X5}) and ({X3, X4}, {X1, X2, X7})
both satisfy the GIN condition (Line 3). Next, we find L(S2) is the “root variable" because
({X6, X3, X4}, {X5, X7, X1, X2}) satisfies the GIN condition (Line 3-6). Finally, we return the
causal order K ∶ L(S1) ≻ L(S2) ≻ L(S3).

5 Experimental Results
To show the efficacy of the proposed approach, we applied it to both synthetic and
real-world data. Our source code is available from https://github.com/xiefeng009/
GIN-Condition-for-Estimating-Latent-Variable-Causal-Graphs.

5.1 Synthetic Data
In the following simulation studies, we consider four typical cases: Case 1 & Case 2 have two latent
variables L1 and L2, with L1 → L2; Case 3 has three latent variables L1, L2, and L3, with L2 ←
L1 → L3, and L2 → L3; Case 4 has four latent variables {L1, L2}, L3, and L4, with {L1, L2}→ L3,
{L1, L2}→ L4, and L3 → L4. In all four cases, the data are generated by LiNGLaM and the causal
strength b is sampled from a uniform distribution between [−2,−0.5] ∪ [0.5, 2], noise terms are
generated from uniform[-1,1] variables to the fifth power, and the sample size N = 500, 1000, 2000.
The details of the graph structures are as follows. [Case 1]: Both L1 and L2 have two pure observed
variables, i.e., L1 → {X1, X2} and L2 → {X3, X4}. [Case 2]: Add extra edges to the graph in
Case 1, such that there exist multiple latent variables. In particular, we add two new variables
{X5, X6}, such that {L1, L2} → {X5, X6}, and add the edge L1 → {X3, X4}. [Case 3]: Each
latent variable has three pure observed variables, i.e., L1 → {X1, X2, X3}, L2 → {X4, X5, X6},

6Note that here we call L a “root variable" after we have known the variables that causally earlier than L.
7Here, the boxes indicate the elements of the root variable set {L1, L2}.
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and L3 → {X7, X8, X9}. [Case 4]: Add extra latent variables and adjust the observed variables in
Case 3 such that it becomes the structure in Figure 1.

We compared our algorithm with BPC [Silva et al., 2006], FOFC [Kummerfeld and Ramsey, 2016],8

and LSTC [Cai et al., 2019]. We measured the estimation accuracy on two tasks: 1) finding the causal
clusters, i.e., locating latent variables, and 2) discovering the causal order of latent variables. Note
that BPC and FOFC are only applicable to the first task.

To evaluate the accuracy of the estimated causal cluster, we followed the evaluation metrics from
Cai et al. [2019]. Specifically, we used Latent omission=OL

TL
, Latent commission=FL

TL
, and Mismea-

surement=MO
TO

, where OL is the number of omitted latent variables, FL is the number of falsely
detected latent variables, TL is the total number of latent variables in the ground truth graph, MO is
the number of falsely observed variables that have at least one incorrectly measured latent, and TO
is the number of observed variables in the ground truth graph. To better evaluate the quality of the
estimated causal order, we further used the correct-ordering rate as a metric. Each experiment was
repeated 10 times with randomly generated data and the results were averaged. Here, we used the
Hilbert-Schmidt Independence Criterion (HSIC) test [Gretton et al., 2008] for the independence test
because the data are non-Gaussian.

Table 1: Results by GIN, LSTC, FOFC, and BPC on learning causal clusters.

Latent omission Latent commission Mismeasurements
Algorithm GIN LSTC FOFC BPC GIN LSTC FOFC BPC GIN LSTC FOFC BPC

500 0.00(0) 0.00(0) 1.00(10) 0.50(10) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)
Case 1 1000 0.00(0) 0.00(0) 1.00(10) 0.50(10) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)

2000 0.00(0) 0.00(0) 1.00(10) 0.50(10) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)
500 0.10(2) 0.20(4) 0.9(10) 0.50(10) 0.00(0) 0.05(1) 0.00(0) 0.00(0) 0.12(2) 0.12(4) 0.00(0) 0.20(10)

Case 2 1000 0.05(1) 0.15(3) 1.00(10) 0.50(10) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.04(1) 0.12(3) 0.00(0) 0.20(10)
2000 0.00(0) 0.00(0) 1.00(10) 0.50(10) 0.00(0) 0.02(2) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.20(10)
500 0.20(3) 0.20(3) 0.13(9) 0.10(1) 0.00(0) 0.03(3) 0.00(0) 0.00(0) 0.19(3) 0.17(3) 0.00(0) 0.00(0)

Case 3 1000 0.06(2) 0.13(2) 0.16(10) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.06(2) 0.00(0) 0.00(0) 0.00(0)
2000 0.00(0) 0.00(0) 0.50(10) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)
500 0.13(4) 0.40(6) 0.90(10) 0.63(10) 0.00(0) 0.23(5) 0.00(0) 0.00(0) 0.04(2) 0.15(6) 0.02(2) 0.06(4)

Case 4 1000 0.10(3) 0.26(6) 0.93(10) 0.66(10) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.05(3) 0.11(2) 0.01(1) 0.02(2)
2000 0.03(1) 0.32(6) 1.00(10) 0.70(10) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.04(1) 0.11(3) 0.00(10) 0.00(0)

Note: The number in parentheses indicates the number of occurrences that the current algorithm cannot
correctly solve the problem.
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Figure 2: (a-d) Accuracy of the estimated causal
order with GIN (purple), and LSTC (green) for
Cases 1-4.

As shown in Table 1, our algorithm, GIN, achieves
the best performance (the lowest errors) on almost
all cases of the structures. We noticed that al-
though the Mismeasurements of GIN are higher
than LSTC in Case 3 when the sample size is small
(N=500), the Latent commission of GIN are lower
than LSTC. The BPC and FOFC algorithms (with
distribution-free tests) do not perform well, which
implies that the rank constraints on covariance ma-
trix is not enough to recover more latent structures.
Interestingly, although the LSTC algorithm has
low errors of the Latent omission in Case 2 (it may
be because the structure in Case 2 can be trans-
formed into equivalent pure structures [Cai et al.,
2019]), it can not tell us the number of latent vari-
ables behind observed variables. Moreover, LSTC
fails to recover Case 4 because of the multiple
latent variables. The above results demonstrate a
clear advantage of our method over the comparisons.

Considering that BPC and FOFC algorithms can not discover the causal directions of latent variables,
we only reported the results of LSTC algorithm and our algorithm on causal order learning in Figure 2.
As shown in Figure 2, the accuracy of the identified causal ordering of our method gradually increases
to 1 with the sample size in all the four cases. LSTC can not handle Case 2 & 4. These findings
illustrate that our algorithm can discover the correct causal order.

8For BPC and FOFC algorithms, we used these implementations in the TETRAD package, which can be
downloaded at http://www.phil.cmu.edu/tetrad/.
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5.2 Real-World Data

Causal Clusters Observed variables
S1 (1) RC1, RC2, WO1, WO2,

DM1, DM2

S2 (1) CC1, CC2,CC3,CC4

S3 (1) PS1, PS2

S4 (1) ELC1, ELC2,ELC3,ELC4,
ELC5

S5 (2) SE1, SE2, SE3, EE1,
EE2, EE3, DP1, PA3

S6 (3) DP2, PA1, PA2

Figure 3: The output of Algorithm 1 in the teacher’s
burnout study.

Barbara Byrne conducted a study to investi-
gate the impact of organizational (role ambi-
guity, role conflict, classroom climate, and
superior support, etc.) and personality (self-
esteem, external locus of control) on three
facets of burnout in full-time elementary
teachers [Byrne, 2010]. We applied our al-
gorithm to this data set, with 28 observed
variables in total.

In the implementation, the kernel width in
the HSIC test is set to 0.05. We first applied
Algorithm 1 and received six causal clusters,
including one cluster with 2 latent variables and one cluster with 3 latent variables. The results
were given in Table 3. Next, we applied Algorithm 2 and got the final causal order (from root to
leaf): L(S1) ≻ L(S2) ≻ L(S3) ≻ L(S5) ≻ L(S4) ≻ L(S6). Specifically, we had the following
findings. 1. The identified clusters are similar to the domain knowledge, e.g, S2 represents the
classroom climate, S3 represents the peer support, S4 represents the external locus of control, et
al. 2. The learned causal order is similar to Byrne’s conclusion, e.g., personal accomplishment
(L(S6)) are caused by other latent factors. In addition, role conflict and decision making (L(S1)),
classroom climate (L(S2)), and peer support (L(S3)) cause burnout (including emotional exhaustion,
depersonalization, and personal accomplishment (L(S5) and L(S6))).

6 Discussion and Further Work

L1

X1 X2 X3 X4

L1 L2

X1 X2 X3 X4

(a) (b)
Figure 4: Two structures that are distinguish-
able by the GIN condition, while (a) has an
edge between observed variables X3 and X4.

The preceding sections presented how to use GIN
conditions to locate the latent variables and identify
their causal structure in the LiNGLaM. In this pro-
cedure we examine whether the ordered pair of two
disjoint subsets of the observed variables satisfies
GIN. As shown in Proposition 2, the GIN condition
actually contains IN as a special case, in which the
two subsets of variables have overlapping variables.
For instance, suppose we have only two variables
with X1 → X2. Then (X1, X2) satisties IN, and
(X1, (X2, X1)) satisfies GIN. As a consequence, interestingly, even if we allow edges between
observed variables in the LiNGLaM, the GIN condition may also be used to identify them, together
with their connections. For instance, in Figure 4(a), ({X1, X3}, {X2, X3, X4}) satisfies the GIN
condition while ({X1, X4}, {X2, X3, X4}) violates the GIN condition, which means that there is
an edge between X3 and X4 and X3 → X4. In contrast, with the GIN condition on pairs of disjoint
subsets of variables, one cannot distinguish between structures (a) and (b). Developing an efficient
algorithm that is able to recover the LiNGLaM with directed edges between observed variables in a
principled way is part of our future work. Furthermore, in this paper we focus on discovery of the
structure of the LiNGLaM, more specifically, the locations of the latent variables and their causal
order; as future work, we will also show the (partial) identifiability of the causal coefficients in the
model and develop an estimation method for them, to produce a fully specified estimated LiNGLaM
(further with edges between observed variables).

7 Conclusion

We proposed a Generalized Independent Noise (GIN) condition for estimating a particular type
of linear non-Gaussian latent variable causal model, which includes the Independent Noise (IN)
condition as a special case. We showed the graphical implications of the GIN condition, based on
which we proposed a recursive learning algorithm to locate latent causal variables and identify their
causal structure. Experimental results on simulation data and real data further verified the usefulness
of our algorithm. Future research along this line includes allowing casual edges between observed
variables and allowing nonlinear causal relationships.
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Broader Impact

Causal modeling is a fundamental problem in multiple disciplines of science and data analysis, and
causal discovery from observational data has attracted much attention. Existing methods for causal
discovery usually assume that there is no confounder (a confounder is a latent direct common cause
of two measured variables) or that the confounders for different variables are unrelated. However, it
is often the case that observed variables are just reflections of the underlying hidden causal variables,
which may be causally related to each other. This is particular true in psychology, neuoscience, and
social sciences. Unfortunately, existing methods for finding such latent variables all involve very
strong assumptions (e.g., factor analysis assumes that the latent factors are rather low-dimensional
and mutually independent), and there is no principle approach to estimating the causal relations
between them, especially the causal order. The methodologies and the framework developed in the
work have the power to infer the right causal structure, including that over the latent variables, and
enable us to correctly understand the systems, which then helps make proper policies, avoid bias or
discrimination, and achieve a more transparent and fair world.
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