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A Proofs and Illustrations

We first give an important theorem, which will be used in the proof.

Darmois-Skitovitch Theorem [2] Define two random variables X1 and X2 as linear combinations
of independent random variables ei(i = 1, ..., p):

X1 =

p

∑
i=1

αiei, X2 =

q

∑
i=1

βiei. (1)

Then, if X1 and X2 are independent, all variables ej for which αjβj ≠ 0 are Gaussian. In other
words, if there exists a non-Gaussian ej for which αjβj ≠ 0, X1 and X2 are dependent.

A.1 Proof of Proposition 1

Proposition 1. Suppose all considered variables follow the linear non-Gaussian acyclic causal
model. Let Z be a subset of those variables and Y be a single variable among them. Then the
following statements are equivalent.

(A) 1) All variables in Z are causally earlier than Y , and 2) There is no common cause for each
variable in Z and Y that is not in Z.

(B) (Z, Y ) satisfies the IN condition.

The proof is straightforward, based on the assumption of linear, non-Gaussian acyclic causal models.
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A.2 Proof of Theorem 1

Theorem 1. Suppose that random vectors L, Y, and Z are related in the following way:

Y = AL +EY , (2)
Z = BL +EZ . (3)

Denote by l the dimensionality of L. Assume A is of full column rank. Then, if 1) Dim(Y) > l, 2)
EY ⫫ L, 3) EY ⫫ EZ ,1 and 4) The cross-covariance matrix of L and Z, ΣLZ = E[LZ

⊺] has rank l,
then EY∣∣Z ⫫ Z, i.e., (Z,Y) satisfies the GIN condition.

Proof. Without loss of generality, assume that each component of L has a zero mean, and that
both EY and EZ are zero-mean. If we can find a non-zero vector ω such that ω⊺A = 0, then
ω
⊺
Y = ω

⊺
AL + ω⊺EY = ω

⊺
EY , which will be independent from Z in light of conditions 2) and 3),

i.e., the GIN condition for Y given Z holds true.

We now construct the vector ω. If conditions 2) and 3) hold, we have E[YZ
⊺] = AΣLZ , which is

determined by (Y,Z). We now show that under conditions 4), for any non-zero vector ω, ω⊺A = 0 if
and only if ω⊺AΣLZ = 0 or equivalently ω⊺E[YZ

⊺] = 0 and that such a vector ω exists.

Suppose ω
⊺
A = 0, it is trivial to see ω

⊺
AΣLZ = 0. Notice that condition 4) implies that

rank(AΣLZ ) ≤ l because rank(AΣLZ ) ≤ min(rank(A), rank(ΣLZ )) and rank(A) = l. Further accord-
ing to Sylvester Rank Inequality, we have rank(AΣLZ ) ≥ rank(A) + rank(ΣLZ ) − l = l. Therefore,
rank(AΣLZ ) = l. Because of condition 1), there must exists a non-zero vector ω, determined by
(Y,Z), such that ω⊺E[YZ

⊺] = ω⊺AΣLZ = 0. Moreover, this equality implies ω⊺A = 0 because
ΣLZ has l rows and has rank l. With this ω, we have EY∣∣Z = ω

⊺
EY and is independent from Z.

Thus the theorem holds.

A.3 Proof of Proposition 2

Proposition 2. Let Ÿ ≔ (Y,Z). Then the following statements hold:
1. (Z, Ÿ ) follows the GIN condition if and only if (Z, Y ) follows it.
2. If (Z, Y ) follows the IN condition, then (Z, Ÿ ) follows the GIN condition.

Proof. For Statement 1, we first show that (Z, Ÿ ) follows the GIN condition implies that (Z, Y )
follows the GIN condition. If (Z, Ÿ ) follows the GIN condition, then there must exist a non-zero
vector ω̈ so that ω̈⊺E[Ÿ Z

⊺] = 0. This equality implies

ω̈
⊺E[[YZ]Z

⊺] = ω̈⊺ [E[Y Z
⊺]

E[ZZ
⊺]] = 0. (4)

Because E[ZZ
⊺] is non-singular, we further have

ω̈
⊺ [E[Y Z

⊺]E−1[ZZ
⊺]

I
] = 0.

Let ω be the first Dim(Y ) dimensions of ω̈. Then we have ω⊺E[Y Z
⊺]E−1[ZZ

⊺] = 0, and thus
ω
⊺E[Y Z

⊺] = 0. Furthermore, based on the definition of the GIN condition, we have thatEŸ ∣∣Z = ω̈
⊺
Ÿ

is independent from Z. It is easy to see that EY ∣∣Z = ω
⊺
Y is independent from Z. Thus, (Z, Y )

follows the GIN condition.

Next, we show that (Z, Y ) follows the GIN condition implies that (Z, Ÿ ) follows the GIN condition.
If (Z, Y ) follows the GIN condition, we have

ω
⊺E[Y Z

⊺] = 0 (5)

Let ω̈ = [ω⊺ ,0⊺]⊺. We have

ω̈
⊺E[Ÿ Z

⊺] = [ω⊺ ,0⊺]E[[YZ]Z
⊺] = ω⊺E[Y Z

⊺] = 0. (6)

1Note that we do not assume EZ ⫫ L.
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Furthermore, we have ω̈⊺Ÿ = [ω⊺ , 0⊺] [YZ] = ω⊺Y . Based on the definition of GIN, EY ∣∣Z = ω
⊺
Y

is independent from Z. That is to say, ω̈⊺EŸ is independent from Z. Thus, (Z, Ÿ ) follows the GIN
condition.

For Statement 2, If (Z, Y ) follows the IN condition, we have

ω̃ = E[Y Z
⊺]E−1[ZZ

⊺]. (7)

Let ω̈ = [1⊺ ,−ω̃⊺]⊺, we get

ω̈
⊺E[Ÿ Z

⊺] = [1⊺ ,−ω̃⊺]E[[YZ]Z
⊺] = [1⊺ ,−ω̃⊺] [E[Y Z

⊺]
E[ZZ

⊺]] = E[Y Z
⊺] − ω̃E[ZZ

⊺]. (8)

From Equations 7 and 8, we have ω̈⊺E[Ÿ Z
⊺] = 0. That is to say, ω̈ satisfies ω̈⊺E[Ÿ Z

⊺] = 0 and that
ω̈
⊺
≠ 0.

Now, we show that ω̈⊺Ÿ is independent from Z. We know that Y − ω̃⊺Z is independent from Z

based on the definition of the IN condition. It is easy to see that ω̈⊺Ÿ = [1⊺ ,−ω̃⊺] [YZ] = Y − ω̃⊺Z is

independent from Z. Therefore, (Z, Ÿ ) follows the GIN condition.

A.4 Proof of and Remark on Theorem 2

Theorem 2. Let Y and Z be two disjoint sets of observed variables of a LiNGLaM. Assume
faithfulness holds. for the LiNGLaM. (Z,Y) satisfies the GIN condition (while with the same Z,
no proper subset of Y does) if and only if there exists a k-size subset of the latent variables L,
0 ≤ k ≤ min(Dim(Y) − 1, Dim(Z)), denoted by Sk

L, such that 1) Sk
L is an exogenous set relative to

L(Y), that 2) Sk
L d-separates Y from Z, and that 3) the covariance matrix of Sk

L and Z has rank k,
and so does that of Sk

L and Y.

Proof. The “if" part: First suppose that there exists such a subset of the latent variables, Sk
L, that

satisfies the three conditions. Because of condition 1), i.e., that Sk
L is an exogenous set relative to

L(Y) and because according to the LiNGLaM, each Yi is a linear function of L(Yi) plus independent
noise, we know that Sk

L is also an exogenous set relative to Y. Hence, we know that each component
of Y can be written as a linear function of Sk

L and some independent error (which is independent
from Sk

L). By a slight abuse of notation, here we use Sk
L also to denote the vector of the variables in

Sk
L. Then we have

Y = ASk
L +E

′
Y , (9)

where A is an appropriate linear transformation, E
′
Y is independent from Sk

L, but its components are
not necessarily independent from each other. In fact, according to the LiNGLaM, each observed or
hidden variable is a linear combination of the underlying noise terms εi. In equation (9), Sk

L and E
′
Y

are linear combinations of disjoint sets of the noise terms εi, implied by the directed acyclic structure
over all observed and hidden variables.

Let us then write Z as linear combinations of the noise terms. We then show that because of condition
2), i.e., that Sk

L d-separates Y from Z, if any noise term εi is present in E
′
Y , it will not be among

the noise terms in the expression of Z. Otherwise, if Zj also involves εi, then the direct effect of
εi, among all observed or hidden variables, is a common cause of Zj and some component of Y.
This path between Zj and that component of Y, however, cannot be d-separated by Sk

L because no
component of Sk

L is on the path, as implied by the fact that when Sk
L is written as a linear combination

of the underlying noise terms, εi is not among them. Consequently, any noise term in E
′
Y will not

contribute to Sk
L or Z. Hence, we can express Z as

Z = BSk
L +E

′
Z , (10)
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where E
′
Z , which is determined by Sk

L and Z, is independent from E
′
Y . Further considering condition

on the dimensionality of Sk
L and condition 3), one can see that the assumptions in Theorem 1 are

satisfied. Therefore, (Z,Y) satisfies the GIN condition.

The “only-if" part: Then we suppose (Z,Y) satisfies GIN (while with the same Z, no proper subset
of Y does). Consider all sets Sk

L that are exogenous relative to L(Y) with k satisfying the condition
in the theorem, and we show that at least one of them satisfies conditions 2) and 3). Otherwise, if 2) is
always violated, then there is an open path between some leaf node in L(Y), denoted by L(Yk), and
some component of Z, denoted by Zj , and this open path does not go through any common cause of
the variables in L(Y). Then they have some common cause that does not cause any other variable in
L(Y). Consequently, there exists at least one noise term, denoted by εi, that contributes to both L(Yk)
(and hence Yk) and Zj , but not any other variables in Y. Because of the non-Gaussianity of the noise
terms and Darmois-Skitovitch Theorem, if any linear projection of Y, ω⊺Y is independent from Z,
the linear coefficient for Yk must be zero. Hence (Z,Y \ {Yk}) satisfies GIN, which contradicts the
assumption in the theorem. Therefore, there must exists some Sk

L such that 2) holds. Next, if 3) is
violated, i.e., the rank of the covariance matrix of Sk

L and Z is smaller than k. Then the condition
ω
⊺E[YZ

⊺] = 0 does not guarantee that ω⊺A = 0. Under the faithfulness assumptions, we then do not
have that ω⊺Y is independent from Z. Hence, condition 3) also holds.

Remark. Roughly speaking, the conditions in this theorem can be interpreted the following way:
i.) a causally earlier subset (according to the causal order) of the common causes of Y d-separate
Y from Z, and ii.) the linear transformation from that subset of the common causes to Z has full
column rank. For instance, for the structure in Figure 1 of the main paper, ({X3, X4}, {X1, X2, X5})
satisfies GIN, while ({X3, X6}, {X1, X2, X5}) does not–note that the difference is that in the latter
case one of the variables in Z, X6, is not d-separated from a component of X, which is X5, given the
common causes of X. However, when X6 is replaced by X4 in Z, whose direct cause is causally
earlier, the d-separation relationship holds, and so is the GIN condition.

A.5 Proof of Theorem 3

Theorem 3. Let X be the set of all observed variables in a LiNGLaM and Y be a proper subset
of X. If (X \ Y,Y) follows the GIN condition and there is no subset Ỹ ⊆ Y such that (X \ Ỹ, Ỹ)
follows the GIN condition, then Y is a causal cluster and Dim(L(Y)) = Dim(Y) − 1.

Proof. We will prove it by contradiction. Let Y = (Y ⊺
1 , ..., Y

⊺

Dim(Y))
⊺. There are two cases to

consider.

Case 1). Assume that Y is not a causal cluster and show that (X \ Y,Y) violates the GIN condition,
leading to the contradiction. Since Y is not a causal cluster, without loss of generality, L(Y) must
contain at least two different parental latent variable sets, denoted by La and Lb. Now, we show
that there is no non-zero vector ω such that ω⊺Y is independent from X \ Ỹ. Because there is no
subset Ỹ ⊆ Y such that (X \ Ỹ,Y) follows the GIN condition, the number of elements containing
the components of La in Y is smaller than Dim(La) + 1 and the number of elements containing the
components of Lb in Y is less than Dim(Lb) + 1. Thus, we obtain that there is no ω ≠ 0 such that
ω
⊺E[Y((X \ Y)⊺] = 0. That is to say, ω⊺Y is dependent on X \ Y, i.e., (X \ Y,Y) violates the GIN

condition, which leads to the contradiction.

Case 2). Assume that Y is a causal cluster but Dim(L(Y)) ≠ Dim(Y) − 1. First, we consider the
case where Dim(L(Y)) < Dim(Y) − 1. If Dim(L(Y)) > Dim(Y) − 1, we always can find a subset
Ỹ ⊆ Y and Dim(Ỹ) = Dim((L(Y)) + 1 such that (X \ Ỹ,Y) follows the GIN condition, leading to
the contradiction.

We then consider the case where Dim(L(Y)) > Dim(Y) − 1. Due to the linear assumption, each
element in L(Y) contains components {εLY

1
, ..., εLY

Dim(L(Y))
}. Because Dim(L(Y)) > Dim(Y) − 1,

ω
⊺(Y ⊺

1 , ...., Y
⊺

Dim(Y))
⊺ contains εLY

i
, i ∈ {1, .., Dim(L(Y))}, for any ω ≠ 0. According to the

Darmois-Skitovitch Theorem, we have ω⊺(Y ⊺
1 , ...., Y

⊺

Dim(Y))
⊺
é X \ Y. That is to say, (X \ Y,Y)

violates the GIN condition, which leads to a contradiction.
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A.6 Proof of Theorem 4

Theorem 4. Let Sp and Sq be two causal clusters of a LiNGLaM. Assume there is no la-
tent confounder for L(Sp) and L(Sq), and L(Sp) ∩ L(Sq) = ∅. Further suppose that Sp

contains 2Dim(L(Sp)) number of variables with Sp = {P1, P2, ..., P2Dim(L(Sp))} and that Cq

contains 2Dim(L(Sq)) number of variables with Sq = {Q1, Q2, ..., Q2Dim(L(Sq ))}. Then if
({PDim(L(Sp))+1, ...P2Dim(L(Sp))}, {P1, ...., PDim(L(Sp)), Q1, ...QDim(L(Sq ))}) follows the GIN condi-
tion, L(Sp) → L(Sq) holds.

Proof. For L(Sp) and L(Sq), there are two possible causal relations: L(Sp) → L(Sq) and L(Sp) ←
L(Sq). For clarity, let m = Dim(L(Sp)) and n = Dim(L(Sp)). Further, Let L(Sp) = {Lp

1, ..., L
p
m}

and L(Sq) = {Lq
1, ..., L

q
n} (note that subscripts denote the causal order).

First, we consider case 1: L(Sp) → L(Sq), by leveraging the result of Theorem 1.

According to the linearity assumption, we have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

⋮
Pm

Q1

⋮
Qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ÍÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÏ

Y

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 ⋯ Cm1

⋮ ⋱ ⋮
Cm1 ⋯ Cmm

D11 ⋯ Dn1

⋮ ⋱ ⋮
Dn1 ⋯ Dnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L
p
1
⋮
L
p
m

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÏ
L

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εP1

⋮
εPm

ε
′
Q1

⋮
ε
′
Qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

EY

(11)

and
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Pm+1
⋮

P2m

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Z

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B11 ⋯ Bm1

⋮ ⋱ ⋮
Bm1 ⋯ Bmm

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
B

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L
p
1
⋮
L
p
m

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÏ
L

+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

εPm+1

⋮
εP2m

⎤⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
EZ

, (12)

where ε′Qi
=

n

∑
k=1

fkεLq

k
+ εQi

.

Now, we verify conditions 1) ∼ 4) in Theorem 1. Based on Equations 11 and 12, we haveDim(L) = m.
For condition 1),Dim(Y) = m+n > m. For condition 2), EY = (εP1

, ..., εPm
, ε

′
Q1
, ..., ε

′
Qn

)⊺ is inde-
pendent from L = {Lp

1, ..., L
p
m}, due to the fact that there is no common component between EY and

L and that each component is independent of each other. For condition 3), because εPk
, k = 1, ..., 2m,

is independent from L, EZ ⫫ L. For condition 4), ΣLZ = E[LZ
⊺] = ΣLB

⊺. Because Dim(B) = m,
we obtain that ΣLZ has rank m. Therefore, ({Pm+1)+1, ...P2m}, {P1, ...., Pm, Q1, ...Qn}) follows the
GIN condition.

Next, we consider case 2: L(Sp) ← L(Sq). According to the definition of the GIN condition, we
need to find a vector ω ≠ 0 such that ω⊺E[(P1, ...., Pm, Q1, ...Qn)(Pm+1, ...., P2m)⊺] = 0. Due to
the linearity assumption, each element in {P1, ...., P2m} contains the component in εLP

1
, ..., εLP

m

while {Q1, ...Qn} not. Because the dimension of εLP
i

in {P1, ...., Pm, Q1, ...Qn} is m and
Dim(L(Sp)) = m, ω⊺(P1, ...., Pm, Q1, ...Qn) contains εLP

i
, for any ω ≠ 0. According to the

Darmois-Skitovitch Theorem, we have ω⊺(P1, ...., Pm, Q1, ...Qn) é (Pm+1, ...., P2m)⊺. That is to
say, ({Pm+1)+1, ...P2m}, {P1, ...., Pm, Q1, ...Qn}) violates the GIN condition.

Therefore, L(Sp) → L(Sq).

A.7 Proof of Proposition 3

Proposition 3. Let S1 and S2 be two clusters of a LiNGLaM and Dim(L(S1)) = Dim(L(S2)). If S1

and S2 are overlapping, S1 and S2 share the same set of latent variables.

Proof. Because S1 and S2 are overlapping, with loss of generality, assume that the shared element of
S1 and S2 is Xk. Furthermore, we have that L(S1) and L(S2) are both parents of Xk. Based on the
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definition of causal cluster and that Dim(L(S1)) = Dim(L(S2)), we have L(S1) = L(S2). That is to
say, S1 and S2 share the same set of latent variables.

A.8 Proof of Lemma 1

Lemma 1. Let Sr be a cluster and Sk, k ≠ r be any other cluster of a LiNGLaM. Suppose
that Sr contains 2Dim(L(Sr)) number of variables with Sr = {R1, R2, ..., R2Dim(L(Sr ))} and
that Sk contains 2Dim(L(Sk)) number of variables with Sk = {K1,K2, ...,K2Dim(L(Sk))}. if
({RDim(L(Sr ))+1, ...R2Dim(L(Sr )), {R1, ...., RDim(L(Sr )),K1, ...KDim(L(Sk))}) follows the GIN condi-
tion, then L(Sr) is a root latent variable set.

Proof. (i) Assume that L(Sr) is a root latent variable set. Due to the linearity assumption, there is no
latent confounder between L(Sr) and another latent variable set. Based on Theorem 4, we have that
({R∣L(Sr )∣, ...R2Dim(L(Sr )), {R1, ...., RDim(L(Sr )),K1, ...KDim(L(Sk))}) follows the GIN condition.

(ii) Assume that L(Sr) is not a root latent variable set, that is , L(Sr) has at least
one parent set. Let L(Sp) be the parent of L(Sr) and Sp = {P1, P2, ..., P2Dim(L(Sp))}.
Thus, every element in {P1, P2, ..., P2Dim(L(Sp))} has the component εL(Sp). Based on
the definition of the GIN condition, we easily obtain that there is no ω ≠ 0
such that ω

⊺E[{P1, ...., PDim(L(Sp)), R1, ...RDim(L(Sr ))}), ({PDim(L(Sp))+1, ...R2Dim(L(Sp)))⊺] =

0 because the dimension of εL(Sp) in {R1, ...., RDim(L(Sr )),K1, ...KDim(L(Sk))} equals
Dim(L(Sr)). That is to say, ω

⊺(R1, ...., RDim(L(Sr )),K1, ...KDim(L(Sk))) must have the
component εL(Sp). Thus, ω

⊺(R1, ...., RDim(L(Sr )),K1, ...KDim(L(Sk))) is dependent on
(PDim(L(Sp))+1, ...R2Dim(L(Sp)))⊺ based on the Darmois-Skitovitch Theorem. Therefore,
({PDim(L(Sp))+1, ...P2Dim(L(Sp))}, {P1, ...., PDim(L(Sp)), R1, ...RDim(L(Sr ))}) violates the GIN condi-
tion.

From (ii), the lemma is proven. Moreover, from (i) and (ii), we show that
({R∣L(Sr )∣, ...R2Dim(L(Sr ))}, {R1, ...., RDim(L(Sr )),K1, ...KDim(L(Sk))}) follows the GIN condition,
if and only if L(Sr) is a root latent variable set.

A.9 Proof of Proposition 4

Proposition 4. Suppose that {S1, ...Si, ...,Sn} are all the clusters of the LiNGLaM. Denote
T = {L(S1), ...L(Si)} and T = {L(Si+1), ...L(Sn)}, where all elements in T are causally ear-
lier than those in R. Let Ẑ contain the elements from the half children of each latent variable
set in T, and Ŷ contain the elements from the other half children of each latent variable set in
T. Furthermore, Let L(Sr) be a latent variable set of R and Sr = {R1, R2, ..., R2Dim(L(Sr ))}.
If for any one of the remaining Sk ∈ R, k ≠ r and Sk = {K1,K2, ...,K2Dim(L(Sk))}
such that ({RDim(L(Sr ))+1, ..., R2Dim(L(Sr )), Ẑ}, {R1, ...., RDim(L(Sr )),K1, ...KDim(L(Sk)), Ŷ}) fol-
lows GIN condition, then L(Sr) is a root latent variable set in R.

Proof. One may treat the causally earlier sets as a new group. Then one can easily prove this result
according to Lemma 1.

B More experimental results of Synthetic data

Here, we add more results to show the performance of our algorithm for random generated graphs and
more variables. In details, we generated graphs randomly with different numbers of latent variables,
where each latent variable only have three observed variables. We run our method and obtain the
following results in Table 1.

C More details of Real-Word data

For comparisons, we give the hypothesized factors formulated in [1] in Table 2.
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Table 1: Results with different numbers of variables and randomly generated graphs (with sample
size=2000).

Number of variables (latent variables) Latent omission Latent commission Mismeasurements Correct-ordering rate
15(5) 0.02(1) 0.00(0) 0.00(0) 0.90

30(10) 0.09(3) 0.05(3) 0.04(3) 0.85
60(20) 0.15(6) 0.12(6) 0.10(6) 0.79

Factors Observed variables
Role Conflict RC1, RC2, WO1, WO2,

Decision Making DM1, DM2

Classroom Climate CC1, CC2,CC3,CC4

Self-Esteem SE1, SE2,SE3

Peer Support PS1, PS2

External Locus of Control ELC1, ELC2,ELC3,ELC4,ELC5

Emotional Exhaustion EE1, EE2,EE3

Denationalization DP1, DP2, DP3

Personal Accomplishment PA1, PA2, PA3

Table 2: The hypothesized factors in [1].
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