
We thank all reviewers for their constructive comments. We are encouraged that all voted to accept, and the acknowl-1

edgement of the importance of our work [R1, R2] and the comprehensiveness of our studies [R1, R2, R3]. We address2

specific comments below and will incorporate them to the updated version.3

To R1: Q: Writing. Sorry for the hardness to follow in L212-L216. Recall that the basic cell in NSA is Aggregation-4

ReLU-Conv-BN (see L111). Particularly, the aggregation module is to combine the input data from multiple edges5

via a weighted sum (see Figure 5 in Appendix). To avoid introducing unaffordable architecture dependent parameters,6

we employ architecture dependent aggregation and BN in NSA-id, following the style of the class-conditional BN7

widely used in conditional generative modeling [*1]. Namely, we build an individual set of trainable aggregation8

coefficients and BN affine parameters for each architecture. We’ll rewrite this part and add a figure to depict this9

explicitly. Regarding the mutual information (MI), a standard measure of uncertainty [33], we first calculate the MI of10

normal test samples and OOD (or adversarial) ones, based on which we directly distinguish the normal ones from OOD11

(or adversarial) ones. The underlying notion is that OOD (or adversarial) samples commonly deviate from the manifold12

of normal ones, thus have high uncertainty. We compute and report the AUC of such a binary classification (L301).13

Q: Track the values of var(µ). Thanks for the advice. We sampled 1000 training images from CIFAR-10 and14

computed var(µ) of the last BN layer of a NSA and a NSA-i trained given S = 5000 architectures. We calculated the15

average variance over all the channels and spatial locations, and the results of NSA and NSA-i are 0.00214 and 0.00082,16

respectively, which testify the effectiveness of NSA-i. We’ll track the full dynamics of var(µ) in the final version.17

Q: Ensemble gain of NSA-id. At first, we clarify the ensemble gain of NSA-id is substantially more evident than that18

of NSA-i. We have also discussed the potential reasons of the quick saturation of ensemble accuracy in L221-224. In19

short, the introduced new parameters are rare, thus cannot adequately improve the weights diversity for ensembling.20

Q: Root cause of mode collapse. Intuitively, the expectation w.r.t. architecture in NSA’s training loss forces the shared21

weights to be robust against architecture variability. Given such weights, the trained NSA may behave consistently22

under diverse architectures, incurring mode collapse. To verify this, we assembled the 5 individuals with unshared23

weights introduced in L277, and got striking 2.36% error and 0.003 ECE on CIFAR-10, confirming the above intuition.24

Q: Extension to DARTS search space. Although the investigated search space is simpler than that in DARTS, the25

issues of BN and weight sharing are shared between the spaces, and are observed frequently by the NAS community26

[46, *2]. We think the discovered phenomena and proposed solutions are insightful for general NAS, while a systematic27

investigation on general NAS is one of our future work.28

Q: Training time. We clarify that we didn’t perform searching. NSA’s training time is almost identical to that of29

WRN-28-10†, e.g., 0.6 day on a GTX 2080Ti for 300 epochs (L115-116). The additional computations induced by the30

complicated connections are only summations in the aggregation modules, which are negligible as compared to the31

time-consuming convolutions.32

Q: Comparison to DARTS and ENAS. DARTS and ENAS build networks with the parameter-efficient separable33

convolutions, while NSA adopts the regular convolutions following WRN. Thus, comparing NSA with DARTS and34

ENAS in the aspect of parameter number is not fair. Currently, the comparable baselines WRN-28-10† and Average of35

individuals are outperformed by NSA evidently. And we leave the application to DARTS space as future work.36

To R2: Q: Extension and broader impact of NSA. Thanks for the advice. We’ll try to extend NSA to regression37

tasks for uncertainty quantification and improve the broader impact in the final version. We’ll add the NeurIPS paper.38

To R3: Q: Regarding p(α). As stated in L98-101, p(α) is a uniform distribution over S randomly pre-fetched39

architectures by the ER-0.3 model. p(α) affects the architecture samples in the training (Eq. 3). When p(α) has larger40

support, the optimized weights may be more helpful for architecture generalizing, but more under-fitting (see Table 1).41

Q: Regarding Eq.1 and Eq.3. Eq.1 is the loss commonly used for training network with stochastic architectures, as in42

SNAS [44], and the sampled architecture α is shared among all the instances in the mini-batch. Eq.3 uses instance43

specific architectures to compute the training loss, namely, sampling an individual architecture αi for each instance44

(xi, yi) in the mini-batch. The loss in Eq.3 is averaged over all the instances.45

Q: Regarding Figure 4. The performance drop in Figure 4 may stem from the facts that the 500 used architectures are46

randomly sampled and we perform only uniform ensemble instead of weighted ensemble. Thus assembling more base47

learners may not give rise to rigidly better predictions. But the overall trend of NSA-id is substantially superior to that48

of NSA-i. At last, we clarify that the first five ensemble accuracies of NSA-id in Figure 4 are 0.9613, 0.9648, 0.9658,49

0.9659, 0.9659, while those of NSA-i are 0.9616, 0.9641, 0.9635, 0.9634, 0.9636. The comparisons confirm the claim50

“ensemble gain is more obvious compared to NSA-i”.51

[*1] Takeru Miyato and Masanori Koyama. cGANs with Projection Discriminator.52

[*2] Zhang et al. Deeper Insights into Weight Sharing in Neural Architecture Search.53


