
We thank the reviewers for their very constructive and detailed feedback on our manuscript. In this work, we propose1

a novel and scalable method for inferring a continuous target as well as representations for epistemic and aleatoric2

uncertainty, without sampling during inference. Our method does not require any out-of-distribution (OOD) data during3

training (unlike Dirichlet Prior Networks [24]) and performs on-par with or better than state-of-the-art (SoA) approaches.4

We demonstrate learning well-calibrated measures of uncertainty on various benchmarks, scaling to high-dimensional5

vision tasks, as well as robustness to new OOD and adversarial test samples. As a sampling-free and performant method,6

our work will enable key advances in resource constrained areas, such as robotics, where sampling is infeasible.7
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Fig. 1. Disentangled uncertainty

R1: 3.1. Pseudo-counts: The overall evidence is presented as the sum of pseudo-counts8

[32]. We could equivalently average, by applying a constant re-scaling directly captured9

by λ, without changing any of our results. 3.2a. Regularizer and results: We agree10

that our method provides no guarantees that it will definitively yield high epistemic11

uncertainty far from in-domain regions; however, we believe that the extensive empirical12

results achieved with our method, and results from similar related approaches which13

also train on only in-distribution data (i.e., [32], [Joo, T. et al. ’20]), support the claim14

that uncertainty increases on OOD data. Our approach will undoubtedly improve by15

leveraging the supervision of OOD data during training, closer to [24, 3]; however,16

as we (and R2) point out, the need for OOD training data is often a critically limiting17

assumption. 3.2b. “Confused evidence”: As R1 correctly states, the regularizer captures scenarios where the evidence18

is leading to the incorrect target (i.e., incorrect or “confused” evidence, not lack of evidence). We fully agree with this19

excellent point and have updated the manuscript to reflect this. However, we do not believe that the approach “conflates20

aleatoric and epistemic uncertainty” and provide results from the suggested experiment to support our claim (Fig. 1),21

using the standard score instead of L1 error. Further details and analysis are added to the manuscript. 3.3. Other22

metrics: Leveraging evidential distributions to compute M.I. or even differential entropy is a great idea, as these are23

rich statistics that our method captures. We focus on first order moments for more direct comparability to existing SoA24

baselines and leave further analysis of richer statistics to future work. 4.1. Performance: RMSE for our method (and25

baselines) is in fact provided in Tab. S1, Figs. 4B, 6A. We observed little to no performance loss based on RMSE and26

will certainly include the other metrics as suggested. 4.2. AUC: The histograms (and CDFs) provided in Figs. 5, 6, and27

S5 (as in [21], [Nalisnick, E. et al. ’18], and others) are richer performance statistics and directly reduce to the requested28

AUC-ROC scores. To address these concerns, we have added all AUC-ROC values to our performance charts. 4.329

Adversarial: We updated the implementation details of the attack method (FGSM). While we can evaluate additional30

attacks, our paper is not proposing a new defense (neither are any of our baselines), and thus this would be out of scope.31

The goal of Sec. 4.3.1 is solely to evaluate on additional OOD samples based on a basic adversarial method.32

R2: 1. Fig. 3 aleatoric: Within the training region there are very few differences, which can be attributed to intrisinic33

randomness and initialization during training. OOD there is much more variability, aligning with MVE [18, 28]. Since34

there is no training data in this region, we do not expect consistent results for aleatoric uncertainty, unlike epistemic35

uncertainty as is pointed out. 2. Relation to Kendall. et al: This is an excellent and very important point; we apologize36

for the confusion. To clarify, estimating aleatoric uncertainty using NNs without sampling has a well-accepted solution37

dating back to 1994 with MVE (see [28]). This is the same approach used in Kendall et al. [18] and is what we38

compare against in our work (Fig. 3, and elsewhere when evaluating aleatoric uncertainty). Further, [18] proposes39

jointly learning MVE with a sampling-based epistemic uncertainty estimator (in their paper, dropout [5]). Thus, in [18]40

aleatoric can be estimated sampling-free, but epistemic requires sampling. We believe all our provided benchmarks do41

indeed accurately compare against [18]. The majority of our results focus on epistemic comparisons since our method42

uses a Gaussian lower-order distribution which achieves aleatoric estimation similar to [18] using MLE. In contrast,43

we jointly learn a sampling-free epistemic estimate which is not the case in [18], representing a key contribution of44

our work. Sampling approaches, including [18], are the current SoA and we agree with R2 that the benchmarking we45

provide on these methods is absolutely critical. 3. Intuition of parameters: Thank you, additional exposition has been46

added. 4. Baselines: Please refer to #2 above, which clarifies the incorrect point about missing baselines.47

R3: 1. Gaussian assumption: Thank you, explanations will be added. 2. Additional comparisons and prior work:48

Discussion on these works will be added. Note, [20] proposes a way to calibrate a given uncertainty method as opposed49

to a new uncertainty estimator, and can be used to strengthen any uncertainty estimator - it is not a competing method.50

R4: 1. Other distributions: Excellent point to be included in the manuscript. 2. Performance on OOD: Results for a51

variant of the proposed experiment can be found in Fig. 5. Further metrics have also been added via R1 #4.2.52

Summary: Thank you for running our software. R3: “This is so far the only code I was able to run among the ones I53

have to review. Authors really went to a great length to provide runable code, and this is commendable.” We believe54

this work supports new research through its broad applicability and accessible, easy to use code. We hope the rebuttal55

and new experiments address all concerns (esp. R1), and appreciate all comments which have improved the manuscript.56


