
7 Appendix

We begin with a short recap on robust optimization in linear regression in Section 7.1. In Section 7.2
we lay out why input gradient regularization and fast gradient method (FGM) based adversarial
training cannot in general effectively robustify against iterative adversarial attacks. Similarly, in
Section 7.3 we argue why we do not expect Frobenius norm regularization to work as well as data-
dependent spectral norm regularization in robustifying against `2-norm bounded iterative adversarial
attacks. In Section 7.4 we analyze the power method like formulation of adversarial training for the
softmax cross-entropy loss. The proof of our main Theorem and the corresponding Lemmas can be
found in Sections 7.5 - 7.8. Additional implementation details can be found in Sections 7.9 - 7.11.
Additional experimental results are presented from Section 7.12 on.

7.1 Recap: Robust Optimization and Regularization for Linear Regression

In this section, we recapitulate the basic ideas on the relation between robust optimization and
regularization presented in [2]. Note that the notation deviates slightly from the main text: most
importantly, the perturbations 4 refer to perturbations of the entire training data X, as is common in
robust optimization.

Consider linear regression with additive perturbations 4 of the data matrix X

min
w

max
4PU

h py ´ pX ` 4qwq , (19)

where h : Rn
Ñ R denotes a loss function and U denotes the uncertainty set. A general way to

construct U is as a ball of bounded matrix norm perturbations U “ t4 : }4} § �u. Of particular
interest are induced matrix norms

}A}g,h :“ max
w

"
hpAwq

gpwq

*
, (20)

where h : Rn
Ñ R is a semi-norm and g : Rd

Ñ R is a norm. It is obvious that if h fulfills the
triangle inequality then one can upper bound

h py ´ pX ` 4qwq § hpy ´ Xwq ` hp4wq

§ hpy ´ Xwq ` � gpwq , @4 P U ,
(21)

by using (a) the triangle inequality and (b) the definition of the matrix norm.

The question then is, under which circumstances both inequalities become equalities at the maximizing
4˚. It is straightforward to check [2] Theorem 1 that specifically we may choose the rank 1 matrix

4˚
“

�

hprq
rvJ, (22)

where

r “ y ´ Xw , v “ argmax
v:g˚pvq“1

 
vJw

(
, (23)

with g˚ as the dual norm. If hprq “ 0 then one can pick any u for which hpuq “ 1 to form 4 “ �uvJ
(such a u has to exist if h is not identically zero). This shows that, for robust linear regression with
induced matrix norm uncertainty sets, robust optimization is equivalent to regularization.

7.2 On Input Gradient Regularization and Adversarial Robustness

In this Section we will lay out why input gradient regularization and fast-gradient method (FGM)
based adversarial training cannot in general effectively robustify against iterative adversarial attacks.

In Section 5.2 “Alignment of adversarial perturbations with singular vectors”, we have seen that
perturbations of iterative adversarial attacks strongly align with the dominant right singular vectors v
of the Jacobian Jf pxq, see Figure 2 (right). This alignment reflects also what we would expect from
theory, since the dominant right singular vector v precisely defines the direction in input space along
which a norm-bounded perturbation induces the maximal amount of signal-gain when propagated
through the linearized network, see comment after Equation 8.
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Interestingly, this tendency to align with dominant singular vectors explains why input gradient
regularization and fast gradient method (FGM) based adversarial training do not sufficiently protect
against iterative adversarial attacks, namely because the input gradient, resp. a single power method
iteration, do not yield a sufficiently good approximation for the dominant singular vector in general.

In short, data-dependent operator norm regularization and iteartive attacks based adversarial training
correspond to multiple forward-backward passes through (the Jacobian of) the network, while input
gradient regularization and FGM based adversarial training corresponds to just a single forward-
backward pass.

More technically, the right singular vector v gives the direction in input space that corresponds to the
steepest ascent of fpxq along the left singular vector u. In input gradient regularization, the logit
space direction u is determined by the loss function (see Section 7.4 for an example using the softmax
cross-entropy loss), which in general is however neither equal nor a good enough approximation to
the dominant left singular vector u of Jf pxq.

In other words, if we knew the dominant singular vector u of Jf pxq, we could compute the direction
v in a single backward-pass. The computation of the dominant singular vector u, however, involves
multiple power-method rounds of forward-backward propagation through Jf pxq in general.

7.3 On Frobenius Norm Regularization and Adversarial Robustness

In this Section, we briefly contrast data-dependent spectral norm regularization with Frobenius norm
regularization.

As we have seen in Section 4.2, it is the dominant singular vector corresponding to the largest
singular value that determines the optimal adversarial perturbation to the Jacobian and hence the
maximal amount of signal-gain that can be induced when propagating an `2-norm bounded input
vector through the linearized network. Writing Jf pxq “ �1u1vT

1 ` �2u2vT
2 ` . . . in SVD form, it

is clear that the largest change in output for a given change in input aligns with v1. This crucial fact
is only indirectly captured by regularizing the Frobenius norm, in that the Frobenius norm (“ sum of
all singular values) is a trivial upper bound on the spectral norm (“ largest singular value).

For that reason, we do not expect the Frobenius norm to work as well as data-dependent spectral
norm regularization in robustifying against `2-norm bounded iterative adversarial attacks.

7.4 Adversarial Training with Cross-Entropy Loss

The adversarial loss function determines the logit-space direction uk in the power method like
formulation of adversarial training in Equation 18.

Let us consider this for the softmax cross-entropy loss, defined as `advpy, zq :“ ´ logpsypzqq,

`advpy, zq “ ´zy ` log
´ dÿ

k“1

exppzkq

¯
(24)

where the softmax is given by

sypzq :“
exppzyq

∞d
k“1 exppzkq

(25)

Untargeted `2-PGA (forward pass)
”
ũk – rz`advpy, zq|z“fpxk´1q

ı

i
“ sipfpxk´1qq ´ �iy (26)

Targeted `2-PGA (forward pass)
”
ũk – ´rz`advpyadv, zq|z“fpxk´1q

ı

i
“ �iyadv ´ sipfpxk´1qq (27)

Notice that the logit gradient can be computed in a forward pass by analytically expressing it in terms
of the arguments of the loss function.
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Interestingly, for a temperature-dependent softmax cross-entropy loss, the logit-space direction
becomes a “label-flip” vector in the low-temperature limit (high inverse temperature � Ñ 8)
where the softmax s�y pzq :“ expp�zyq{p

∞d
k“1 expp�zkqq converges to the argmax: s�pzq

�Ñ8
›Ñ

argmaxpzq. E.g. for targeted attacks
“
u�Ñ8
k

‰
i

“ �iyadv ´ �iypxk´1q. This implies that in the high �
limit, iterative PGA finds an input space perturbation vk that corresponds to the steepest ascent of f
along the “label flip” direction u�Ñ8

k .

A note on canonical link functions. The gradient of the loss w.r.t. the logits of the classifier takes
the form “prediction - target” for both the sum-of-squares error as well as the softmax cross-entropy
loss. This is in fact a general result of modelling the target variable with a conditional distribution
from the exponential family along with a canonical activation function. This means that adversarial
attacks try to find perturbations in input space that induce a logit perturbation that aligns with the
difference between the current prediction and the attack target.

7.5 Gradient of p-Norm

The gradient of any p-norm is given by

rx||x||p “
signpxq d |x|

p´1

||x||
p´1
p

(28)

where d , signp¨q and | ¨ | denote elementwise product, sign and absolute value.

In this section, we take a closer look at the p Ñ 8 limit,

lim
pÑ8

rx||x||p “ |I|
´1signpxq d 1I (29)

with 1I “
∞

iPI ei, where I :“ tj P r1, ..., ns : |xj | “ ||x||8u denotes the set of indices at which x
attains its maximum norm and ei is the i-th canonical unit vector.

The derivation goes as follows. Consider

lim
pÑ8

ÿ

i

|xi|
p

||x||
p
8

“ lim
pÑ8

ÿ

i

´
|xi|

||x||8

¯p
“ |I| (30)

Thus

||x||
p´1
p

||x||
p´1
8

“

´∞
i |xi|

p

||x||
p
8

¯pp´1q{p pÑ8
›Ñ |I| (31)

since |I|
pp´1q{p pÑ8

›Ñ |I|. Now consider

signpxiq|xi|
p´1

||x||
p´1
p

“
signpxiq|xi|

p´1
{||x||

p´1
8

||x||
p´1
p {||x||

p´1
8

(32)

The numerator

signpxiq|xi|
p´1

{||x||
p´1
8

pÑ8
›Ñ

"
0 if i R I
signpxiq if i P I (33)

The denominator ||x||
p´1
p {||x||

p´1
8

pÑ8
›Ñ |I|. The rest is clever notation.
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7.6 Optimal Perturbation to Linear Function

Lemma 1 (Optimal Perturbation). Explicit expression for the optimal perturbation to a linear
function under an `p-norm constraint4. Let z be an arbitrary non-zero vector, e.g. z “ rx`adv, and
let v be a vector of the same dimension. Then,

v˚
“ argmax

v:||v||p§1
vJz “

signpzq d |z|
p˚´1

||z||
p˚´1
p˚

(34)

where d , signp¨q and | ¨ | denote elementwise product, sign and absolute value, and p˚ is the Hölder
conjugate of p, given by 1{p ` 1{p˚

“ 1. Note that the maximizer v˚ is attained at a v with
||v||p “ 1, since vJz is linear in v.

In particular, we have the following special cases, which is also how the Projected Gradient Descent
attack is implemented in the cleverhans library [34],

argmax
v:||v||p§1

vJz “

$
’&

’%

z{||z||2 for p “ 2

signpzq for p “ 8

|I|
´1signpzq d 1I for p “ 1

(35)

The optimal `1-norm constrained perturbation limp˚Ñ8 signpzq d |z|
p˚´1

{ ||z||
p˚´1
p˚ can be taken

to be |I|
´1signpzq d 1I with 1I “

∞
iPI ei, where I :“ tj P r1, ..., ns : |zj | “ ||z||8u denotes the

set of indices at which z attains its maximum norm, and ei is the i-th canonical unit-vector. Note that
any other convex combination of unit-vectors from the set of indices at which z attains its maximum
absolute value is also a valid optimal `1-norm constrained perturbation.

Finally, before we continue with the proof, we would like to note that the above expression for the
maximizer has already been stated in [31], although it hasn’t been derived there.

Proof. By Hölder’s inequality, we have for non-zero z,

vJz § ||v||p||z||p˚ , w. equality iff |v|
p

“ �|z|
p˚

(36)

i.e. equality5 holds if and only if |v|
p and |z|

p˚
are linearly dependent, where | ¨ | denotes elementwise

absolute-value, and where p˚ is given by 1{p ` 1{p˚
“ 1. The proportionality constant � is

determined by the normalization requirement ||v||p “ 1. For 1 † p † 8, we have

||v||p “ p�
nÿ

i“1

|zi|
p˚

q
1{p !

“ 1 ùñ � “ ||z||
´p˚

p˚ (37)

Thus, equality holds iff |v| “ |z|
p˚{p

{||z||
p˚{p
p˚ , which implies that v˚

“ signpzqd|z|
p˚´1

{||z||
p˚´1
p˚ ,

since v must have the same sign as z and p˚
{p “ p˚

´ 1. For p “ 1, � “ p|I| ||z||8q
´1, where

I :“ tj P r1, ..., ns : |zj | “ ||z||8u, i.e. |I| counts the multiplicity of the maximum element in the
maximum norm. It is easy to see that |I|

´1signpzq d 1I is a maximizer in this case. For p “ 8, it is
trivially clear that the maximizer v˚ is given by signpzq.

4Note that for p P t1,8u the maximizer might not be unique, in which case we simply choose a specific
representative.

5Note that technically equality only holds for p, p˚ P p1,8q. But one can easily check that the explicit
expressions for p P t1,8u are in fact optimal. See comment after Equation 1.1 in [21].
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As an illustrative sanity-check, let us also verify that the above explicit expression for the optimal
perturbation v˚ has `p norm equal to one. Let z be an arbitrary non-zero vector of the same dimension
as v and let 1 † p † 8, then

||v˚
||p “

´ nÿ

i“1

ˇ̌
ˇ
signpziq |zi|p

˚´1

||z||
p˚´1
p˚

ˇ̌
ˇ
p¯1{p

(38)

“

´ nÿ

i“1

´
|zi|p

˚´1

||z||
p˚´1
p˚

¯p¯1{p
(39)

“

´ nÿ

i“1

|zi|p
˚

||z||
p˚
p˚

¯1{p
“ 1 (40)

where we have used that (p˚
´ 1qp “ p˚. For p “ 1, we have

||v˚
||1 “

nÿ

i“1

ˇ̌
ˇ
1

|I|
signpziq1tiPIu

ˇ̌
ˇ (41)

“

nÿ

i“1

ˇ̌
ˇ
1

|I|
1tiPIu

ˇ̌
ˇ “ 1 (42)

where 1t¨u denotes the indicator function. For p “ 8, we have
||v˚

||8 “ max
i

|signpziq| “ 1 (43)

7.7 Projection Lemma

In this section, we prove the following intuitive Lemma.
Lemma 2 (Projection Lemma). (First part) Let v and ṽ ‰ 0 be two arbitrary (non-zero) vectors of
the same dimension. Then

lim
↵Ñ8

⇧t||¨||p“1upv ` ↵ṽq “
signpṽq d |ṽ|

p˚´1

||ṽ||
p˚´1
p˚

(44)

where d , signp¨q and | ¨ | denote elementwise product, sign and absolute-value, and where p˚
denotes the Hölder conjugate of p defined by 1{p ` 1{p˚

“ 1. Moreover, if ṽ is of the form
ṽ “ signpzq d |z|

p˚´1
{||z||

p˚´1
p˚ , for an arbitrary non-zero vector z and p P t1, 2,8u, then

lim↵Ñ8 ⇧t||¨||p“1upv ` ↵ṽq “ ṽ. (Second part) Let xk´1 P Bp
✏ pxq and let vk ‰ 0 be an arbitrary

non-zero vector of the same dimension. Then
xk “ lim

↵Ñ8
⇧Bp

✏ pxqpxk´1 ` ↵vkq (45)

“ x ` lim
↵Ñ8

⇧t||¨||p“✏up↵vkq (46)

“ x ` ✏
signpvkq d |vk|

p˚´1

||vk||
p˚´1
p˚

(47)

Moreover, if vk is of the form vk “ signpzq d |z|
p˚´1

{||z||
p˚´1
p˚ , for p P t1, 2,8u and an arbitrary

non-zero vector z (as is the case if vk is given by the backward pass in Equation 18), then xk “

x ` ✏vk.

Proof. First part.
lim
↵Ñ8

⇧t||¨||p“1upv ` ↵ṽq (48)

“ lim
↵Ñ8

argmin
v˚:||v˚||p“1

||v˚
´ v ´ ↵ṽ||2 (49)

“ lim
↵Ñ8

argmin
v˚:||v˚||p“1

pv˚
´ v ´ ↵ṽq

J
pv˚

´ v ´ ↵ṽq (50)

“ lim
↵Ñ8

argmin
v˚:||v˚||p“1

v˚Jv˚
´ 2v˚Jv ´ 2↵v˚Jṽ ` const (51)
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where the const term is independent of v˚ and thus irrelevant for the argmin. Next, we observe that
in the limit ↵ Ñ 8, the v˚Jv˚

´ 2v˚Jv term vanishes relative to the ↵v˚Jṽ term, hence

lim
↵Ñ8

⇧t||¨||p“1upv ` ↵ṽq (52)

“ argmin
v˚:||v˚||p“1

´v˚Jṽ (53)

“ argmax
v˚:||v˚||p“1

v˚Jṽ (54)

“
signpṽq d |ṽ|

p˚´1

||ṽ||
p˚´1
p˚

(55)

where in the last line we have used Equation 16 for the optimal perturbation to a linear function under
an `p-norm constraint that we have proven in Lemma 1.

Moreover, if ṽ is of the form ṽ “ signpzq d |z|
p˚´1

{||z||
p˚´1
p˚ , then

signpṽq d |ṽ|
p˚´1

||ṽ||
p˚´1
p˚

“
signpzq d |z|

pp˚´1qpp˚´1q

|| |z|p
˚´1 ||

p˚´1
p˚

(56)

Now, observe that for p P t1, 2,8u, the Hölder conjugate p˚
P t1, 2,8u. In particular, for these

values p˚ satisfies pp˚
´1qpp˚

´1q “ p˚
´1 (since 0 ¨ 0 “ 0, 1 ¨ 1 “ 1,8 ¨ 8 “ 8).

Thus, the numerator (and hence the direction) remains the same. Moreover, we also have that
|| |z|

p˚´1
||
p˚´1
p˚ “ ||z||

p˚´1
p˚ (and hence the magnitude remains the same, too). For p˚

“ 1,
|| |z|

0
||
0
1 “ ||1||

0
1 “ 1 “ ||z||

0
1 for any non-zero z. For p˚

“ 2, || |z|
1

||
1
2 “ ||z||2 for any z.

For the p˚
“8 case, we consider the full expression signpzq d |z|

pp˚´1qpp˚´1q
{|| |z|

p˚´1
||
p˚´1
p˚ “

|I 1
|
´1signpzq d1I1 where I 1 :“ tj P r1, ..., ns : |zj |

p˚´1
“ |||z|

p˚´1
||8u denotes the set of indices

at which |z|
p˚´1 attains its maximum norm. It is easy to see that I 1

“ I, i.e. the set of indices of
maximal elements remains the same.

Thus, if ṽ is of the form ṽ “ signpzq d |z|
p˚´1

{||z||
p˚´1
p˚ , then it is a fix point of Equation 16 and

hence of the projection

lim
↵Ñ8

⇧t||¨||p“1upv ` ↵ṽq “
signpṽq d |ṽ|

p˚´1

||ṽ||
p˚´1
p˚

“ ṽ for p˚
P t1, 2,8u (57)

Another way to see this is by checking that the operation signp¨qd|¨|
p˚´1

{||¨||
p˚´1
p˚ , for p˚

P t1, 2,8u,
leaves the corresponding expressions for the optimal perturbation in the RHS of Equation 35 invariant.

Finally, note how the Projection Lemma implies that

lim
↵Ñ8

⇧t||¨||p“1up↵zq “ argmax
v:||v||p§1

vJz , (58)

for an arbitrary non-zero z, which is an interesting result in its own right.
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Second part.
By definition of the orthogonal projection, we have

xk “ lim
↵Ñ8

⇧Bp
✏ pxqpxk´1 ` ↵vkq (59)

“ lim
↵Ñ8

argmin
x˚:||x˚´x||p§✏

||x˚
´xk´1´↵vk||2 (60)

“ lim
↵Ñ8

argmin
x`v˚:||v˚||p§✏

||x`v˚
´xk´1´↵vk||2 (61)

“ x ` lim
↵Ñ8

argmin
v˚:||v˚||p§✏

||x`v˚
´xk´1´↵vk||

2
2 (62)

“ x ` lim
↵Ñ8

argmin
v˚:||v˚||p§✏

 
||v˚

´↵vk||
2
2 ` 2v˚Jconst`const2

(
(63)

“ x ` lim
↵Ñ8

argmin
v˚:||v˚||p§✏

||v˚
´ ↵vk||

2
2 (64)

“ x ` lim
↵Ñ8

argmin
v˚:||v˚||p§✏

||v˚
´ ↵vk||2 (65)

“ x ` lim
↵Ñ8

argmin
v˚:||v˚||p“✏

||v˚
´ ↵vk||2 (66)

“ x ` lim
↵Ñ8

⇧t||¨||p“✏up↵vkq (67)

where (i) we have used that the const2 term is independent of v˚ and thus irrelevant for the argmin,
(ii) in the fourth-to-last line we have dropped all the terms that vanish relative to the limit ↵ Ñ 8, and
(iii) since ↵vk is outside the `p-ball in the limit ↵ Ñ 8, projecting into the `p-ball tv˚ : ||v˚

||p § 1u

is equivalent to projecting onto its boundary tv˚ : ||v˚
||p “ 1u.

By the first part of the Projection Lemma, we also have that

xk “ x ` lim
↵Ñ8

⇧t||¨||p“✏up↵vkq (68)

“ x ` ✏
signpvkq d |vk|

p˚´1

||vk||
p˚´1
p˚

(69)

“ x ` ✏vk if vk “
signpzq d |z|

p˚´1

||z||
p˚´1
p˚

(70)

for an arbitrary non-zero vector z. This completes the proof of the Lemma.

For illustrative purposes, we provide an alternative proof of the second part of the Lemma for
p P t2,8u, because for these values the projection can be written down explicitly away from the
↵ Ñ 8 limit (the p “ 1 projection can be written down in a simple form in the ↵ Ñ 8 limit only).

We first consider the case p “ 2. The `2-norm ball projection can be expressed as follows,

⇧B2
✏ pxqpx̃kq “ x ` ✏px̃k ´ xq{maxp✏, ||x̃k ´ x||2q, (71)

where x̃k “ xk´1 ` ↵vk and where the maxp✏, ||x̃k ´ x||2q ensures that if ||x̃k ´ x||2 † ✏ then
xk “ x̃k, i.e. we only need to project x̃k if it is outside the ✏-ball B2

✏ pxq.
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Thus, in the limit ↵ Ñ 8,

lim
↵Ñ8

⇧B2
✏ pxqpxk´1 ` ↵vkq (72)

“ lim
↵Ñ8

x ` ✏
x̃k ´ x

maxp✏, ||x̃k ´ x||2q
(73)

“ x ` ✏ lim
↵Ñ8

xk´1 ` ↵vk ´ x

maxp✏, ||xk´1 ` ↵vk ´ x||2q
(74)

“ x ` ✏ lim
↵Ñ8

↵pvk `
1
↵ pxk´1 ´ xqq

maxp✏,↵||vk `
1
↵ pxk´1 ´ xq||2q

(75)

“ x ` ✏ lim
↵Ñ8

↵pvk `
1
↵ pxk´1 ´ xqq

↵||vk `
1
↵ pxk´1 ´ xq||2

(76)

“ x ` ✏ lim
↵Ñ8

⇧t||¨||2“1up↵vkq (77)

“ x ` ✏vk{||vk||2 (78)

“ x ` ✏vk if vk “ ṽk{||ṽk||2 (79)

where in the fourth-to-last line we used that the max will be attained at its second argument in the
limit ↵ Ñ 8 since ||vk `

1
↵ pxk´1 ´ xq||2 ° 0 for vk ‰ 0, and the last line holds if vk is of the

form ṽk{||ṽk||2.

Next, we consider the case p “ 8. The `8-norm ball projection (clipping) can be expressed as
follows,

⇧B8
✏ pxqpx̃kq “ x ` maxp´✏,minp✏, x̃k ´ xqq , (80)

where x̃k “ xk´1 ` ↵vk and where the max and min are taken elementwise. Note that the order of
the max and min operators can be exchanged, as we prove in the “min-max-commutativity” Lemma 3
below.

Thus, in the limit ↵ Ñ 8,

lim
↵Ñ8

⇧B8
✏ pxqpxk´1 ` ↵vkq ´ x (81)

“ lim
↵Ñ8

maxp´✏,minp✏,↵vk ` xk´1 ´ xqq (82)

“ lim
↵Ñ8

!
1tsignpvkq°0u maxp´✏,minp✏,↵|vk| ` xk´1´xqq

` 1tsignpvkq†0u maxp´✏,minp✏,´↵|vk| ` xk´1´xqq

)
(83)

where in going from the second to the third line we used that vk “ signpvkq d |vk|.

Next, observe that

lim
↵Ñ8

maxp´✏,minp✏,↵|vk| ` xk´1 ´ xqq (84)

“ lim
↵Ñ8

minp✏,↵|vk| ` xk´1 ´ xq “ ✏ (85)

since minp✏,↵|vk| ` xk´1 ´ xq ° ´✏.

Similarly, we have

lim
↵Ñ8

maxp´✏,minp✏,´↵|vk| ` xk´1 ´ xqq (86)

“ lim
↵Ñ8

minp✏,maxp´✏,´↵|vk| ` xk´1 ´ xqq (87)

“ lim
↵Ñ8

maxp´✏,´↵|vk| ` xk´1 ´ xq (88)

“ ´✏ (89)

where for the first equality we have used the “min-max-commutativity” Lemma 3 below, which
asserts that the order of the max and min can be exchanged, while the second equality holds since
maxp´✏,´↵|vk| ` xk´1 ´ xq † ✏.
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With that, we can continue

lim
↵Ñ8

⇧B8
✏ pxqpxk´1 ` ↵vkq (90)

“ x ` ✏1tsignpvkq°0u ´ ✏1tsignpvkq†0u (91)

“ x ` ✏ signpvkq (92)

“ x ` ✏ lim
↵Ñ8

⇧t||¨||8“1up↵vkq (93)

“ x ` ✏vk if vk “ signpṽkq (94)

where the last line holds if vk is of the form signpzq, since signpvkq “ signpsignpṽkqq “ signpṽkq “

vk. Note that the last line can directly be obtained from the third-to-last line if vk “ signpṽkq.

Finally, for the general case, we provide the following additional intuition. Taking the limit ↵ Ñ 8

has two effects: firstly, it puts all the weight in the sum xk´1`↵vk on ↵vk and secondly, it takes every
component of vk out of the ✏-ball Bp

✏ pxq. As a result, ⇧Bp
✏ pxq will project ↵vk onto a point on the

boundary of the ✏-ball, which is precisely the set tv : ||v||p “ ✏u. Hence, lim↵Ñ8 ⇧Bp
✏ pxqpxk´1 `

↵vkq “ x ` lim↵Ñ8 ⇧t||¨||p“✏up↵vkq.

Finally, we provide another very intuitive yet surprisingly hard6 to prove result:
Lemma 3 (Min-max-commutativity). The order of the elementwise max and min in the projection
(clipping) operator ⇧B8

✏ pxq can be exchanged, i.e.

maxp´✏,minp✏,xqq “ minp✏,maxp´✏,xqq (95)

Proof. We are using the following representations which hold elementwise for all a,x P Rn:

maxpa,xq “ a ` maxp0,x´aq “ a ` 1ta†xupx´aq (96)
minpa,xq “ a ` minp0,x´aq “ a ` 1tx†aupx´aq (97)

where 1t¨u denotes the elementwise indicator function.

With these, we have

maxp´✏,minp✏,xqq (98)
“ ´✏ ` 1t´✏†minp✏,xqupminp✏,xq ` ✏q (99)
“ ´✏ ` 1t´✏†xup2✏ ` 1tx†✏upx ´ ✏qq (100)
“ ´✏ ` 2✏1t´✏†xu ` 1t´✏†x†✏upx ´ ✏q (101)
“ ´✏ ` 2✏p1t´✏†x†✏u ` 1t✏†xuq ` 1t´✏†x†✏upx ´ ✏q (102)
“ ´✏ ` 2✏1t✏†xu ` 1t´✏†x†✏upx ` ✏q (103)
“ ´✏ ` 2✏p1 ´ 1tx†✏uq ` 1t´✏†x†✏upx ` ✏q (104)
“ ✏ ` 1tx†✏up´2✏ ` 1t´✏†xupx ` ✏qq (105)
“ ✏ ` 1tmaxp´✏,xq†✏upmaxp´✏,xq ´ ✏q (106)
“ minp✏,maxp´✏,xqq (107)

where we used that 1t´✏†minp✏,xqu “ 1t´✏†xu and 1tmaxp´✏,xq†✏u “ 1tx†✏u.

6The proof is easier yet less elegant if one alternatively resorts to case distinctions.
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7.8 Proof of Main Theorem

The conditions on ✏ and ↵ can be considered specifics of the respective iteration method. The
condition that ✏ be small enough such that Bp

✏ pxq is contained in the ReLU cell around x ensures
that Jf px˚

q “ Jf pxq for all x˚
P Bp

✏ pxq. The power-method limit ↵ Ñ 8 means that in the update
equations all the weight (no weight) is placed on the current gradient direction (previous iterates).

To proof the theorem we need to show that the updates for `p-norm constrained projected gradient
ascent based adversarial training with an `q-norm loss on the logits reduce to the corresponding
updates for data-dependent operator norm regularization in Equation 12 under the above conditions
on ✏ and ↵.

Proof. For an `q-norm loss on the logits of the clean and perturbed input `advpfpxq, fpx˚
qq “

||fpxq ´ fpx˚
q||q, the corresponding `p-norm constrained projected gradient ascent updates in

Equation 18 are

uk –
signpũkq d |ũk|

q´1

||ũk||
q´1
q

, ũk – fpxk´1q´fpxq

vk –
signpṽkq d |ṽk|

p˚´1

||ṽk||
p˚´1
p˚

, ṽk – Jf pxk´1q
Juk

xk – ⇧Bp
✏ pxqpxk´1 ` ↵vkq

(108)

In the limit ↵ Ñ 8, xk´1 “ x ` ✏vk´1 by the “Projection Lemma” (Lemma 2) and thus for
small enough ✏, fpxk´1q ´ fpxq “ Jf pxqpxk´1 ´ xq “ ✏Jf pxqvk´1 (equality holds because
xk´1 P Bp

✏ pxq Ä Xp�xq). Thus, the forward pass becomes

uk –
signpũkq d |ũk|

q´1

||ũk||
q´1
q

, ũk – Jf pxqvk´1 (109)

For the backward pass, we have

ṽk “ Jf pxk´1q
Juk “ Jf pxq

Juk , (110)

since Jf pxkq “ Jf pxq for all xk P Bp
✏ pxq Ä Xp�xq. Note that the update equation for xk

is not needed since the Jacobians in the forward and backward passes don’t depend on xk for
Bp
✏ pxq Ä Xp�xq. The update equations for `p-norm constrained projected gradient ascent based

adversarial training with an `q-norm loss on the logits can therefore be written as

uk – signpũkq d |ũk|
q´1

{||ũk||
q´1
q , ũk – Jf pxqvk´1

vk – signpṽkq d |ṽk|
p˚´1

{||ṽk||
p˚´1
p˚ , ṽk – Jf pxq

Juk

(111)

which is precisely the power method limit of (p, q) operator norm regularization in Equation 12.
We have thus shown that the update equations to compute the adversarial perturbation and the
data-dependent operator norm maximizer are exactly the same.

It is also easy to see that the objective functions used to update the network parameters for `p-norm
constrained projected gradient ascent based adversarial training with an `q-norm loss on the logits of
clean and adversarial inputs in Equation 14

Epx,yq„P̂

”
`py, fpxqq ` � max

x˚PBp
✏ pxq

||fpxq ´ fpx˚
q||q

ı
(112)

is by the condition Bp
✏ pxq Ä Xp�xq and x˚

“ x ` ✏v

Epx,yq„P̂

”
`py, fpxqq ` �✏ max

v˚:||v˚||p§1
||Jfpxqv||q

ı
(113)

the same as that of data-dependent (p, q) operator norm regularization in Equation 13.
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We conclude this section with a note on generalizing our Theorem to allow for activation pattern
changes. Proving such an extension for the approximate correspondence between adversarial training
and data-dependent operator norm regularization that we observe in our experiments is highly non-
trivial, as this requires to take into account how much “nearby” Jacobians can change based on the
crossings of ReLU boundaries, which is complicated by the fact that the impact of such crossings
depends heavily on the specific activation pattern at input x and the precise values of the weights and
biases in the network. We consider this to be an interesting avenue for future investigations.

7.9 Extracting Jacobian as a Matrix

Since we know that any neural network with its nonlinear activation function set to fixed values
represents a linear operator, which, locally, is a good approximation to the neural network itself,
we develop a method to fully extract and specify this linear operator in the neighborhood of any
input datapoint x. We have found the naive way of determining each entry of the linear operator by
consecutively computing changes to individual basis vectors to be numerically unstable and therefore
have settled for a more robust alternative:

In a first step, we run a set of randomly perturbed versions of x through the network (with fixed
activation functions) and record their outputs at the particular layer that is of interest to us (usually the
logit layer). In a second step, we compute a linear regression on these input-output pairs to obtain a
weight matrix W as well as a bias vector b, thereby fully specifying the linear operator. The singular
vectors and values of W can be obtained by performing an SVD.

7.10 Dataset, Architecture & Training Methods

We trained Convolutional Neural Networks (CNNs) with seven hidden layers and batch normalization
on the CIFAR10 data set [23]. The CIFAR10 dataset consists of 60k 32 ˆ 32 colour images in
10 classes, with 6k images per class. It comes in a pre-packaged train-test split, with 50k training
images and 10k test images, and can readily be downloaded from https://www.cs.toronto.edu/
~kriz/cifar.html.

We conduct our experiments on a pre-trained standard convolutional neural network, employing
7 convolutional layers, augmented with BatchNorm, ReLU nonlinearities and MaxPooling. The
network achieves 93.5% accuracy on a clean test set. Relevant links to download the pre-trained
model can be found in our codebase. For the robustness experiments, we also train a state-of-the-art
Wide Residual Net (WRN-28-10) [51]. The network achieves 96.3% accuracy on a clean test set.

We adopt the following standard preprocessing and data augmentation scheme: Each training image
is zero-padded with four pixels on each side, randomly cropped to produce a new image with the
original dimensions and horizontally flipped with probability one half. We also standardize each
image to have zero mean and unit variance when passing it to the classifier.

We train each classifier with a number of different training methods: (i) ‘Standard’: standard empirical
risk minimization with a softmax cross-entropy loss, (ii) ‘Adversarial’: `2-norm constrained projected
gradient ascent (PGA) based adversarial training with a softmax cross-entropy loss, (iii) ‘global SNR’:
global spectral norm regularization à la Yoshida & Miyato [50], and (iv) ‘d.-d. SNR’: data-dependent
spectral norm regularization. For the robustness experiments, we also train a state-of-the-art Wide
Residual Network (WRN-28-10) [51].

As a default attack strategy we use an `2- & `8-norm constrained PGA white-box attack with cross-
entropy adversarial loss `adv and 10 attack iterations. We verified that all our conclusions also hold
for larger numbers of attack iterations, however, due to computational constraints we limit the attack
iterations to 10. The attack strength ✏ used for PGA was chosen to be the smallest value such that
almost all adversarially perturbed inputs to the standard model are successfully misclassified, which
is ✏ “ 1.75 (for `2-norm) and ✏ “ 8{255 (for `8-norm).

The regularization constants of the other training methods were then chosen in such a way that they
roughly achieve the same test set accuracy on clean examples as the adversarially trained model does,
i.e. we allow a comparable drop in clean accuracy for regularized and adversarially trained models.
When training the derived regularized models, we started from a pre-trained checkpoint and ran a
hyper-parameter search over number of epochs, learning rate and regularization constants.
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Table 2: CIFAR10 test set accuracies and hyper-parameters for the models and training methods we
considered. The regularization constants were chosen such that the models achieve roughly the same
accuracy on clean test examples as the adversarially trained model does. See Table 3 for the full
hyper-parameter sweep.

MODEL & TRAINING METHOD ACC HYPER-PARAMETERS

CNN7

STANDARD TRAINING 93.5% —

ADVERSARIAL TRAINING (`2´norm) 83.6% ✏ “ 1.75,↵ “ 2✏{ITERS, ITERS “ 10

ADVERSARIAL TRAINING (`8 ´norm) 82.9% ✏ “ 8{255,↵ “ 2✏{ITERS, ITERS “ 10

DATA-DEP. SPECTRAL NORM 84.6% � “ 3 ¨ 10´2, ✏ “ 1.75, ITERS “ 10

DATA-DEP. OPERATOR NORM 83.0% � “ 3 ¨ 10´2, ✏ “ 8{255, ITERS “ 10

GLOBAL SPECTRAL NORM 81.5% � “ 3 ¨ 10´4, ITERS = 1, 10

WRN-28-10

STANDARD TRAINING 96.3% —

ADVERSARIAL TRAINING (`2´norm) 91.8% ✏ “ 1.75,↵ “ 2✏{ITERS, ITERS “ 10

DATA-DEP. SPECTRAL NORM 91.3% � “ 3 ¨ 10´1, ✏ “ 1.75, ITERS “ 10

Table 2 summarizes the test set accuracies and hyper-parameters for all the training methods we
considered.

7.11 Hyperparameter Sweep

Table 3: Hyperparameter sweep during training. We report results for the best performing models in
the main text.

TRAINING METHOD HYPERPARAMETER VALUES TESTED

ADVERSARIAL TRAINING ✏ (`2-NORM) 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0

✏ (`8-NORM) 1{255, 2{255, 3{255, 4{255, 5{255, 6{255, 7{255, 8{255,
9{255, 10{255, 11{255, 12{255, 13{255, 14{255, 15{255,
16{255, 17{255, 18{255

↵ ✏{ITERS, 2✏{ITERS, 3✏{ITERS, 4✏{ITERS, 5✏{ITERS
ITERS 1, 2, 3, 5, 8, 10, 15, 20, 30, 40, 50

GLOBAL SPECTRAL NORM REG. � 1 ¨ 10´5, 3 ¨ 10´5, 1 ¨ 10´4, 3 ¨ 10´4,
1 ¨ 10´3, 3 ¨ 10´3, 1 ¨ 10´2, 3 ¨ 10´2, 1 ¨ 10´1, 3 ¨ 10´1,
1 ¨ 100, 3 ¨ 100, 1 ¨ 101, 3 ¨ 101

ITERS 1, 10
DATA-DEP. SPECTRAL NORM REG. � 1 ¨ 10´5, 3 ¨ 10´5, 1 ¨ 10´4, 3 ¨ 10´4,

1 ¨ 10´3, 3 ¨ 10´3, 1 ¨ 10´2, 3 ¨ 10´2, 1 ¨ 10´1, 3 ¨ 10´1,
1 ¨ 100, 3 ¨ 100, 1 ¨ 101, 3 ¨ 101

ITERS 1, 2, 3, 5, 8, 10, 15, 20, 30, 40, 50
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Further Experimental Results

7.12 Adversarial Training with Large ↵

Figure 6 shows the result of varying ↵ in adversarial training. As can be seen, the adversarial
robustness initially rises with increasing ↵, but after some threshold it levels out and does not change
significantly even at very large values.
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↵ used for Adversarial Training

Figure 6: Test set accuracy on clean and adversarial examples for models adversarially trained
with different PGA step sizes ↵. The dashed line indicates the ↵ used when generating adversarial
examples at test time. The ✏ in the AT projection was fixed to the value used in the main text.

7.13 Interpolating between AT and d.d. SNR
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Figure 7: Test set accuracy on clean and adversarial examples for different networks from scratch each
with an objective function that convexly combines adversarial training with data-dependent spectral
norm regularization in a way that allows us to interpolate between (i) the fraction of adversarial
examples relative to clean examples used during adversarial training controlled by � in Eq. 14 and
(ii) the regularization parameter �̃ in Eq. 13. The plot confirms that we can continuously trade-off the
contribution of AT with that of d.d. SNR in the empirical risk minimization.

7.14 Alignment of Adversarial Perturbations with Dominant Singular Vector

Figure 8 shows the cosine-similarity of adversarial perturbations of mangitude ✏ with the dominant
singular vector of Jf pxq, as a function of perturbation magnitude ✏. For comparison, we also include
the alignment with random perturbations. For all training methods, the larger the perturbation
magnitude ✏, the lesser the adversarial perturbation aligns with the dominant singular vector of Jf pxq,
which is to be expected for a simultaneously increasing deviation from linearity. The alignment is
similar for adversarially trained and data-dependent spectral norm regularized models and for both
larger than that of global spectral norm regularized and naturally trained models.
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Figure 8: Alignment of adversarial perturbations with dominant singular vector of Jf pxq as a function
of perturbation magnitude ✏. The dashed vertical line indicates the ✏ used during adversarial training.
Curves were aggregated over 2000 test samples.

7.15 Activation Patterns
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Figure 9: Fraction of shared activations as a function of perturbation magnitude ✏ between activation
patterns �x and �x˚ , where x is a data point sampled from the test set, and x˚ is an adversarially
perturbed input, with perturbation magnitude ✏.

7.16 Global SNR with 10 iterations

In the main section, we have implemented the baseline version of global SNR as close as possible
to the descriptions in [50]. However, this included a recommendation from the authors to perform
only a single update iteration to the spectral decompositions of the weight matrices per training
step. As this is computationally less demanding than the 10 iterations per training step spent on both
adversarial training, as well as data-dependent spectral norm regularization, we verify that performing
10 iterations makes no difference to the method of [50]. Figures 10 and 11 reproduce the curves for
global SNR from the main part (having used 1 iteration) and overlap it with the same experiments,
but done with global SNR using 10 iterations. As can be seen, there is no significant difference.
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Figure 10: (Left) Deviation from linearity ||�L´1
px ` zq ´ p�L´1

pxq ` J�L´1pxqzq||2 as a function
of the distance ||z||2 from x for random and adversarial perturbations z. (Right) Largest singular
value of the linear operator Jf px` zq as a function of the magnitude ||z||2 of random and adversarial
perturbations z. The dashed vertical line indicates the ✏ used during adversarial training. Curves were
aggregated over 200 samples from the test set.
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Figure 11: (Left) Classification accuracy as a function of perturbation strength ✏. (Right) Alignment
of adversarial perturbations with dominant singular vector of Jf pxq as a function of perturbation
magnitude ✏. The dashed vertical line indicates the ✏ used during adversarial training. Curves were
aggregated over 2000 samples from the test set.

7.17 `8-norm Constrained Projected Gradient Ascent

Additional results against `8-norm constrained PGA attacks are provided in Figures 12 & 13. Note
that all adversarial and regularized training methods are robustifying against `2 PGA, or regularizing
the spectral (2, 2)-operator norm, respectively. Results of adversarial training using `8-norm
constrained PGA and their equivalent regularization methods can be found in Section 7.18. The
conclusions remain the same for all the experiments we conducted.
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Figure 12: (Left) Deviation from linearity ||�L´1
px ` zq ´ p�L´1

pxq ` J�L´1pxqzq||2 as a function
of the distance ||z||2 from x for random and `8-PGA adversarial perturbations z. (Right) Largest
singular value of J�L´1px ` zq as a function of the magnitude ||z||2 of random and `8-PGA
adversarial perturbations z. The dashed vertical line indicates the ✏ used during adversarial training.
Curves were aggregated over 200 test samples.
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Figure 13: (Left) Classification accuracy for an `2-norm trained network on `8-norm perturbations
with ✏ (measured in 8-bit). (Right) Alignment of `8-PGA adversarial perturbations with dominant
singular vector of Jf pxq as a function of perturbation magnitude ✏. The dashed vertical line indicates
the ✏ used during adversarial training. Curves were aggregated over 2000 samples from the test set.
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7.18 Data-Dependent `8-norm regularization

Figure 14 shows results against `8-norm constrained PGD attacks when networks explicitly either
use `8-norm constrained adversarial training or, equivalently, regularize the (8, 2)-operator norm of
the network. The conclusions remain the same for all the experiments we conducted.
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Figure 14: (Left) Classification accuracy for an `8-norm trained network on `8-norm perturbations
with ✏ (measured in 8-bit). (Right) Alignment of `8-PGA adversarial perturbations with dominant
singular vector of Jf pxq as a function of perturbation magnitude ✏. The dashed vertical line indicates
the ✏ used during adversarial training. Curves were aggregated over 2000 samples from the test set.

7.19 SVHN

Figure 15 shows results against `2-norm constrained PGD attacks on the SVHN dataset. As can be
seen, the behavior is very comparable to our analogous experiment in the main section.
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Figure 15: Classification accuracy on SVHN. Curves were aggregated over 2000 samples from the
test set.
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