
SOAP 0.51 (0.17) 0.19 (0.09) 0.00 0.46 (0.18) 0.21 (0.10) 0.00 0.62 (0.15) 0.14 (0.07) 0.00
SRT 0.00 (0.00) 0.01 (0.02) 0.35 0.00 (0.00) 0.01 (0.01) 0.45 0.00 (0.00) 0.00 (0.01) 0.65

CSSP 0.49 (0.18) 0.83 (0.06) 0.00 0.46 (0.16) 0.84 (0.06) 0.00 0.51 (0.16) 0.83 (0.07) 0.00
Go 0.99 (0.04) 0.00 (0.00) 0.90 0.99 (0.04) 0.00 (0.00) 1.00 0.97 (0.06) 0.00 (0.00) 0.90
IPU 0.91 (0.11) 0.01 (0.01) 0.50 0.99 (0.04) 0.00 (0.00) 1.00 0.97 (0.06) 0.00 (0.00) 0.90

The authors thank the reviewers for their careful readings and insightful and constructive comments. We will improve1

the manuscript in the revised version. Below please find our responses to the major points raised.2

To R1: Thanks for your valuable comments. On experiments, with the spike model following [45] with xi =3

Vzi + σwi, where V ∈ Rd×m, σ = 0.3, and Gaussian zi ∈ Rm,wi ∈ Rd. The partial (due to space limit) results are4

reported above. More will be included. On statistical properties, it could be an easy corollary from Prop. 1.1 of [54].5

To R2: Thanks for appreciating the contributions of our work!6

To R3: We appreciate the very detailed and thoughtful comments from the reviewer. We’d like to do some clarifications7

here. We proved two types of theoretical results. One is on approximation which controls the absolute error of the8

output objective value, that is, accuracy. The other is on convergence which ensures the convergence, which is exact,9

and finite time termination of IPU and allows for bounding the approximation error of IPU with Theorem 5.1.10

On tightness when κ = λ1λ
−1
d → 1. Thanks! We prove following improved Theorem 5.1, in which ε → 0 when11

κ→ 1, or k → d, or A→ Am. Besides, there is no polynomial algorithm that has small ε for all A [8].12

Claim R.1. Let the condition number of A be κ = λ1λ
−1
d ≥ 1. In Theorem 5.1 and following corollaries, it holds13

ε ≤ min
{

dG1

k , dG2

m , 1− κ−1, 1− k
d

}
.

Proof. Using the Poincaré separation theorem in Lemma D.1, we have ε ≤ 1 − κ−1 by Tr(W>
mAWm) ≥14 ∑d

i=d−m+1 λi ≥ m · λd, and Tr(W>
∗ AW∗) ≤

∑m
i=1 λi ≤ m · λ1 = m · κλd. Meanwhile, ε ≤ 1 − kd−1 holds by15

using Tr(W>
mAWm) ≥ Tr(W>

mAmWm) ≥ k
dTr(Am) ≥ k

d

∑m
i=1 λi, and Tr(W>

∗ AW∗) ≤
∑m

i=1 λi.16

On converging to fixed-point. In the continuous non-convex optimization literature, it is very common to show17

the algorithm converges to a stationary/critical point [52] as the general non-convex optimization are NP-hard even18

for computing a local minimizer [50]. However, a stationary point might still be a local maximum/minimum, or19

saddle point and far from the global one. Indeed, to our knowledge, it is very difficult (if not impossible) to show20

any global convergence guarantee to global optima in general non-convex setting, unless the interested problem has21

very special properties, e.g., benign landscape, robust bistability. Moreover, we emphasize that our problem is not a22

convex one, and has no known good properties. We are trying to maximize a convex objective function with non-convex23

combinatorial constraints. So both the objective and the feasible domain bring difficulty. Actually, for our problem,24

assuming SSE-hard and NP6=P, it is impossible [8] to have any polynomial running time algorithm that provably returns25

W such that c · Tr(W>AW) ≥ Tr(W>
∗ AW∗) for arbitrary large but finite c > 1 and general A. Thus, we think26

it is reasonable to have a fixed-point convergence result, especially when the approximation error (accuracy) of the27

fixed-point is controlled by Corollary 5.3. Besides, a local analysis near the optima is possible but meaningless, to us,28

as it is still NP-hard to ensure the initialization to be in the basin of attraction.29

On related work. To the best knowledge of us, there is no directly comparable work in the literature. The most30

related work to ours are the very new [54, 53]. [53] proposed algorithm for FSPCA problem with computational31

complexity exponential in m and rank(A). [53] clearly said (page 4) that their algorithm is of theoretical nature and32

may not be practically implementable. In [54], they proposed a heuristic algorithm and a relaxed problem whose33

optimal value is upper bound by (1 +
√
m)2 times the FSPCA optimal value. However, [54] provided no rounding34

procedure for extracting feasible solution from their relaxation and no approximation guarantee for their heuristic35

algorithm. In contrast, our approximation guaranteed algorithm runs in polynomial time and highly implementable36

in practice. Besides, [51] proposed an algorithm that runs exponential in the rank(A) and m for the disjoint-FSPCA37

problem that requires the support of different eigenvectors to be disjoint, which is clearly different from our setting.38

Finally, we note that there are many work [41, 45, 26, 5, 19, 27, 15, 43] that prove results assuming statistical models.39

They are not directly comparable to ours as our results are model-free, i.e., same as [54, 53], and applicable for any40

model and might have applications in other machine learning problems as noted by R4.41

To R4: Thanks for your insightful and positive comments! We will highlight that in the revised paper and move the42

suggested parts to the main paper. The typos have been fixed.43
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