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Abstract

In this paper, we propose a new accelerated stochastic first-order method called
clipped-SSTM for smooth convex stochastic optimization with heavy-tailed dis-
tributed noise in stochastic gradients and derive the first high-probability complexity
bounds for this method closing the gap in the theory of stochastic optimization
with heavy-tailed noise. Our method is based on a special variant of accelerated
Stochastic Gradient Descent (SGD) and clipping of stochastic gradients. We extend
our method to the strongly convex case and prove new complexity bounds that out-
perform state-of-the-art results in this case. Finally, we extend our proof technique
and derive the first non-trivial high-probability complexity bounds for SGD with
clipping without light-tails assumption on the noise.

1 Introduction

In this paper we focus on the following problem
min
x∈Rn

f(x), f(x) = Eξ [f(x, ξ)] , (1)

where f(x) is a smooth convex function and the mathematical expectation in (1) is taken with respect
to the random variable ξ defined on the probability space (X ,F ,P) with some σ-algebra F and
probability measure P. Such problems appear in various applications of machine learning [21, 61, 64]
and mathematical statistics [66]. Perhaps, the most popular method to solve problems like (1) is
Stochastic Gradient Descent (SGD) [26, 50, 51, 59, 63]. There is a lot of literature on the convergence
in expectation of SGD for (strongly) convex [20, 24, 25, 46, 48, 49, 55] and non-convex [6, 20, 34]
problems under different assumptions on stochastic gradient. When the problem is good enough, i.e.
when the distributions of stochastic gradients are light-tailed, this theory correlates well with the
real behavior of trajectories of SGD in practice. Moreover, the existing high-probability bounds for
SGD [9, 11, 49] coincide with its counterpart from the theory of convergence in expectation up to
logarithmical factors depending on the confidence level.

However, there are a lot of important applications where the noise distribution in the stochastic
gradient is significantly heavy-tailed [65, 71]. For such problems SGD is often less robust and shows
poor performance in practice. Furthermore, existing results for the convergence with high-probability
for SGD are also much worse in the presence of heavy-tailed noise than its “light-tailed counterparts”.
In this case, rates of the convergence in expectation can be insufficient to describe the behavior of the
method.

To illustrate this phenomenon we consider a simple example of stochastic optimization problem
and apply SGD with constant stepsize to solve it. After that, we present a natural and simple way to
resolve the issue of SGD based on the clipping of stochastic gradients. However, we need to introduce
some important notations and definitions before we start to discuss this example.
∗eduard.gorbunov@phystech.edu, eduardgorbunov.github.io
†danilovamarina15@gmail.com, marinadanya.github.io
‡gasnikov@yandex.ru

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

eduardgorbunov.github.io
marinadanya.github.io


1.1 Preliminaries

In this section we introduce the main part of notations, assumption and definitions. The rest is
classical for optimization literature and stated in the appendix (see Section A). Throughout the paper
we assume that at each point x ∈ Rn function f is accessible only via stochastic gradients∇f(x, ξ)
such that

Eξ[∇f(x, ξ)] = ∇f(x), Eξ
[
‖∇f(x, ξ)−∇f(x)‖22

]
≤ σ2, (2)

i.e. we have an access to the unbiased estimator of ∇f(x) with uniformly bounded by σ2 variance
where σ is some non-negative number. These assumptions on the stochastic gradient are standard
in the stochastic optimization literature [18, 20, 31, 38, 49]. Below we introduce one of the most
important definitions in this paper.

Definition 1.1 (light-tailed random vector). We say that random vector η has a light-tailed dis-
tribution, i.e. satisfies “light-tails” assumption, if there exist E[η] and P {‖η − E[η]‖2 > b} ≤
2 exp

(
− b2

2σ2

)
for all b > 0

Such distributions are often called sub-Gaussian ones (see [30] and references therein). One can
show (see Lemma 2 from [30]) that this definition is equivalent to

E
[
exp

(
‖η−E[η]‖22/σ2

)]
≤ exp(1) (3)

up to absolute constant difference in σ. Due to Jensen’s inequality and convexity of exp(·) one
can easily show that inequality (3) implies E[‖η − E[η]‖22] ≤ σ2. However, the reverse implication
does not hold in general. Therefore, in the rest of the paper by stochastic gradient with heavy-tailed
distribution, we mean such a stochastic gradient that satisfies (2) but not necessarily (3).

1.2 Simple Motivational Example: Convergence in Expectation and Clipping

In this section we consider SGD xk+1 = xk − γ∇f(xk, ξk) applied to solve the problem (1) with
f(x, ξ) = ‖x‖22/2 + 〈ξ, x〉, where ξ is a random vector with zero mean and the variance by σ2 (see
the details in Section H.1). The state-of-the-art theory (e.g. [24, 25]) says that convergence properties
in expectation of SGD in this case depend only on the stepsize γ, condition number of f , initial
suboptimality f(x0)− f(x∗) and the variance σ, but does not depend on distribution of ξ. However,
the trajectory of SGD significantly depends on the distribution of ξ. To illustrate this we consider 3
different distributions of ξ with the same σ, i.e., Gaussian distribution, Weibull distribution [69] and
Burr Type XII distribution [3, 42] with proper shifts and scales to get needed mean and variance for
ξ (see the details in Section H.1). For each distribution, we run SGD several times from the same
starting point, the same stepsize γ, and the same batchsize, see typical runs in Figure 1. This simple
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Figure 1: Typical trajectories of SGD and clipped-SGD applied to solve (130) with ξ having Gaussian, Weibull, and Burr Type XII tails.

example shows that SGD in all 3 cases rapidly reaches a neighborhood of the solution and then starts
to oscillate there. However, these oscillations are significantly larger for the second and the third
cases where stochastic gradients are heavy-tailed. Unfortunately, guarantees for the convergence in
expectation cannot express this phenomenon, since in expectation the convergence guarantees for all
3 cases are identical.

Moreover, in practice, e.g., in training big machine learning models, it is often used only a couple
runs of SGD or another stochastic method. The training process can take hours or even days, so,
it is extremely important to obtain good accuracy of the solution with high probability. However,
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as our simple example shows, SGD fails to converge robustly if the noise in stochastic gradients is
heavy-tailed which was also noticed for several real-world problems like training AlexNet [37] on
CIFAR10 [36] (see [65]) and training an attention model [68] via BERT [8] (see [71]).

Clearly, since the distributions of stochastic gradients in the second and the third cases are heavy
tailed the probability of sampling too large ξ (in terms of the norm) and, as a consequence, too
large ∇f(x, ξ) is high even if we are close to the solution. Once the current point xk is not too
far from the solution and SGD gets a stochastic gradient with too large norm the method jumps far
from the solution. Therefore, we see large oscillations. Since the reason of such oscillations is
large norm of stochastic gradient it is natural to clip it, i.e., update xk+1 according to xk+1 = xk −
γmin{1, λ/‖∇f(xk,ξk)‖2}∇f(xk, ξk). The obtained method is known in literature as clipped-SGD
(see [17, 21, 43, 44, 57, 70, 71] and references therein). Among the good properties of clipped-SGD
we emphasize its robustness to the heavy-tailed noise in stochastic gradients (see also [71]). In our
tests, trajectories of clipped-SGD oscillate not significantly even for heavy-tailed distributions, and
clipping does not spoil the rate of convergence. These two factors make clipped-SGD preferable
than SGD when we deal with heavy-tailed distributed stochastic gradients (see further discussion in
Section B.2).

1.3 Related Work

1.3.1 Smooth Stochastic Optimization: Light-Tailed Noise

In the light-tailed case high-probability complexity bounds and complexity bounds in expectation for
SGD and AC-SA differ only in logarithmical factors of 1/β, see the details in Table 1. Such bounds
were obtained in [9] for SGD in the convex case and then were extended to the µ-strongly convex
case in [11] for modification of SGD called Stochastic Intermediate Gradient Method (SIGM). Finally,
optimal complexities were derived in [18, 19, 38] for the method called AC-SA in the convex case
and for Multi-Staged AC-SA (MS-AC-SA) in the strongly convex case.

1.3.2 Smooth Stochastic Optimization: Heavy-Tailed Noise

Without light tails assumption the most straightforward results lead toO(1/β2) andO(1/β) dependency
on β in the complexity bounds. Such bounds can be obtained from the complexity bounds for the
convergence in expectation via Markov’s inequality. However, for small β these bounds become
unacceptably poor. Classical results [13, 53, 62] reduce these dependence to O(ln(β−1)) but they
have worse dependence on ε than corresponding results relying on light tails assumption.

For a long time the following question was open: is it possible to design stochastic methods having the
same or comparable complexity bounds as in the light-tailed case but without light tails assumption
on stochastic gradients? In [47] and [7] the authors give a positive answer to this question but only
partially. Let us discuss the results from these papers in detail.

In [47] Nazin et al. develop a new algorithm called Robust Stochastic Mirror Descent (RSMD) which
is based on a special truncation of stochastic gradients and derive complexity guarantees similar to
SGD in the convex case but without light assumption, see Table 1. This technique is very similar to
gradient clipping. Moreover, in [47] authors consider also composite problems with non-smooth
composite term. However, in [47] the optimization problem is defined on some compact convex set
X with diameter Θ = max{‖x− y‖2 | x, y ∈ X} <∞ and the analysis depends substantially on
the boundedness of X . Using special restarts technique together with iterative squeezing of the set X
Nazin et al. extend their method to the µ-strongly convex case, see Table 2. Finally, in the discussion
section of [47] authors formulate the following question: is it possible to develop such accelerated
stochastic methods that have the same or comparable complexity bounds as in the light-tailed case
but do not require stochastic gradients to be light-tailed?

In the strongly convex case the positive answer to this question was given by Davis et al. [7] where
authors propose a new method called proxBoost that is based on robust distance estimation [29, 51]
and proximal point method [40, 41, 60], see Table 2. However, this approach requires solving an
auxiliary optimization problem at each iteration that can lead to poor performance in practice.

In our paper we close the gap in theory, i.e., we provide a positive answer to the following question:
Is it possible to develop such an accelerated stochastic method that have the same or comparable
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complexity bound as for AC-SA in the convex case but do not require stochastic gradients to be
light-tailed?

1.4 Our Contributions

• One of the main contributions of our paper is a new method called Clipped Stochastic Similar
Triangles Method (clipped-SSTM). For the case when the objective function f is convex
and L-smooth we derive the following complexity bound without light tails assumption on
the stochastic gradients: O(max{

√
LR2

0/ε, σ
2R2

0/ε2} ln(LR
2
0/εβ)). This bound outperforms

all known bounds for this setting (see Table 1) and up to the difference in logarithmical
factors recovers the complexity bound of AC-SA derived under light tails assumption. That
is, in this paper we close the gap in theory theory of smooth convex stochastic optimization
with heavy-tailed noise. Moreover, unlike in [47], we do not assume boundedness of the
set where the optimization problem is defined, which makes our analysis more complicated.
We also study different batchsize policies for clipped-SSTM.

• Using restarts technique we extend clipped-SSTM to the µ-strongly convex objectives
and obtain a new method called Restarted clipped-SSTM (R-clipped-SSTM). For this
method we prove the following complexity bound (again, without light tails assumption on
the stochastic gradients): O(max{

√
L/µ ln(µR

2
/ε), σ

2
/µε} ln(L/µβ ln(µR

2
/ε))). Our bound

outperforms the state-of-the-art result from [7] in terms of the dependence on ln L
µ , see

Table 2 for the details.

• We prove the first high-probability complexity guarantees for clipped-SGD in convex
and strongly convex cases without light tails assumption on the stochastic gradients, see
Tables 1 and 2. The complexity we prove for clipped-SGD in the convex case is comparable
with corresponding bound for SGD derived under light tails assumption. In the µ-strongly
convex case we derive a new complexity bound for the restarted version of clipped-SGD
(R-clipped-SGD) which is comparable with its “light-tailed counterpart”.

• We conduct several numerical experiments with the proposed methods in order to justify
the theory we develop. In particular, we show that clipped-SSTM can outperform SGD and
clipped-SGD in practice even without using large batchsizes. Moreover, in our experiments
we illustrate how clipping makes the convergence of SGD and SSTM more robust and reduces
their oscillations.

Table 1: Comparison of existing high-probability convergence results for stochastic optimization
under assumptions (2) for convex and L-smooth objectives. The second column contains an overall
number of stochastic first-order oracle calls needed to achieve ε-solution with probability at least
1 − β. In the third column “light” means that ∇f(x, ξ) satisfies (3) and “heavy” means that the
result holds even in the case when (3) does not hold. Column “Domain” describes the set where the
optimization problem is defined. For RSMD Θ is a diameter of the set where the optimization problem
is defined. We use red color to emphasize the restrictions we eliminate.

Method Complexity Tails Domain
SGD [9] O

(
max

{
LR0

2

ε , σ
2R0

2

ε2 ln2(β−1)
})

light bounded

AC-SA [18, 38] O

(
max

{√
LR2

0

ε ,
σ2R2

0

ε2 ln(β−1)

})
light arbitrary

RSMD [47] O
(

max
{
LΘ2

ε , σ
2Θ2

ε2

}
ln(β−1)

)
heavy bounded

clipped-SGD [This work] O
(

max
{
LR0

2

ε , σ
2R0

2

ε2

}
ln(β−1)

)
heavy Rn

clipped-SSTM [This work] O

(
max

{√
LR2

0

ε ,
σ2R2

0

ε2

}
ln

LR2
0+σR0

εβ

)
heavy Rn

1.4.1 Relation to [71]

While Zhang et al. [71] consider different setup, [71] is highly relevant to our paper, and, in some
sense, it complements our findings. In particular, it contains the analysis of several versions of
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Table 2: Comparison of existing high-probability convergence results for stochastic optimization
under assumptions (2) for µ-strongly convex and L-smooth objectives. The second column contains
an overall number of stochastic first-order oracle calls needed to achieve ε-solution with probability
at least 1− β. In the third column “light” means that∇f(x, ξ) satisfies (3) and “heavy” means that
the result holds even in the case when (3) does not hold. Column “Domain” describes the set where
the optimization problem is defined. For RSMD Θ is a diameter of the set where the optimization
problem is defined and R =

√
2(f(x0)−f(x∗))/µ, r0 = f(x0)− f(x∗). We use red color to emphasize

the restrictions we eliminate.

Method Complexity Tails Domain
SIGM [11] O

(
max

{
L
µ ln

µR2
0

ε , σ
2

µε ln
(
β−1 ln

µR2
0

ε

)})
light arbitrary

MS-AC-SA [19] O
(

max
{√

L
µ ln

LR2
0

ε , σ
2

µε ln
(
β−1 ln

LR2
0

ε

)})
light arbitrary

restarted-RSMD
[47] O

(
max

{
L
µ ln

(
µΘ2

ε

)
, σ

2

µε

}
ln
(
β−1 ln µΘ2

ε

))
heavy bounded

proxBoost [7]
O

(
max

{√
L
µ ln

(
LR2

0ln L
µ

ε

)
,
σ2ln L

µ

µε

}
· C
)

,

where C = ln
(
L
µ

)
ln

(
ln L

µ

β

) heavy arbitrary

clipped-SGD
[This work]

O
(

max
{
L
µ ,

σ2

µε ·
L
µ

}
ln
(
r0
ε

)
ln
(
L
µβ ln r0

ε

))
heavy Rn

R-clipped-SGD
[This work]

O
(

max
{
L
µ ln µR2

ε , σ
2

µε

}
ln
(
L
µβ ln µR2

ε

))
heavy Rn

R-clipped-SSTM
[This work]

O
(

max
{√

L
µ ln µR2

ε , σ
2

µε

}
ln
(
L
µβ ln µR2

ε

))
heavy Rn

clipped-SGD establishing the rates of convergence in expectation while we focus on the high-
probability complexity guarantees. Secondly, we consider convex and strongly convex cases while
[71] provides an analysis for non-convex and strongly convex problems. Finally, [71] relies on the
following assumption: there exist suchG > 0 and α ∈ (1, 2] that the stochastic gradient g(x) satisfies
E‖g(x)‖α2 ≤ Gα. This assumption implies the boundedness of the gradient of the objective function
f(x) which is quite restrictive and does not hold on the whole space for strongly convex functions. In
our paper, we assume only boundedness of the variance. Moreover, we consider smooth problems that
allows us to accelerate clipped-SGD and obtain clipped-SSTM, while Zhang et al. [71] provide
non-accelerated rates.

1.5 Paper Organization

The remaining part of the paper is organized as follows. In Section 2 we present clipped-SSTM
together with the main complexity result in the convex case that we prove for this method. Then, we
present the first high-probability complexity bounds for clipped-SGD for for the convex problems.
In Section 4 we provide our numerical experiments justifying our theoretical results. Finally, in
Section 5 we provide some concluding remarks and discuss the limitations and possible extensions
of the results developed in the paper. Due to the space limitations, we put the exact formulations
of all theorems, results for the strongly convex problems and the full proofs in the Appendix (see
Sections F and G), together with auxiliary and technical results and additional experiments (see
Section H). Moreover, in Section F.1.2 we present a sketch of the proof of the main convergence
result for clipped-SSTM and explain the intuition behind it.

2 Accelerated SGD with Clipping

In this section we consider the situation when f(x) is convex and L-smooth on Rn. For this problem
we present a new method called Clipped Stochastic Similar Triangles Method (clipped-SSTM, see
Algorithm 1). In our method we use a clipped stochastic gradient that is defined in the following way:

clip(∇f(x, ξ), λ) = min {1, λ/‖∇f(x,ξ)‖2}∇f(x, ξ) (4)
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Algorithm 1 Clipped Stochastic Similar Triangles Method (clipped-SSTM)
Input: starting point x0, number of iterationsN , batchsizes {mk}Nk=1, stepsize parameter a, clipping

parameter B
1: Set A0 = α0 = 0, y0 = z0 = x0

2: for k = 0, . . . , N − 1 do
3: Set αk+1 = k+2

2aL , Ak+1 = Ak + αk+1, λk+1 = B
αk+1

4: xk+1 = (Aky
k+αk+1z

k)/Ak+1

5: Draw fresh i.i.d. samples ξk1 , . . . , ξ
k
mk

and compute ∇f(xk+1, ξk) =
1
mk

∑mk
i=1∇f(xk+1, ξki )

6: Compute ∇̃f(xk+1, ξk) = clip(∇f(xk+1, ξk), λk+1) using (4)
7: zk+1 = zk − αk+1∇̃f(xk+1, ξk)
8: yk+1 = (Aky

k+αk+1z
k+1)/Ak+1

9: end for
Output: yN

where ∇f(x, ξ) = 1
m

∑m
i=1∇f(x, ξi) is a mini-batched version of ∇f(x). That is, in order to

compute clip(∇f(x, ξ), λ) one needs to get m i.i.d. samples∇f(x, ξ1), . . . ,∇f(x, ξm), compute its
average and then project the result ∇f(x, ξ) on the Euclidean ball with radius λ and center at the
origin. Next theorem summarizes the main convergence result for clipped-SSTM.

Theorem 2.1. Assume that function f is convex and L-smooth. Then for all β ∈ (0, 1)
and N ≥ 1 such that ln(4N/β) ≥ 2 we have that after N iterations of clipped-SSTM
with mk = Θ

(
max

{
1, σ

2α2
k+1N ln(N/β)/R2

0

})
, B = Θ(R0/ln(N/β)) and a = Θ(ln2(N/β)) that

f(yN ) − f(x∗) = O(aLR
2
0/N2) holds with probability at least 1 − β where R0 = ‖x0 − x∗‖2.

In other words, if we choose a to be equal to the maximum from (27), then the method achieves
f(yN ) − f(x∗) ≤ ε with probability at least 1 − β after O(

√
LR2

0/ε ln(LR
2
0/εβ)) iterations and

requires O(max{
√
LR2

0/ε, σ
2R2

0/ε2} ln(LR
2
0/εβ)) oracle calls.

The theorem says that for any β ∈ (0, 1) clipped-SSTM converges to ε-solution with probability
at least 1− β and requires exactly the same number of stochastic first-order oracle calls (up to the
difference in constant and logarithmical factors) as optimal stochastic methods like AC-SA [18, 38] or
Stochastic Similar Triangles Method [16, 22]. However, our method achieves this rate under less
restrictive assumption. Indeed, Theorem 2.1 holds even in the case when the stochastic gradient
∇f(x, ξ) satisfies only (2) and can have heavy-tailed distribution. In contrast, all existing results that
establish (30) and that are known in the literature hold only in the light-tails case, see Section 1.3.1.

Finally, when σ2 is big then Theorem 2.1 says that at iteration k clipped-SGD requires large
batchsizes mk ∼ k2N (see (26)) which is proportional to ε−3/2 for last iterates. It can make the cost
of one iteration extremely high, therefore, we also consider different stepsize policies that remove
this drawback in Section F.1.1. In particular, the following result shows that clipped-SSTM achieves
the same oracle complexity even with constant batchsizes mk when stepsize parameter a is chosen
properly.

Corollary 2.2. Let the assumptions of Theorem F.1 hold and a =

Θ
(

max{1, ln2(N/β),
√

lnN/βσN
3/2
/LR0}

)
. Then mk = O(1) and clipped-SSTM

achieves f(yN ) − f(x∗) ≤ ε with probability at least 1 − β after
O(max{

√
LR2

0/ε, σ
2R2

0/ε2} ln((LR2
0+σR0)/εβ)) iterations/oracle calls.

3 SGD with Clipping

In this section we present our complexity results for clipped-SGD (see Algorithm 2) in the convex
case. Next theorem summarizes the main convergence result for clipped-SGD in this case.
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Algorithm 2 Clipped Stochastic Gradient Descent (clipped-SGD)

Input: starting point x0, number of iterations N , batchsizes {mk}N−1
k=0 , stepsize γ > 0, clipping

level λ > 0
1: for k = 0, . . . , N − 1 do
2: Draw fresh i.i.d. samples ξk1 , . . . , ξ

k
mk

and compute∇f(xk, ξk) = 1
mk

∑mk
i=1∇f(xk, ξki )

3: Compute ∇̃f(xk, ξk) = clip(∇f(xk, ξk), λ) using (4)
4: xk+1 = xk − γ∇̃f(xk, ξk)
5: end for

Output: x̄N = 1
N

∑N−1
k=0 xk

Theorem 3.1. Assume that function f is convex and L-smooth. Then for all β ∈ (0, 1) and N ≥ 1
such that ln(4N/β) ≥ 2 we have that after N iterations of clipped-SGD with λ = Θ(LR0) and
mk = m = Θ(max{1,Nσ2

/R2
0L

2 ln(N/β)}) where R0 = ‖x0−x∗‖2 and stepsize γ = 1/80L ln(4N/β)

that f(x̄N )−f(x∗) = O(LR
2
0 ln(4N/β)/N) with probability at least 1−β where x̄N = 1

N

∑N−1
k=0 xk.

In other words, the method achieves f(x̄N ) − f(x∗) ≤ ε with probability at least 1 − β after
O
(
LR2

0/ε ln(LR
2
0/εβ)

)
iterations and requires O(max{LR2

0/ε, σ
2R2

0/ε2} ln(LR
2
0/εβ)) oracle calls.

To the best of our knowledge, it is the first result for clipped-SGD establishing non-trivial complexity
guarantees for the convergence with high probability. Up to the difference in logarithmical factors our
bound recovers the complexity bound for SGD which was obtained under light tails assumption and the
complexity bound for RSMD. However, unlike in [47], we do not assume that the optimization problem
is defined on the bounded set. The proof technique is similar to one we use to prove Theorem F.1.
One can find the full proof in Section G.3.1.

4 Numerical Experiments

We have tested4 clipped-SSTM and clipped-SGD on the logistic regression problem, the datasets
were taken from LIBSVM library [4]. To implement methods we use Python 3.7 and standard
libraries. One can find additional experiments and details in Section H.2.

First of all, using standard solvers from scipy library we find good enough approximation of the
solution of the problem for each dataset. For simplicity, we denote this approximation by x∗. Then,
we numerically study the distribution of ‖∇fi(x∗)‖2 and plot corresponding histograms for each
dataset, see Figure 2. These histograms hint that near the solution for heart dataset tails of stochastic
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Figure 2: Histograms of ‖∇fi(x∗)‖2 for different datasets. Red lines correspond to probability
density functions of normal distributions with empirically estimated means and variances.

gradients are not heavy and the norm of the noise can be well-approximated by Gaussian distribution,
whereas for diabetes and australian we see the presense of outliers that makes the distribution
heavy-tailed.

Next, let us consider numerical results for SGD and SSTM with and without clipping applied to
solve logistic regression problem on these 3 datasets, see Figures 3- 5. For all methods we used
constant batchsizes m, stepsizes and clipping levels were tuned, see Section H.2 for the details.
In our experiments we also consider clipped-SGD with periodically decreasing clipping level λ

4One can find the code here: https://github.com/eduardgorbunov/accelerated_clipping.
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Figure 3: Trajectories of SGD, clipped-SGD, SSTM and clipped-SSTM applied to solve logistic
regression problem on heart dataset.

(d-clipped-SGD in Figures), i.e. the method starts with some initial clipping level λ0 and after
every l epochs or, equivalently, after every drl/me iterations the clipping level is multiplied by some
constant α ∈ (0, 1).
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Figure 4: Trajectories of SGD, clipped-SGD, SSTM and clipped-SSTM applied to solve logistic
regression problem on diabetes dataset.
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Figure 5: Trajectories of SGD, clipped-SGD, SSTM and clipped-SSTM applied to solve logistic
regression problem on australian dataset.

Let us discuss the obtained numerical results. First of all, d-clipped-SGD stabilizes the oscillations
of SGD even if the initial clipping level was high. In contrast, clipped-SGD with too large clipping
level λ behaves similarly to SGD. Secondly, we emphasize that due to the fact that we used small
bathcsizes SSTM has very large oscillations in comparison to SGD. Actually, fast error/noise accumula-
tion is a typical drawback of accelerated SGD with small batchsizes [35]. Moreover, deterministic
accelerated and momentum-based methods often have non-monotone behavior (see [5] and references
therein). However, to some extent clipped-SSTM suffers from the first drawback less than SSTM and
has comparable convergence rate with SSTM. Finally, in our experiments on heart and australian
datasets clipped-SSTM converges faster than SGD and clipped-SGD and oscillates little, while
on diabetes dataset it also converges faster than SGD, but oscillates more if parameter B is not
fine-tuned.

We also want to mention that the behavior of SGD on heart and diabetes datasets correlates with
the insights from Section 1.2 and our numerical study of the distribution of ‖∇fi(x∗)‖2. Indeed, for
heart dataset SGD has little oscillations since the distribution of ‖∇fi(xk)−∇f(xk)‖2, where xk is
the last iterate, is well concentrated near its mean and can be approximated by Gaussian distribution
(see the details in Section H.2). In contrast, Figure 4 shows that SGD oscillates more than in the
previous example. One can explain such behavior using Figure 2 showing that the distribution of
‖∇f(x∗)‖2 has heavier tails than for heart dataset.
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However, we do not see any oscillations of SGD for australian dataset despite the fact that according
to Figure 2 the distribution of ‖∇fi(x∗)‖2 in this case has heavier tails than in previous examples.
Actually, there is no contradiction and in this case it simply means that SGD does not get close to the
solution in terms of functional value, despite the fact that we used γ = 1/L. In Section H.2 we present
the results of different tests where we tried to use bigger stepsize γ in order to reach oscillation region
faster and show that in fact in that region SGD oscillates significantly more, but clipping fixes this
issue without spoiling the convergence rate.

5 Discussion

In this paper we close the gap in the theory of high-probability complexity bounds for stochastic
optimization with heavy-tailed noise. In particular, we propose a new accelerated stochastic method —
clipped-SSTM — and prove the first accelerated high-probability complexity bounds for smooth
convex stochastic optimization without light-tails assumption. Moreover, we extend our results
to the strongly convex case and prove new complexity bounds outperforming the state-of-the-art
results. Finally, we derive first high-probability complexity bounds for the popular method called
clipped-SGD in convex and strongly convex cases and conduct a numerical study of the considered
methods.

However, our approach has several limitations. In particular, it significantly relies on the assumption
that the optimization problem is defined on Rn. Moreover, we do not consider regularized or
composite problems like in [47] and [7]. However, in [47] it is significant in the analysis that the set
where the problem is defined is bounded and in [7] the analysis works only for the strongly convex
problems. It would also be interesting to generalize our approach to generally non-smooth problems
using the trick from [52].

Broader Impact

Our contribution is primarily theoretical. Therefore, a broader impact discussion is not applicable.
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programming: modeling and theory. SIAM, 2014.

[65] Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic
gradient noise in deep neural networks. arXiv preprint arXiv:1901.06053, 2019.

[66] Vladimir Spokoiny et al. Parametric estimation. finite sample theory. The Annals of Statistics,
40(6):2877–2909, 2012.

[67] Ilnura Usmanova. Robust solutions to stochastic optimization problems. Master Thesis
(MSIAM); Institut Polytechnique de Grenoble ENSIMAG, Laboratoire Jean Kuntzmann, 2017.

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[69] Waloddi Weibull. A statistical distribution function of wide applicability. Journal of Applied
Mechanics, 18:293–297, 1951.

[70] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020.

[71] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi,
Sanjiv Kumar, and Suvrit Sra. Why adam beats sgd for attention models. arXiv preprint
arXiv:1912.03194, 2019.

12



Appendix
Stochastic Optimization with Heavy-Tailed Noise via
Accelerated Gradient Clipping
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A Notations and Definitions

We use 〈x, y〉 to define standard inner product between two vectors x, y ∈ Rn, i.e. 〈x, y〉 def
=∑n

i=1 xiyi, where xi is i-th coordinate of vector x, i = 1, . . . , n. Standard Euclidean norm of vector

x ∈ Rn is defined as ‖x‖2
def
=
√
〈x, x〉.

We use P{·} to define probability measure which is always known from the context, E[·] denotes
mathematical expectation, Eξ[·] is used to define conditional mathematical expectation with respect to
the randomness coming from ξ only and E [ξ | η] denotes mathematical expectation of ξ conditional
on η. In our proofs, we also use Ek[·] to denote conditional mathematical expectation with respect to
all randomness coming from k-th iteration. For P-measurable set X we use 1X to denote indicator
of event X , i.e.

1X =

{
1, if event X holds,
0, otherwise.

(5)

Next, we introduce some standard definitions.

Definition A.1 (L-smoothness). Function f is called L-smooth on Rn with L > 0 when it is
differentiable and its gradient is L-Lipschitz continuous on Rn, i.e.

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Rn. (6)

It is well-known that L-smoothness implies (see [54])

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22 ∀x, y ∈ Rn, (7)

and if f is additionally convex, then

‖∇f(x)−∇f(y)‖22 ≤ 2L (f(x)− f(y)− 〈∇f(y), x− y〉) ∀x, y ∈ Rn. (8)

Since in this paper we focus only on smooth optimization problems we introduce strong convexity in
the following way.
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Definition A.2 (µ-strong convexity). Differentiable function f is called µ-strongly convex on Rn
with µ ≥ 0 if for all x, y ∈ Rn

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖22. (9)

In particular, µ-strong convexity implies that for all x ∈ Rn

f(x)− f(x∗) ≥ µ

2
‖x− x∗‖22. (10)

Throughout the paper, we use x∗ to denote any solution of problem (1) assuming its existence. By the
complexity of stochastic first-order method we always mean the total number of stochastic first-order
oracle calls that the method needs in order to produce such a point x̂ that f(x̂) − f(x∗) ≤ ε with
probability at least 1− β for some ε > 0 and β ∈ (0, 1). Finally, in the complexity bounds we often
use R0 to denote ‖x0 − x∗‖2 where x0 is the starting point of the method.
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B Related Work: Additional Details

B.1 Related Work on Non-Smooth Stochastic Optimization

Here we present an overview of existing results in the convex non-smooth case, i.e. when f is
still convex but not necessarily L-smooth and the stochastic gradients have a bounded second
moment: Eξ[‖∇f(x, ξ)‖22] ≤ M2 for all x ∈ Rn. Under additional assumption that the stochastic
gradients have light-tailed distribution it was shown that SGD [49] hasO

(
M2R2

0 ln(β−1)/ε2
)

complexity
and if additionally f is µ-strongly convex it was shown in [31, 32] that the restarted version of
SGD has O

(
M2 ln(β−1 ln(M2µ−1ε−1))/µε

)
complexity (see also [27, 33, 58]). Moreover, removing

logarithmical factors from these bounds we get the complexity bounds of these methods for the
convergence in expectation, i.e. needed number of oracle calls to find such x̂ that E[f(x̂)]−f(x∗) ≤ ε.
That is, under light tails assumption high-probability complexity bounds and complexity bounds in
expectation for SGD and restarted-SGD differ only in logarithmical factors of 1/β.

Unfortunately, for these methods the situation changes dramatically when the stochastic gradients
are heavy-tailed. To the best of our knowledge, the best know bounds in the literature with the same
dependency on ε are O

(
M2R2

0/β2ε2
)

and O
(
M2
/µβε

)
. One can obtain these bounds using complexity

results for the convergence in expectation and Markov’s inequality. However, it leads to significantly
worse dependence on β: instead of O(ln(β−1)) we get O(β−2) and O(β−1) dependence on the
confidence level β. Furthermore, based on the well-known results on the distribution of sum of
i.i.d. random variables (see Section D.2) in [15] authors consider the case when the tails of the
distribution of stochastic gradient satisfy P{‖∇f(x, ξ) − ∇f(x)‖2 > s} = O(s−α) for α > 2
and give the following complexity bounds without formal proofs that SGD for convex problems and
restarted-SGD for µ-strongly convex problems have following complexities:

O

(
M2R2 max

{
ln
(
β−1

)
ε2

,

(
1

βεα

) 2
3α−2

})
,

O

max

M
2 ln

(
β−1 ln M2

µε

)
µε

,

(
M2

µε

) α
3α−2

(
β−1 ln

M2

µε

) 2
3α−2


 .

The first terms in maximums above correspond to the Central Limit Theorem regime, while the
second terms correspond to the heavy-tailed regime, see Section D.2. These bounds show that heavy
tailed distributions of the stochastic gradients significantly spoil complexity bounds of SGD and
restarted-SGD when the confidence level β is small enough.

B.2 Related Work on Gradient Clipping

As we mentioned Section 1.2 clipped-SGD [21, 45, 56, 67] is known to be robust to the noise in
stochastic gradients and performs better than SGD in the vicinity of extremely steep cliffs. Zhang et al.
[71] analyse the convergence of clipped-SGD in expectation for strongly convex and non-convex
objectives under assumption that E[‖∇f(x, ξ)‖α2 ] is bounded for some α ∈ (1, 2]. For α < 2 this
assumption covers some heavy-tailed distributions of stochastic gradients appearing in practice.
Moreover, in [71] authors conduct several numerical tests showing that in some real-world problems
where the noise in stochastic gradients is heavy-tailed clipped-SGD converges faster than SGD. In
[70] Zhang et al. found that clipped-GD is able to converge in non-convex case to the stationary
point under the relaxed smoothness assumption with O(ε−2) rate while Gradient Descent (GD) can
fail to converge with the same rate in this setting. A very similar approach based on the normalization
of GD is studied in [28, 39].
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C Basic Facts

In this section we enumerate for convenience basic facts that we use many times in our proofs.

Fenchel-Young inequality. For all a, b ∈ Rn and λ > 0

|〈a, b〉| ≤ ‖a‖
2
2

2λ
+
λ‖b‖22

2
. (11)

Squared norm of the sum. For all a, b ∈ Rn

‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22. (12)

Inner product representation. For all a, b ∈ Rn

〈a, b〉 =
1

2

(
‖a+ b‖22 − ‖a‖22 − ‖b‖22

)
(13)

Variance decomposition. If ξ is a random vector in Rn with bounded second moment, then

E
[
‖ξ + a‖22

]
= E

[
‖ξ − E[ξ]‖22

]
+ ‖E[ξ] + a‖22 (14)

for any deterministic vector a ∈ Rn. In particular, this implies

E
[
‖ξ − E[ξ]‖22

]
≤ E

[
‖ξ + a‖22

]
(15)

for any deterministic vector a ∈ Rn.

D Auxiliary Results

D.1 Bernstein Inequality
Lemma D.1 (Bernstein inequality for martingale differences [1, 12, 14]). Let the sequence of
random variables {Xi}i≥1 form a martingale difference sequence, i.e. E [Xi | Xi−1, . . . , X1] = 0

for all i ≥ 1. Assume that conditional variances σ2
i

def
= E

[
X2
i | Xi−1, . . . , X1

]
exist and are

bounded and assume also that there exists deterministic constant c > 0 such that ‖Xi‖2 ≤ c almost
surely for all i ≥ 1. Then for all b > 0, F > 0 and n ≥ 1

P

{∣∣∣ n∑
i=1

Xi

∣∣∣ > b and
n∑
i=1

σ2
i ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
. (16)

D.2 About the Sum of i.i.d. Random Variables with Heavy Tails

In this section we present some classical results about the distribution of sum of i.i.d. random variables∑N
k=1 ξk with heavy tails [2]. As one can see from our proofs of main results for clipped-SSTM

and clipped-SGD such sums play a central role in the analysis of convergence with high probability.
Assume that {ξk} is i.i.d. with E[ξk] = 0 and Var[ξk]

def
= E[(ξk − E[ξk])2] = σ2. Assume also that

V (s) = P {ξk ≥ s} = Θ (s−α), where α > 2. In this case

P

{
N∑
k=1

ξk ≥ s

}
' 1− Φ

(
s√
σ2N

)
+N · V (s),

where N � 1 and Φ(x) = 1
2π

∫ x
−∞ exp

(
−y2/2

)
dy. Since

0.2 exp

(
−2x2

π

)
≤ 1− Φ(x) ≤ exp

(
−x

2

2

)
,

we have5

P

{
N∑
k=1

ξk ≥ s

}
' 1− Φ

(
s√
σ2N

)
, s ≤

√
(α− 2)σ2N lnN (CLT regime) (17)

5CLT = Central Limit Theorem.
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and

P

{
N∑
k=1

ξk ≥ s

}
' N · V (s), s >

√
(α− 2)σ2N lnN (heavy-tailed regime). (18)

This simple observation can play a significant role in deriving complexity results for non-smooth
convex optimization under the assumption that stochastic gradients are heavy-tailed, see [15] for the
details.

E Technical Results
Lemma E.1. Consider two sequences of non-negative numbers {αk}k≥0 and {Ak}k≥0 such that

α0 = A0 = 0, Ak+1 = Ak + αk+1, αk+1 =
k + 2

2aL
∀k ≥ 0, (19)

where a, L > 0. Then for all k ≥ 0

Ak+1 =
(k + 1)(k + 4)

4aL
, (20)

Ak+1 ≥ aLα2
k+1. (21)

Proof. By definition of Ak+1 we have that

Ak+1 =

k+1∑
l=1

αl =
1

2aL

k+1∑
l=1

(l + 1) =
(k + 1)(k + 4)

4aL
.

Using (k + 1)(k + 4) ≥ (k + 2)2 together with the inequality above we derive (21).
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F Accelerated SGD with Clipping: Exact Formulations and Missing Proofs

In this section we provide exact formulations of all the results that we have for clipped-SSTM and
R-clipped-SSTM together with the full proofs.

F.1 Convex Case

Recall that in order to compute clip(∇f(x, ξ), λ) one needs to get m i.i.d. samples
∇f(x, ξ1), . . . ,∇f(x, ξm), compute its average

∇f(x, ξ) =
1

m

m∑
i=1

∇f(x, ξi), (22)

and then project the result ∇f(x, ξ) on the Euclidean ball with radius λ and center at the origin. We
also notice that

Eξ[∇f(x, ξ)] = ∇f(x), (23)

Eξ
[
‖∇f(x, ξ)−∇f(x)‖22

]
≤ σ2

m
. (24)

F.1.1 Convergence Guarantees for clipped-SSTM

Next theorem summarizes the main convergence result for clipped-SSTM.

Theorem F.1. Assume that function f is convex and L-smooth. Then for all β ∈ (0, 1) and N ≥ 1
such that

ln
4N

β
≥ 2 (25)

we have that after N iterations of clipped-SSTM with

mk = max

{
1,

6000σ2α2
k+1N ln 4N

β

C2R2
0

,
10368σ2α2

k+1N

C2R2
0

}
, (26)

B =
CR0

8 ln 4N
β

, a ≥ max

1,
16 ln 4N

β

C
, 36

(
2 ln

4N

β
+

√
4 ln2 4N

β
+ 2 ln

4N

β

)2
 , (27)

that with probability at least 1− β

f(yN )− f(x∗) ≤ 2aLC2R2
0

N(N + 3)
, (28)

where R0 = ‖x0 − x∗‖2 and
C =

√
5. (29)

In other words, if we choose a to be equal to the maximum from (27), then the method achieves

f(yN )−f(x∗) ≤ ε with probability at least 1−β afterO
(√

LR2
0

ε ln
LR2

0

εβ

)
iterations and requires

O

(
max

{√
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0

εβ

)
oracle calls. (30)

One can easily notice that multiplicative constant factors in formulas for mk and a are too big and
seem to be impractical, but in practice one can tune these constants to get good enough performance.
That is, big constants in (26) and (27) are needed only in our analysis in order to get bound (30).

Finally, when σ2 is big then Theorem F.1 says that at iteration k clipped-SGD requires large
batchsizes mk ∼ k2N (see (26)) which is proportional to ε−3/2 for last iterates. It can make the cost
of one iteration extremely high, therefore, we consider different stepsize policies that remove this
drawback.
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Corollary F.2. Let the assumptions of Theorem F.1 hold.

1. (Medium batchsize). If N and β are such that N ln 4N
β is bigger than the maximum from

(27), then for a = N ln 4N
β we have

mk = max

{
1,

6000σ2(k + 2)2

4L2NC2R2
0 ln 4N

β

,
10368σ2(k + 2)2

4L2C2R2
0N ln2 4N

β

}
(31)

and the method achieves f(yN ) − f(x∗) ≤ ε with probability at least 1 − β after
O
(
LR2

0

ε ln
LR2

0

εβ

)
iterations and requires

O

(
max

{
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0

εβ

)
oracle calls. (32)

2. (Constant batchsize). If N and β are such that a0N
3/2
√

ln 4N
β is bigger than the max-

imum from (27) for some positive constant a0, then for a = a0N
3/2
√

ln 4N
β we have

mk = max

{
1,

6000σ2(k + 2)2

4a2
0L

2N2C2R2
0

,
10368σ2(k + 2)2

4a2
0L

2C2R2
0N

2 ln 4N
β

}
(33)

and the method achieves f(yN )− f(x∗) ≤ ε with probability at least 1− β after
O
(
a20L

2R4
0

ε2 ln
a0LR

2
0

εβ

)
iterations and requires

O

(
max

{
a2

0L
2R4

0

ε2
,
σ2R2

0

ε2

}
ln
a0LR

2
0

εβ

)
oracle calls. (34)

Finally, if a0 = σ
LR0

, then mk = O(1) for k = 0, 1, . . . , N and clipped-SSTM finds

ε-solution with probability at least 1− β after O
(
σ2R2

0

ε2 ln σR0

εβ

)
iterations and requires

O(1) oracle calls per iteration.

In the first case batchsizes increase from O(1) for k = 1 to O(ε−1) for k = N and the overall
complexity recovers the complexity of Robust Stochastic Mirror Descent (RSMD) from [47]. However,
analysis from [47] works only for the optimization problems on compact convex sets, whereas our
analysis handles an unconstrained optimization on Rn. Despite the similarities of our approach and
[47], it seems that the technique from [47] cannot be generalized to obtain the complexity like in (30)
due to the fast bias accumulation that appears because of the special truncation of stochastic gradients
that is used in RSMD.

In the second case the corollary establishes ε−2 ln(ε−1β−1) rate for clipped-SSTM with constant
batchsizes, i.e. mk = O(1) for all k. The ability of clipped-SSTM to converge with constant
batchsizes makes it more practical and applicable for wider class of problems where it can be very
expensive to compute large batchsizes, e.g. training deep neural networks. Moreover, when σ is not
too small, i.e. σ2 ≥ Lε, this rate is optimal (up to logarithmical factors) and also recovers the rate of
RSMD.

Finally, setting

a′ = max

1,
16 ln 4N

β

C
, 36

(
2 ln

4N

β
+

√
4 ln2 4N

β
+ 2 ln

4N

β

)2
 ,

a = max

{
a′,

σN 3/2

LR0

√
ln

4N

β

}
(35)

and mk as in (26), we get mk = O(1) for k = 0, 1, . . . , N and derive the following result.
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Corollary F.3. Let the assumptions of Theorem F.1 hold, a is chosen as in (35) andmk is computed
via (26). Then clipped-SSTM achieves f(yN )− f(x∗) ≤ ε with probability at least 1− β after

O

(
max

{√
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0 + σR0

εβ

)
iterations/oracle calls.

F.1.2 Sketch of the Proof of Theorem F.1

We start with the following lemma that is pretty standard in the analysis of Stochastic Similar
Triangles Method, e.g. see the proof of Theorem 1 from [10].

Lemma F.4. Let f be a convex L-smooth function and let stepsize parameter a satisfy a ≥ 1.
Then after N ≥ 0 iterations of clipped-SSTM for all z ∈ Rn we have

AN
(
f(yN )− f(z)

)
≤ 1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1 ‖θk+1‖22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
, (36)

θk+1
def
= ∇̃f(xk+1, ξk)−∇f(xk+1). (37)

That is, if z = x∗, then the result above gives a preliminary upper bound for AN (f(yN )− f(x∗)).
The first and the second terms in the r.h.s. of (36) come from the analysis of Similar Triangles Method
[16] and three last terms have a stochastic nature. In particular, they explicitly depend on differences
θk+1 = ∇̃f(xk+1, ξk) − ∇f(xk+1) between clipped mini-batched stochastic gradients and full
gradients at xk+1, so, if ∇̃f(xk+1, ξk) = ∇f(xk+1) with probability 1, then we easily get needed
convergence rate. However, we are interested in the more general case and, as a consequence, to
continue the proof, we need to find a good enough upper bound for the last three terms from (36). In
other words, we need to show that choosing parameters a, mk and λk+1 properly we can upper bound
these terms by something that coincides with ‖z0 − x∗‖22 up to numerical multiplicative constant.
The proof of convergence result for RSMD from [47] where authors provide upper bound for similar
sums hints that Bernstein’s inequality (see Lemma D.1) applied to estimate these terms can help us
to reach our goal. In order to apply Bernstein’s inequality one should derive tight bounds for such
characteristics of ∇̃f(xk+1, ξk) as upper bounds for the magnitude, bias, variance and distortion and
the next lemma provides us with this.

Lemma F.5. For all k ≥ 0 the following inequality holds:∥∥∥∇̃f(xk+1, ξk)− Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥
2
≤ 2λk+1. (38)

Moreover, if ‖∇f(xk+1)‖2 ≤ λk+1

2 for some k ≥ 0, then for this k we have:∥∥∥Eξk

[
∇̃f(xk+1, ξk)

]
−∇f(xk+1)

∥∥∥
2
≤ 4σ2

mkλk+1
, (39)

Eξk

[∥∥∥∇̃f(xk+1, ξk)−∇f(xk+1)
∥∥∥2

2

]
≤ 18σ2

mk
, (40)

Eξk

[∥∥∥∇̃f(xk+1, ξk)− Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥2

2

]
≤ 18σ2

mk
. (41)

Clearly, clipping introduces a bias in ∇̃f(xk+1, ξk) which influences the convergence of the method.
Hence, the clipping level λk+1 should be chosen in a very accurate way. Below we informally
describe what does it mean and present the sketch of the remaining part of the proof.

Imagine the ideal situation: ∇f(xk+1, ξk) = ∇f(xk+1) with probability 1 for all k, i.e. we have
an access to the full gradients at points xk+1. Then it is natural to choose λk+1 in such a way
that clip(∇f(xk+1), λk+1) = ∇f(xk+1) in order to recover Similar Triangles Method (STM) that
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converges with optimal rate in the deterministic case. In other words, one can pick λk+1 such that
‖∇f(xk+1)‖2 ≤ λk+1 and get an optimal method. Since we know that in this case the method
should converge with O(1/k2) rate in terms of f(xk)− f(x∗) one can expect that the gradient’s norm
decays with O(1/k) rate, so, one can choose λk+1 to be proportional to 1/k. It is exactly what we do
when we define λk+1 as B/αk+1.

The ideal case described above gives a good insight on how to choose λk+1 in the general case
and can be described as follows: if we want to prevent our gradient estimator ∇̃f(xk+1, ξk) from
large deviations from ∇f(xk+1) with high probability, then it is needed to choose λk+1 such that
‖∇f(xk)‖2 ≤ cλk+1 with high probability where c < 1 is some positive number. This choice
guarantees that with high probability clipped mini-batched gradient ∇̃f(xk+1, ξk) cannot deviates
from∇f(xk+1) significantly and, as a consequence, the convergence rate of clipped-SSTM in terms
of the number of iterations needed to achieve the desired accuracy of the solution with high probability
becomes similar to the convergence rate of STM up to some logarithmical factors depending on the
confidence level.

In particular, we choose λk+1 such that ‖∇f(xk+1)‖2 ≤ λk+1/2 with high probability. Moreover, we
derive this relation by induction via refined estimation of the three last terms from the r.h.s. of (36)
that is based on the new variant of advanced recurrences technique from [22, 23]. The main trick
there is in showing by induction that sequence ‖zk − x∗‖2 is bounded by some constant multiplied
by ‖x0− x∗‖2 and in deriving ‖∇f(xk+1)‖2 ≤ λk+1/2 simultaneously for all k = 0, 1, . . . , N . With
such bounds and Lemma F.5 in hand, it is possible to apply Bernstein’s inequality to three sums from
the r.h.s. of (36) since all summands are bounded with high probability. After applying Bernstein’s
inequality we adjust parameters αk+1 and mk in such a way that after rearranging the terms in the
obtained upper bounds we get that r.h.s. in (36) (with z = x∗) is smaller than ‖x0 − x∗‖22 up to some
multiplicative numerical constant. This finishes the proof.

To conclude, the key tools in our analysis are Bernstein’s inequality (see Lemma D.1) and advanced
recurrences technique [22, 23] that helps us to show boundedness of ‖zN−x∗‖2 and ‖∇f(xk+1)‖2 ≤
λk+1/2 with high probability. We provide detailed proofs of presented result in the Appendix (see
Section F.3).

F.2 Strongly Convex Case

In this section we assume additionally that f(x) is µ-strongly convex. For this case we mod-
ify Algorithm 1 and propose a new method called Restarted Clipped Similar Triangles Method
(R-clipped-SSTM), see Algorithm 3. At each iteration R-clipped-SSTM runs clipped-SSTM for

Algorithm 3 Restarted Clipped Stochastic Similar Triangles Method (R-clipped-SSTM)
Input: starting point x0, number of iterationsN0 of clipped-SSTM, number of clipped-SSTM runs,

batchsizes {m0
k}
N0−1
k=0 , {m1

k}
N0−1
k=0 , . . . , {mτ

k}
N0−1
k=0 , stepsize parameter a, clipping parameters

{Bt}t=0

1: Set x̂0 = x0

2: for t = 0, 1, . . . , τ − 1 do
3: Run clipped-SSTM (Algorithm 1) for N0 iterations with batchsizes {mt

k}
N0

k=1, stepsize
parameter a, clipping parameter Bt and starting point x̂t. Define the output of clipped-SSTM
by x̂t+1.

4: end for
Output: x̂τ

N0 iterations from the current point x̂k and use its output as next iterate x̂k+1. In literature this
approach is known as the restarts technique [11, 31, 32, 51]. Choosing N0 and parameters mk, a and
B in a proper way one can get an accelerated method for strongly convex objectives. Theorem below
states the main convergence result for R-clipped-SSTM.
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Theorem F.6. Assume that f is µ-strongly convex and L-smooth. If we choose β ∈ (0, 1), τ and
N0 ≥ 1 such that

ln
4N0τ

β
≥ 2, N0 ≥ C

√
8aL

µ
, (42)

and

mt
k = max

{
1,

6000 · 2tσ2α2
k+1N0 ln 4N0τ

β

C2R2
,

10368 · 2tσ2α2
k+1N0

C2R2

}
, (43)

Bt =
CR

8 · 2t ln 4N0τ
β

, (44)

a ≥ max

1,
16 ln 4N0τ

β

C
, 36

(
2 ln

4N0τ

β
+

√
4 ln2 4N0τ

β
+ 2 ln

4N0τ

β

)2
 , (45)

where R =
√

2(f(x0)−f(x∗))
µ and C =

√
5, then we have that after τ runs of clipped-SSTM in

R-clipped-SSTM the inequality

f(x̂τ )− f(x∗) ≤ 2−τ
(
f(x0)− f(x∗)

)
(46)

holds with probability at least 1 − β. That is, if we choose a to be equal to the maximum from
(45) and N0 ≤ C1

√
8aL
µ with some numerical constant C1 ≥ C, then the method achieves

f(x̂τ )− f(x∗) ≤ ε with probability at least 1− β after

O

(√
L

µ
ln

(
µR2

ε

)
ln

(
L

µβ
ln
µR2

ε

))
iterations (in total) (47)

of clipped-SSTM and requires

O

(
max

{√
L

µ
ln
µR2

ε
,
σ2

µε

}
ln

(
L

µβ
ln
µR2

ε

))
oracle calls. (48)

In other words, R-clipped-SSTM has the same convergence rate as optimal stochastic methods for
strongly convex problems like Multi-Staged AC-SA (MS-AC-SA) [19] or Stochastic Similar Triangles
Method for strongly convex problems (SSTM_sc) [16, 22]. Moreover, in Theorem F.6 we do not
assume that stochastic gradients are sampled from sub-Gaussian distribution while corresponding
results for MS-AC-SA and SSTM_sc are substantially based on the light tails assumption. Our bound
outperforms the state-of-the-art result from [7] in terms of the dependence on ln L

µ . It is worth to
mention here that using special restarts technique Nazin et al. [47] generalize their method (RSMD) for
the strongly convex case, but since RSMD is not accelerated their approach gives only non-accelerated
convergence rate.

We also emphasize that big numerical factors in formulas formt
k and a are needed only in our analysis

and in practice they can be tuned. However, when σ2 is big bathsizes mt
k become of the order k2ε−1.

It can make the cost of one iteration extremely high, therefore, as for clipped-SSTM we consider a
different stepsize policy removing this drawback.

Corollary F.7. Let the assumptions of Theorem F.6 hold. Assume that conditions (42), (43), (44)
and (45) are satisfied for

a = Θ

(
σ4 ln2 N0τ

β

Lµε2

)
, N0 = Θ

(√
aL

µ

)
. (49)

Then after τ = dln(µR
2
/2ε)e runs of clipped-SSTM in R-clipped-SSTM the method achieves

f(x̂τ ) − f(x∗) ≤ ε with probability at least 1 − β. Moreover, the total number of iterations of
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clipped-SSTM equals

O

(
σ2

µε
ln

(
µR2

ε

)
ln

(
σ2

µεβ
ln
µR2

ε

))
(50)

with mt
k = O(1) for all k = 0, 1, . . . , N0 − 1, t = 0, 1, . . . , τ − 1.

When σ2 is big the obtained bound is comparable with bounds for restarted-RSMD and proxBoost,
see Table 2.

F.3 Proofs

F.3.1 Proof of Lemma F.4

Using zk+1 = zk − αk+1∇̃f(xk+1, ξk) we get that for all z ∈ Rn

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
+αk+1

〈
∇̃f(xk+1, ξk), zk+1 − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
+
〈
zk+1 − zk, z − zk+1

〉
(13)
≤ αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
− 1

2
‖zk − zk+1‖22

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22. (51)

Next, we notice that

yk+1 =
Aky

k + αk+1z
k+1

Ak+1
=
Aky

k + αk+1z
k

Ak+1
+
αk+1

Ak+1

(
zk+1 − zk

)
= xk+1+

αk+1

Ak+1

(
zk+1 − zk

)
(52)

which implies:

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉 (37),(51)
≤ αk+1

〈
∇f(xk+1), zk − zk+1

〉
− 1

2
‖zk − zk+1‖22

+αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

(52)
= Ak+1

〈
∇f(xk+1), xk+1 − yk+1

〉
− 1

2
‖zk − zk+1‖22

+αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

(7)
≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+
Ak+1L

2
‖xk+1 − yk+1‖22

−1

2
‖zk − zk+1‖22 + αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

(52)
= Ak+1

(
f(xk+1)− f(yk+1)

)
+

1

2

(
α2
k+1L

Ak+1
− 1

)
‖zk − zk+1‖22

+αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22.

Since Ak+1 ≥ aLα2
k+1 (see Lemma E.1) and a ≥ 1 we can continue our derivations:

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+ αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22. (53)
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Next, due to convexity of f we have

〈
∇̃f(xk+1, ξk), yk − xk+1

〉
(37)
=

〈
∇f(xk+1), yk − xk+1

〉
+
〈
θk+1, y

k − xk+1
〉

≤ f(yk)− f(xk+1) +
〈
θk+1, y

k − xk+1
〉
. (54)

By definition of xk+1 we have xk+1 = Aky
k+αk+1z

k

Ak+1
which implies

αk+1

(
xk+1 − zk

)
= Ak

(
yk − xk+1

)
(55)

since Ak+1 = Ak + αk+1. Putting all together we derive that

αk+1

〈
∇̃f(xk+1, ξk), xk+1 − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), xk+1 − zk

〉
+αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
(55)
= Ak

〈
∇̃f(xk+1, ξk), yk − xk+1

〉
+αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
(54),(53)
≤ Ak

(
f(yk)− f(xk+1)

)
+Ak

〈
θk+1, y

k − xk+1
〉

+Ak+1

(
f(xk+1)− f(yk+1)

)
+ αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

(55)
= Akf(yk)−Ak+1f(yk+1) + αk+1

〈
θk+1, x

k+1 − zk
〉

+αk+1f(xk+1) + αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

≤ Akf(yk)−Ak+1f(yk+1) + αk+1f(xk+1)

+αk+1

〈
θk+1, x

k+1 − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22.

Rearranging the terms we get

Ak+1f(yk+1)−Akf(yk) ≤ αk+1

(
f(xk+1) +

〈
∇̃f(xk+1, ξk), z − xk+1

〉)
+

1

2
‖zk − z‖22

−1

2
‖zk+1 − z‖22 + αk+1

〈
θk+1, x

k+1 − zk+1
〉

(37)
= αk+1

(
f(xk+1) +

〈
∇f(xk+1), z − xk+1

〉)
+αk+1

〈
θk+1, z − xk+1

〉
+

1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

+αk+1

〈
θk+1, x

k+1 − zk+1
〉

≤ αk+1f(z) +
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22 + αk+1

〈
θk+1, z − zk+1

〉
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where in the last inequality we use the convexity of f . Taking into account A0 = α0 = 0 and
AN =

∑N−1
k=0 αk+1 we sum up these inequalities for k = 0, . . . , N − 1 and get

ANf(yN ) ≤ ANf(z) +
1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk+1

〉
= ANf(z) +

1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1

〈
θk+1, ∇̃f(xk+1, ξk)

〉
(37)
= ANf(z) +

1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1 ‖θk+1‖22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
which concludes the proof.

F.3.2 Proof of Lemma F.5

Proof of (38). By definition of ∇̃f(xk+1, ξk) we have that ‖∇̃f(xk+1, ξk)‖2 ≤ λk+1 and, as a
consequence,

∥∥∥Eξk [∇̃f(xk+1, ξk)]
∥∥∥

2
≤ λk+1. Using this we get

∥∥∥∇̃f(xk+1, ξk)− Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥
2
≤
∥∥∥∇̃f(xk+1, ξk)

∥∥∥
2
+
∥∥∥Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥
2
≤ 2λk+1.

Proof of (39). In order to prove this bound we introduce following indicator random variables:

χk
def
= 1‖∇f(xk+1,ξk)‖2>λk+1

, ηk
def
= 1‖∇f(xk+1,ξk)−∇f(xk+1)‖2> 1

2λk+1
. (56)

From the assumptions of the lemma, we have that ‖∇f(xk+1)‖2 ≤ λk+1

2 which implies

∥∥∥∇f(xk+1, ξk)
∥∥∥

2
≤

∥∥∥∇f(xk+1, ξk)−∇f(xk+1)
∥∥∥

2
+
∥∥∇f(xk+1)

∥∥
2

≤
∥∥∥∇f(xk+1, ξk)−∇f(xk+1)

∥∥∥
2

+
λk+1

2
,

hence

χk ≤ ηk. (57)

The introduced notation helps us to rewrite ∇̃f(xk+1, ξk) in the following way:

∇̃f(xk+1, ξk) = ∇f(xk+1, ξk)(1− χk) +
λk+1

‖∇f(xk+1, ξ)‖2
∇f(xk+1, ξk)χk (58)

= ∇f(xk+1, ξk) +

 λk+1∥∥∥∇f(xk+1, ξk)
∥∥∥

2

− 1

∇f(xk+1, ξk)χk. (59)
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We use this representation to obtain the following inequality:

∥∥∥Eξk

[
∇̃f(xk+1, ξk)

]
−∇f(xk+1)

∥∥∥
2

(23),(59)
=

∥∥∥∥∥∥Eξk

 λk+1∥∥∥∇f(xk+1, ξk)
∥∥∥

2

− 1

∇f(xk+1, ξk)χk

∥∥∥∥∥∥
2

≤ Eξk

∥∥∥∇f(xk+1, ξk)
∥∥∥

2
·

∣∣∣∣∣∣ λk+1∥∥∥∇f(xk+1, ξk)
∥∥∥

2

− 1

∣∣∣∣∣∣χk


(56)
= Eξk

∥∥∥∇f(xk+1, ξk)
∥∥∥

2
·

1− λk+1∥∥∥∇f(xk+1, ξk)
∥∥∥

2

χk


(56)
≤ Eξk

[∥∥∥∇f(xk+1, ξk)
∥∥∥

2
χk

]
(57)
≤ Eξk

[∥∥∥∇f(xk+1, ξk)
∥∥∥

2
ηk

]
≤ Eξk

[∥∥∥∇f(xk+1, ξk)−∇f(xk+1)
∥∥∥

2
ηk

]
+
∥∥∇f(xk+1)

∥∥
2
Eξk [ηk]

≤

√
Eξk

[∥∥∥∇f(xk+1, ξk)−∇f(xk+1)
∥∥∥2

2

]
Eξk [η2

k]

+
∥∥∇f(xk+1)

∥∥
2
Eξk [ηk]

(24)
≤ σ

√
mk

√
Eξk [η2

k] +
λk+1

2
Eξk [ηk] . (60)

Next, we derive an upper bound for the expectation of ηk using Markov’s inequality:

Eξk [ηk] = Eξk
[
η2
k

]
= Pξk{ηk = 1}

(56)
= Pξk

{∥∥∥∇f(xk+1, ξk)−∇f(xk+1)
∥∥∥

2
>
λk+1

2

}

≤
4Eξk

[∥∥∥∇f(xk+1, ξk)−∇f(xk+1)
∥∥∥2

2

]
λ2
k+1

(24)
≤ 4σ2

mkλ2
k+1

. (61)

Putting all together we derive (39):

∥∥∥Eξk

[
∇̃f(xk+1, ξk)

]
−∇f(xk+1)

∥∥∥
2

(60),(61)
≤ 2σ2

mkλk+1
+
λk+1

2
· 4σ2

mkλ2
k+1

=
4σ2

mkλk+1
.

Proof of (40). Recall that in the space of random variables with finite second moment, i.e. in L2, one
can introduce a norm as

√
E|X|2 for an arbitrary random variable X from this space. Using triangle
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inequality for this norm we get

√
Eξk

[∥∥∥∇f(xk+1, ξk)−∇f(xk+1)
∥∥∥2

2

]
(58)
≤

√√√√√√Eξk


∥∥∥∥∥∥λk+1∇f(xk+1, ξk)∥∥∥∇f(xk+1, ξk)

∥∥∥
2

−∇f(xk+1)

∥∥∥∥∥∥
2

2

χ2
k


+

√
Eξk

[∥∥∥∇f(xk+1, ξk)−∇f(xk+1)
∥∥∥2

2
(1− χk)2

]

(12)
≤

√√√√√√Eξk


2

∥∥∥∥∥∥λk+1∇f(xk+1, ξk)∥∥∥∇f(xk+1, ξk)
∥∥∥

2

∥∥∥∥∥∥
2

2

+ 2 ‖∇f(xk+1)‖22

χ2
k


+

√
Eξk

[∥∥∥∇f(xk+1, ξk)−∇f(xk+1)
∥∥∥2

2

]
(24)
≤

√
5

2
λk+1

√
Eξk [χ2

k] +
σ
√
mk

(57),(61)
≤

√
5

2
λk+1 ·

2σ
√
mkλk+1

+
σ
√
mk

=
(√

10 + 1
) σ
√
mk

≤
√

18σ
√
mk

.

Proof of (41). To derive (41) we use (40):

Eξk

[∥∥∥∇̃f(xk+1, ξk)− Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥2

2

]
(15)
≤ Eξk

[∥∥∥∇̃f(xk+1, ξk)−∇f(xk+1)
∥∥∥2

2

]
(40)
≤ 18σ2

mk
.

F.3.3 Proof of Theorem F.1

Lemma F.4 implies that the inequality

AN
(
f(yN )− f(x∗)

)
≤ 1

2
‖z0 − x∗‖22 −

1

2
‖zN − x∗‖22 +

N−1∑
k=0

αk+1

〈
θk+1, x

∗ − zk
〉

+

N−1∑
k=0

α2
k+1 ‖θk+1‖22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
, (62)

θk+1
def
= ∇̃f(xk+1, ξk)−∇f(xk+1) (63)

holds for all N ≥ 0. Taking into account that f(yN )− f(x∗) ≥ 0 for all yN and using new notation
Rk

def
= ‖zk − x∗‖2, R̃0 = R0, R̃k+1 = max{R̃k, Rk+1} we derive that for all k ≥ 0

R2
k ≤ R2

0 +2

k−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl
〉

+2

k−1∑
l=0

α2
l+1

〈
θl+1,∇f(xl+1)

〉
+2

k−1∑
l=0

α2
l+1‖θl+1‖22. (64)

First of all, we notice that for each k ≥ 0 iterates xk+1, zk, yk lie in the ball BR̃k(x∗). We prove

it using induction. Since y0 = z0 = x0, R̃0 = R0 = ‖z0 − x∗‖2 and x1 = A0y
0+α1z

0

A1
= z0 we

have that x1, z0, y0 ∈ BR̃0
(x∗). Next, assume that xl, zl−1, yl−1 ∈ BR̃l−1

(x∗) for some l ≥ 1. By

definitions of Rl and R̃l we have that zl ∈ BRl(x∗) ⊆ BR̃l(x
∗). Since yl is a convex combination

of yl−1 ∈ BR̃l−1
(x∗) ⊆ BR̃l(x

∗), zl ∈ BR̃l(x
∗) and BR̃l(x

∗) is a convex set we conclude that
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yl ∈ BR̃l(x
∗). Finally, since xl+1 is a convex combination of yl and zl we have that xl+1 lies in

BR̃l(x
∗) as well.

The rest of the proof is based on the refined analysis of inequality (64). In particular, via induction
we prove that for all k = 0, 1, . . . , N with probability at least 1− kβ

N the following statement holds:
inequalities

R2
t

(64)
≤ R2

0 + 2

t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl
〉

+ 2

t−1∑
l=0

α2
l+1

〈
θl+1,∇f(xl+1)

〉
+ 2

t−1∑
l=0

α2
k+1‖θl+1‖22

≤ C2R2
0 (65)

hold for t = 0, 1, . . . , k simultaneously where C is defined in (29). Let us define the probability
event when this statement holds as Ek. Then, our goal is to show that P{Ek} ≥ 1 − kβ

N for all
k = 0, 1, . . . , N . For t = 0 inequality (65) holds with probability 1 since C ≥ 1, hence P{E0} = 1.
Next, assume that for some k = T − 1 ≤ N − 1 we have P{Ek} = P{ET−1} ≥ 1− (T−1)β

N . Let
us prove that P{ET } ≥ 1− Tβ

N . First of all, probability event ET−1 implies that

f(yt)− f(x∗)
(62)
≤ 1

At

(
1

2
R2

0 +
t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl + αl+1∇f(xl+1)
〉

+

t−1∑
l=0

α2
k+1‖θl+1‖22

)
(65)
≤ C2R2

0

2At
(66)

hold for t = 0, 1, . . . , T − 1. Then, inequalities∥∥∇f(x1)
∥∥

2
=

∥∥∇f(z0)
∥∥

2

(6)
≤ L‖z0 − x∗‖2 =

1

a
· R0

α1
,∥∥∇f(xt+1)

∥∥
2

≤
∥∥∇f(xt+1)−∇f(yt)

∥∥
2

+
∥∥∇f(yt)

∥∥
2

(6),(8)
≤ L‖xt+1 − yt‖2 +

√
2L(f(yt)− f(x∗))

(55),(66)
≤ αt+1L

At
‖xt+1 − zk‖2 +

√
LC2R2

0

At

(20)
≤ 2L(t+ 2)

t(t+ 3)

(
‖xk+1 − x∗‖2 + ‖x∗ − zk‖2

)
+

2LCR0
√
a√

t(t+ 3)

≤ 4L(t+ 2)R̃k
t(t+ 3)

+
2LCR0

√
a√

t(t+ 3)

(65)
≤ 2aLCR0

t+ 2

(
2(t+ 2)2

at(t+ 3)
+

t+ 2√
at(t+ 3)

)

≤ CR0

αt+1

(
9

2a
+

3

2
√
a

)
hold for t = 1, . . . , T − 1 where the last inequality follows from (t+2)2

t(t+3) ≤
(1+2)2

1(1+3) = 9
4 . Taking a

such that
a ≥ 2R0

B
and

9

2a
+

3

2
√
a
≤ B

2CR0

we obtain that probability event ET−1 implies∥∥∇f(xt+1)
∥∥

2
≤ B

2αt+1
=
λt+1

2
(67)

for t = 0, . . . , T − 1. Since B = CR0

8 ln 4N
β

we have to choose such a that

a ≥
16 ln 4N

β

C
and

9

a
+

3√
a
≤ 1

8 ln 4N
β

.
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Solving quadratic inequality

a− 24
√
a ln

4N

β
− 72 ln

4N

β
≥ 0

w.r.t.
√
a we get that a should satisfy

a ≥ max

16 ln 4N
β

C
, 36

(
2 ln

4N

β
+

√
4 ln2 4N

β
+ 2 ln

4N

β

)2
 .

Having inequalities (67) in hand we show in the rest of the proof that (65) holds for t = T with big
enough probability. First of all, we introduce new random variables:

ηl =

{
x∗ − zl, if ‖x∗ − zl‖2 ≤ CR0,

0, otherwise,
and ζl =

{
∇f(xl+1), if ‖∇f(xl+1)‖2 ≤ B

2αl+1
,

0, otherwise,
(68)

for l = 0, 1, . . . T − 1. Note that these random variables are bounded with probability 1, i.e. with
probability 1 we have

‖ηl‖2 ≤ CR0 and ‖ζl‖2 ≤
B

2αl+1
. (69)

Secondly, we use the introduced notation and get that ET−1 implies

R2
T

(64),(65),(67),(68)
≤ R2

0 + 2

T−1∑
l=0

αl+1 〈θl+1, ηl〉+ 2

T−1∑
l=0

α2
l+1‖θl+1‖22 + 2

T−1∑
l=0

α2
l+1 〈θl+1, ζl〉

= R2
0 +

T−1∑
l=0

αl+1 〈θl+1, 2ηl + 2αl+1ζl〉+ 2

T−1∑
l=0

α2
l+1‖θl+1‖22.

Finally, we do some preliminaries in order to apply Bernstein’s inequality (see Lemma D.1) and
obtain that ET−1 implies

R2
T

(12)
≤ R2

0 +

T−1∑
l=0

αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉
︸ ︷︷ ︸

¬

+

T−1∑
l=0

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉
︸ ︷︷ ︸

­

+

T−1∑
l=0

4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])
︸ ︷︷ ︸

®

+

T−1∑
l=0

4α2
l+1Eξl

[
‖θul+1‖22

]
︸ ︷︷ ︸

¯

+

T−1∑
l=0

4α2
l+1‖θbl+1‖22︸ ︷︷ ︸

°

(70)

where we introduce new notations:

θul+1
def
= ∇̃f(xl+1, ξl)− Eξl

[
∇̃f(xl+1, ξl)

]
, θbl+1

def
= Eξl

[
∇̃f(xl+1, ξl)

]
−∇f(xl+1), (71)

θl+1
(37)
= θul+1 + θbl+1.

It remains to provide tight upper bounds for ¬, ­, ®, ¯ and °, i.e. in the remaining part of the proof
we show that ¬ + ­ + ® + ¯ + ° ≤ δC2R2

0 for some δ < 1.

Upper bound for ¬. First of all, since Eξl [θ
u
l+1] = 0 summands in ¬ are conditionally unbiased:

Eξl
[
αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉]
= 0.
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Secondly, these summands are bounded with probability 1:∣∣αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉∣∣ ≤ αl+1‖θul+1‖2 ‖2ηl + 2αl+1ζl‖2
(38),(69)
≤ 2αl+1λl+1 (2CR0 +B) = 2B(2CR0 +B)

=
C2R2

0

2 ln 4N
β

+
C2R2

0

32 ln2 4N
β

(25)
≤ C2R2

0

2 ln 4N
β

+
C2R2

0

64 ln 4N
β

≤ 33C2R2
0

64 ln 4N
β

.

Finally, one can bound conditional variances σ2
l

def
= Eξl

[
α2
l+1

〈
θul+1, 2ηl + 2αl+1ζl

〉2]
in the follow-

ing way:

σ2
l ≤ Eξl

[
α2
l+1

∥∥θul+1

∥∥2

2
‖2ηl + 2αl+1ζl‖22

]
(69)
≤ α2

l+1Eξl

[∥∥θul+1

∥∥2

2

]
(2CR0 +B)2. (72)

In other words, sequence
{
αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉}
l≥0

is bounded martingale difference se-
quence with bounded conditional variances {σ2

l }l≥0. Therefore, we can apply Bernstein’s inequality,

i.e. we apply Lemma D.1 with Xl = αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉
, c =

33C2R2
0

64 ln 4N
β

and F =
c2 ln 4N

β

18 and

get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣ > b and
T−1∑
l=0

σ2
l ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)

or, equivalently, with probability at least 1− 2 exp
(
− b2

2F+2cb/3

)
either

T−1∑
l=0

σ2
l > F or

∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣︸ ︷︷ ︸
|¬|

≤ b.

The choice of F will be clarified further, let us now choose b in such a way that 2 exp
(
− b2

2F+2cb/3

)
=

β
2N . This implies that b is the positive root of the quadratic equation

b2 −
2c ln 4N

β

3
b− 2F ln

4N

β
= 0,

hence

b =
c ln 4N

β

3
+

√
c2 ln2 4N

β

9
+ 2F ln

4N

β
≤
c ln 4N

β

3
+

√
2c2 ln2 4N

β

9

=
1 +
√

2

3
c ln

4N

β
≤ 33C2R2

0

64
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ2
l > F or |¬| ≤ 33C2R2

0

64︸ ︷︷ ︸
probability eventE¬

.
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Next, we notice that probability event ET−1 implies that
T−1∑
l=0

σ2
l

(72)
≤ (2CR0 +B)2

T−1∑
l=0

α2
l+1Eξl

[∥∥θul+1

∥∥2

2

]
(41),(67)
≤ 18σ2C2R2

0

(
2 +

1

8 ln 4N
β

)2 T−1∑
l=0

α2
l+1

ml

(25),(26)
≤ 18σ2C2R2

0

(
2 +

1

16

)2 T−1∑
l=0

α2
l+1C

2R2
0

6000σ2α2
l+1N ln 4N

β

T≤N
≤

18
(
2 + 1

16

)2
6000 ln 4N

β

C4R4
0

N−1∑
l=0

1

N
≤
c2 ln 4N

β

18
= F,

where the last inequality follows from c =
33C2R2

0

64 ln 4N
β

and simple arithmetic.

Upper bound for ­. First of all, we notice that probability event ET−1 implies

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉
≤ αl+1

∥∥θbl+1

∥∥
2
‖2ηl + 2αl+1ζl‖2

(39),(69)
≤ αl+1 ·

4σ2

mlλl+1
(2CR0 +B)

=
32α2

l+1σ
2 ln 4N

β

mlCR0

(
2CR0 +

CR0

8 ln 4N
β

)
(25),(26)
≤

32α2
l+1σ

2C2R2
0 ln 4N

β

6000α2
l+1Nσ

2 ln 4N
β

(
2 +

1

16

)
=

11C2R2
0

1000N
.

This implies that

­ =

T−1∑
l=0

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉 T≤N
≤ 11C2R2

0

1000
.

Upper bound for ®. We derive the upper bound for ® using the same technique as for ¬. First of
all, we notice that the summands in ® are conditionally independent:

Eξl
[
4α2

l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])]
= 0.

Secondly, the summands are bounded with probability 1:∣∣4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])∣∣ ≤ 4α2
l+1

(
‖θul+1‖22 + Eξl

[
‖θul+1‖22

])
(38)
≤ 4α2

l+1

(
4λ2

l+1 + 4λ2
l+1

)
= 32B2 =

C2R2
0

2 ln2 4N
β

(25)
≤ C2R2

0

4 ln 4N
β

def
= c1. (73)

Finally, one can bound conditional variances σ̂2
l

def
= Eξl

[∣∣4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])∣∣2] in
the following way:

σ̂2
l

(73)
≤ c1Eξl

[∣∣4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])∣∣]
≤ 4c1α

2
l+1Eξl

[
‖θul+1‖22 + Eξl

[
‖θul+1‖22

]]
= 8c1α

2
l+1Eξl

[
‖θul+1‖22

]
. (74)

In other words, sequence
{

4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])}
l≥0

is bounded martingale difference
sequence with bounded conditional variances {σ̂2

l }l≥0. Therefore, we can apply Bernstein’s inequal-

ity, i.e. we apply Lemma D.1 with Xl = X̂l = 4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])
, c = c1 =

C2R2
0

4 ln 4N
β
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and F = F1 =
c21 ln 4N

β

18 and get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣ > b and
T−1∑
l=0

σ̂2
l ≤ F1

}
≤ 2 exp

(
− b2

2F1 + 2c1b/3

)
or, equivalently, with probability at least 1− 2 exp

(
− b2

2F1+2c1b/3

)
either

T−1∑
l=0

σ̂2
l > F1 or

∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣︸ ︷︷ ︸
|®|

≤ b.

As in our derivations of the upper bound for ¬ we choose such b that 2 exp
(
− b2

2F1+2c1b/3

)
= β

2N ,
i.e.

b =
c1 ln 4N

β

3
+

√
c21 ln2 4N

β

9
+ 2F1 ln

4N

β
≤ 1 +

√
2

3
c1 ln

4N

β
≤ C2R2

0

4
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ̂2
l > F1 or |®| ≤ C2R2

0

4︸ ︷︷ ︸
probability eventE®

.

Next, we notice that probability event ET−1 implies that
T−1∑
l=0

σ̂2
l

(74)
≤ 8c1

T−1∑
l=0

α2
l+1Eξl

[∥∥θul+1

∥∥2

2

]
(41),(67)
≤ c1

T−1∑
l=0

144σ2α2
l+1

ml

(26)
≤ c1

T−1∑
l=0

144σ2α2
l+1C

2R2
0

10368σ2α2
l+1N

T≤N
≤ c1 ·

C2R2
0

4 ln 4N
β︸ ︷︷ ︸

c1

·
ln 4N

β

18
= F1.

Upper bound for ¯. The probability event ET−1 implies

¯ =

T−1∑
l=0

4α2
l+1Eξl

[
‖θul+1‖22

] (41),(67)
≤

T−1∑
l=0

72α2
l+1σ

2

ml

(26)
≤

T−1∑
l=0

72α2
l+1σ

2C2R2
0

10368α2
l+1σ

2N

T≤N
≤ C2R2

0

144
.

Upper bound for °. Again, we use corollaries of probability event ET−1:

° =

T−1∑
l=0

4α2
l+1‖θbl+1‖22

(39),(67)
≤

T−1∑
l=0

64α2
l+1σ

4

m2
l λ

2
l+1

=
1

B2

T−1∑
l=0

64α4
l+1σ

4

m2
l

(26)
≤

64 ln2 4N
β

C2R2
0

T−1∑
l=0

64α4
l+1σ

4C4R4
0

60002σ4α4
l+1N

2 ln2 4N
β

T≤N
≤ 16C2R2

0

140625
.
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Now we summarize all bound that we have: probability event ET−1 implies

R2
T

(64)
≤ R2

0 + 2

T−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl
〉

+ 2

k−1∑
l=0

α2
l+1

〈
θl+1,∇f(xl+1)

〉
+ 2

T−1∑
l=0

α2
l+1‖θl+1‖22

(70)
≤ R2

0 + ¬ + ­ + ® + ¯ + °,

­ ≤ 11C2R2
0

1000
, ¯ ≤ C2R2

0

144
, ° ≤ 16C2R2

0

140625
,

T−1∑
l=0

σ2
l ≤ F,

T−1∑
l=0

σ̂2
l ≤ F1

and

P{ET−1} ≥ 1− (T − 1)β

N
, P{E¬} ≥ 1− β

2N
, P{E®} ≥ 1− β

2N
,

where

E¬ =

{
either

T−1∑
l=0

σ2
l > F or |¬| ≤ 33C2R2

0

64

}
,

E® =

{
either

T−1∑
l=0

σ̂2
l > F1 or |®| ≤ C2R2

0

4

}
.

Taking into account these inequalities we get that probability event ET−1 ∩ E¬ ∩ E® implies

R2
T

(64)
≤ R2

0 + 2

T−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl
〉

+ 2

k−1∑
l=0

α2
l+1

〈
θl+1,∇f(xl+1)

〉
+ 2

T−1∑
l=0

α2
l+1‖θl+1‖22

≤ R2
0 +

(
33

64
+

11

1000
+

1

4
+

1

144
+

16

140625

)
C2R2

0

≤
(

1 +
4

5
C2

)
R2

0

(29)
≤ C2R2

0. (75)

Moreover, using union bound we derive

P {ET−1 ∩ E¬ ∩ E®} = 1− P
{
ET−1 ∪ E¬ ∪ E®

}
≥ 1− Tβ

N
. (76)

That is, by definition of ET and ET−1 we have proved that

P{ET }
(75)
≥ P {ET−1 ∩ E¬ ∩ E®}

(76)
≥ 1− Tβ

N
,

which implies that for all k = 0, 1, . . . , N we have P{Ek} ≥ 1− kβ
N . Then, for k = N we have that

with probability at least 1− β

AN
(
f(yN )− f(x∗)

) (62)
≤ 1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1 ‖θk+1‖22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
(65)
≤ C2R2

0

2
.

Since AN = N(N+3)
4aL (see Lemma E.1) we get that with probability at least 1− β

f(yN )− f(x∗) ≤ 2aLC2R2
0

N(N + 3)
.
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In other words, clipped-SSTMwith a = max

{
1,

16 ln 4N
β

C , 36
(

2 ln 4N
β +

√
4 ln2 4N

β + 2 ln 4N
β

)2
}

=

36
(

2 ln 4N
β +

√
4 ln2 4N

β + 2 ln 4N
β

)2

achieves f(yN )− f(x∗) ≤ ε with probability at least 1− β

after O
(√

LR2
0

ε ln
LR2

0

εβ

)
iterations and requires

N−1∑
k=0

mk
(26)
=

N−1∑
k=0

O

(
max

{
1,
σ2α2

k+1N ln N
β

R2
0

})

= O

(
max

{
N,

N−1∑
k=0

σ2(k + 2)2N ln N
β

a2L2R2
0

})
(27)
= O

(
max

{
N,

σ2N4

ln3 N
β L

2R2
0

})

= O

(
max

{√
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0

εβ

)
.

oracle calls.

F.3.4 Proof of Corollary F.2

Theorem F.1 implies that with probability at least 1− β

f(yN )− f(x∗)
(28)
≤ 2aLC2R2

0

N(N + 3)
, (77)

where a satisfies

a
(27)
≥ max

1,
16 ln 4N

β

C
, 36

(
2 ln

4N

β
+

√
4 ln2 4N

β
+ 2 ln

4N

β

)2
 def

= â, (78)

αk+1 = k+2
2aL and batchsizes mk are chosen according to (26):

mk
(26)
= max

{
1,

1185σ2α2
k+1N ln 4N

β

C2R2
0

,
10368σ2α2

k+1N

C2R2
0

}

= max

{
1,

1185σ2(k + 2)2N ln 4N
β

4a2L2C2R2
0

,
10368σ2(k + 2)2N

4a2L2C2R2
0

}
. (79)

We consider two different options for a.

1. If N ln 4N
β is bigger than â, then we take a = N ln 4N

β which implies that

mk = max

{
1,

1185σ2(k + 2)2

4L2NC2R2
0 ln 4N

β

,
10368σ2(k + 2)2

4L2C2R2
0N ln2 4N

β

}
= O

(
max

{
1,

σ2(k + 2)2

L2R2
0N ln 4N

β

})
and with probability at least 1− β

f(yN )− f(x∗) ≤
2LC2R2

0 ln 4N
β

N + 3
. (80)

That is, if ε is small enough to satisfy LR2
0

ε ln
LR2

0

εβ ≥ C1 ln2 LR2
0

εβ for some constant C1, then
due to (80) we have that after

N = O

(
LR2

0

ε
ln
LR2

0

εβ

)
iterations
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of clipped-SSTM we obtain such point yN that with probability at least 1− β inequality
f(yN )− f(x∗) ≤ ε holds and the method requires
N−1∑
k=0

mk =

N−1∑
k=0

O

(
max

{
1,

σ2(k + 2)2

L2R2
0N ln 4N

β

})

= O

(
max

{
N,

σ2N2

L2R2
0 ln 4N

β

})
= O

(
max

{
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0

εβ

)
stochastic first-order oracle calls.

2. If a0N
3/2
√

ln 4N
β is bigger than â for some a0 > 0, then we take a = a0N

3/2
√

ln 4N
β

which implies that

mk = max

1,
1185σ2(k + 2)2

4a2
0L

2N2C2R2
0

,
10368σ2(k + 2)2

4a2
0L

2C2R2
0N

2
√

ln 4N
β

 = O

(
max

{
1,
σ2(k + 2)2

a2
0L

2R2
0N

2

})
and with probability at least 1− β

f(yN )− f(x∗) ≤
2a0LC

2R2
0

√
N ln 4N

β

N + 3
. (81)

That is, if ε is small enough to satisfy a30L
3R6

0

ε3

(
ln

LR2
0

εβ

)3/2

≥ C2 ln2 LR2
0

εβ for some constant
C2, then due to (81) we have that after

N = O

(
a2

0L
2R4

0

ε2
ln
a2

0L
2R4

0

ε2β

)
= O

(
a2

0L
2R4

0

ε2
ln
a0LR

2
0

εβ

)
iterations

of clipped-SSTM we obtain such point yN that with probability at least 1− β inequality
f(yN )− f(x∗) ≤ ε holds and the method requires
N−1∑
k=0

mk =

N−1∑
k=0

O

(
max

{
1,
σ2(k + 2)2

a2
0L

2R2
0N

2

})
= O

(
max

{
N,

σ2N

a2
0L

2R2
0

})
= O

(
max

{
a2

0L
2R4

0

ε2
,
σ2R2

0

ε2

}
ln
a0LR

2
0

εβ

)
stochastic first-order oracle calls. Finally, if all assumptions on N , β and ε hold for
a0 = σ

LR0
, then for all k = 0, 1, . . . , N − 1

mk = O

(
max

{
1,
σ2(k + 2)2

a2
0L

2R2
0N

2

})
= O

(
max

{
1,

(k + 2)2

N2

})
= O(1),

i.e. one iteration of clipped-SSTM requires O(1) oracle calls, and f(yN ) − f(x∗) ≤ ε
with probability at least 1− β after

N = O

(
σ2R2

0

ε2
ln
σR0

εβ

)
iterations.

F.3.5 Proof of Corollary F.3

Recall that

a′ = max

1,
16 ln 4N

β

C
, 36

(
2 ln

4N

β
+

√
4 ln2 4N

β
+ 2 ln

4N

β

)2
 ,

a = max

{
a′,

σN 3/2

LR0

√
ln

4N

β

}
, αk+1 =

k + 2

2aL
,

mk = max

{
1,

6000σ2α2
k+1N ln 4N

β

C2R2
0

,
10368σ2α2

k+1N

C2R2
0

}
.

Since a ≥ σN
3/2

LR0
we have that mk = O(1). Next, there are two possible situations.
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1. If a = a′, then we are in the settings of Theorem F.1. This means that clipped-SSTM
achieves f(yN )− f(x∗) ≤ ε with probability at least 1− β after

O

(
max

{√
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0

εβ

)
oracle calls.

2. If a = σN
3/2

LR0

√
ln 4N

β , then we are in the settings of Corollary F.2 which implies that

clipped-SSTM achieves f(yN )− f(x∗) ≤ ε with probability at least 1− β after

O

(
σ2R2

0

ε2
ln
σR0

εβ

)
oracle calls.

Finally, we combine these two cases and obtain that with a = max
{
a′, σN

3/2

LR0

√
ln 4N

β

}
clipped-SSTM guarantees f(yN )− f(x∗) ≤ ε with probability at least 1− β after

O

(
max

{
max

{√
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0

εβ
,
σ2R2

0

ε2
ln
σR0

εβ

})

= O

(
max

{√
LR2

0

ε ,
σ2R2

0

ε2

}
ln

LR2
0+σR0

εβ

)
iterations/oracle calls.

F.3.6 Proof of Theorem F.6

First of all, consider behavior of clipped-SSTM during the first run in R-clipped-SSTM. We notice
that the proof of Theorem F.1 will be valid if we substitute R0 everywhere by its upper bound R.
From µ-strong convexity of f we have

R2
0 = ‖x0 − x∗‖22

(10)
≤ 2

µ

(
f(x0)− f(x∗)

)
,

therefore, one can choose R =
√

2
µ (f(x0)− f(x∗)). It implies that after N0 iterations of

clipped-SSTM we have

f(yN0)− f(x∗) ≤ 2aC2LR2

N0(N0 + 3)
=

4aC2L

N2
0µ

(f(x0)− f(x∗)).

with probability at least 1− β
τ , hence with the same probability f(yN0)−f(x∗) ≤ 1

2 (f(x0)−f(x∗))

since N0 ≥ C
√

8aL
µ . In other words, with probability at least 1− β

τ

f(x̂1)− f(x∗) ≤ 1

2

(
f(x0)− f(x∗)

)
=

1

4
µR2.

Then, by induction one can show that for arbitrary k ∈ {0, 1, . . . , τ − 1} the inequality

f(x̂k+1)− f(x∗) ≤ 1

2

(
f(x̂k)− f(x∗)

)
holds with probability at least 1− β

τ . Therefore, these inequalities hold simultaneously with probability
at least 1− β. Using this we derive that inequality

f(x̂τ )−f(x∗) ≤ 1

2

(
f(x̂τ−1)− f(x∗)

)
≤ 1

22

(
f(x̂τ−2)− f(x∗)

)
≤ . . . ≤ 1

2τ
(
f(x0)− f(x∗)

)
=
µR2

2τ+1

holds with probability ≥ 1− β. That is, after τ =
⌈
log2

µR2

2ε

⌉
restarts R-clipped-SSTM generates

such a point x̂τ that f(x̂τ ) − f(x∗) ≤ ε with probability at least 1 − β. Moreover, if a equals
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the maximum from (45) and N0 ≤ C1

√
8aL
µ with some numerical constant C1 ≥ C, then a ∼(

ln N0τ
β

)2

, the total number of iterations of clipped-SSTM equals

N0τ = O

(√
L

µ
ln

(
µR2

ε

)
ln

(
L

µβ
ln
µR2

ε

))
and the overall number of stochastic first-order oracle calls is

τ−1∑
t=0

N0−1∑
k=0

mt
k =

τ−1∑
t=0

N0−1∑
k=0

O

(
max

{
1,

2tσ2α2
k+1N0 ln 4N0τ

β

R2

})

=

τ−1∑
t=0

N0−1∑
k=0

O

(
max

{
1,

2tσ2(k + 2)2N0

ln3 4N0τ
β L2R2

})

= O

(
max

{
N0τ,

σ22τN4
0

ln3 4N0τ
β L2R2

})

= O

(
max

{√
L

µ
ln

(
µR2

ε

)
,
σ2

µε

}
ln

(
L

µβ
ln
µR2

ε

))
.

F.3.7 Proof of Corollary F.7

Similarly to the proof of Theorem F.6 (see the previous subsection) we derive that under assumptions
of the corollary after τ =

⌈
log2

µR2

2ε

⌉
restarts R-clipped-SSTM generates such a point x̂τ that

f(x̂τ )− f(x∗) ≤ ε with probability at least 1− β. Moreover, a and N0 satisfy the following system
of inequalities

a = Θ

(
σ4 ln2 N0τ

β

Lµε2

)
, N0 = Θ

(√
aL

µ

)
(82)

which is consistent and implies that

a = Θ

(
σ4

Lµε
ln2

(
σ2

µεβ
ln
µR2

ε

))
, N0 = Θ

(
σ2

µε
ln

(
σ2

µεβ
ln
µR2

ε

))
. (83)

Then, for all k = 0, 1, . . . , N0 − 1 and t = 0, 1, . . . , τ − 1 batchsizes satisfy

mt
k ≤ mτ−1

N0−1 = O

(
max

{
1,

2τσ2α2
N0
N0 ln N0τ

β

R2

})

= O

(
max

{
1,
µR2σ2N3

0 ln N0τ
β

a2L2εR2

})
(82),(83)

= O(1),

i.e. the algorithm requires O(1) oracle calls per iteration. Finally, the total number of iterations is

N0τ = O

(
σ2

µε
ln

(
µR2

ε

)
ln

(
σ2

µεβ
ln
µR2

ε

))
.
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G SGD with Clipping: Exact Formulations and Missing Proofs

In this section we provide exact formulations of all the results that we have for clipped-SGD and
R-clipped-SGD together with the full proofs.

G.1 Convex Case

We start with the case when f(x) is convex and L-smooth and, as before, we assume that at each
point x ∈ Rn function f is accessible only via stochastic gradients ∇f(x, ξ) such that (2) holds.
Next theorem summarizes the main convergence result for clipped-SGD in this case.

Theorem G.1. Assume that function f is convex and L-smooth. Then for all β ∈ (0, 1) andN ≥ 1
such that

ln
4N

β
≥ 2 (84)

we have that after N iterations of clipped-SGD with

λ = 2LCR0, mk = m = max

{
1,

27Nσ2

2(CR0)2L2 ln 4N
β

}
, (85)

where R0 = ‖x0 − x∗‖2 and stepsize

γ =
1

80L ln 4N
β

, (86)

that with probability at least 1− β

f(x̄N )− f(x∗) ≤
80LC2R2

0 ln 4N
β

N
, (87)

where x̄N = 1
N

∑N−1
k=0 xk and

C =
√

2. (88)
In other words, the method achieves f(x̄N ) − f(x∗) ≤ ε with probability at least 1 − β after
O
(
LR2

0

ε ln
LR2

0

εβ

)
iterations and requires

O

(
max

{
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0

εβ

)
oracle calls. (89)

To the best of our knowledge, it is the first result for clipped-SGD establishing non-trivial complexity
guarantees for the convergence with high probability. One can find the full proof in Section G.3.1.

G.2 Strongly Convex Case

Next, we consider the situation when f is additionally µ-strongly convex and propose a restarted ver-
sion of clipped-SGD (R-clipped-SGD), see Algorithm 4. For this method we prove the following

Algorithm 4 Restarted Clipped Stochastic Gradient Descent (R-clipped-SGD)
Input: starting point x0, number of iterations N0 of clipped-SGD, number τ of clipped-SGD

runs, batchsizes m0, m1, . . . , mτ

1: Set x̂0 = x0, stepsize γ > 0
2: for t = 0, 1, . . . , τ − 1 do
3: Run clipped-SGD (Algorithm 2) for N0 iterations with constant batchsizes mt, stepsize γ

and starting point x̂t. Define the output of clipped-SGD by x̂t+1.
4: end for

Output: x̂τ

result.
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Theorem G.2. Assume that f is µ-strongly convex and L-smooth. If we choose β ∈ (0, 1), τ and
N0 ≥ 1 such that

ln
4N0τ

β
≥ 2,

N0

ln 4N0τ
β

≥ 320C2L

µ
, (90)

and

mt = max

{
1,

27 · 2tN0σ
2

2(CR)2L2 ln 4N0τ
β

}
, (91)

where R =
√

2(f(x0)−f(x∗))
µ and C =

√
2, then we have that after τ runs of clipped-SGD in

R-clipped-SGD the inequality

f(x̂τ )− f(x∗) ≤ 2−τ
(
f(x0)− f(x∗)

)
(92)

holds with probability at least 1− β. That is, if we choose N0

ln
4N0τ
β

≤ C1L
µ with some numerical

constant C1 ≥ 320C2, then the method achieves f(x̂τ )− f(x∗) ≤ ε with probability at least 1−β
after

O

(
L

µ
ln

(
µR2

ε

)
ln

(
L

µβ
ln
µR2

ε

))
iterations (in total) (93)

of clipped-SGD and requires

O

(
max

{
L

µ
ln
µR2

ε
,
σ2

µε

}
ln

(
L

µβ
ln
µR2

ε

))
oracle calls. (94)

This theorem implies that R-clipped-SGD has the same complexity as the restarted version of RSMD
from [47] up to the difference in logarithmical factors. We notice that the main difference between our
result and one from [47] is that we do not need to assume that the optimization problem is considered
on the bounded set.

However, in order to get (94) R-clipped-SGD requires to know strong convexity parameter µ. In
order to remove this drawback we analyse clipped-SGD for the strongly convex case and get the
following result.

Theorem G.3. Assume that function f is µ-strongly convex and L-smooth. Then for all β ∈ (0, 1)
and N ≥ 1 such that

ln
4N

β
≥ 2 (95)

we have that after N iterations of clipped-SGD with

λl = 4
√
L(1− γµ)lr0, mk = max

{
1,

27Nσ2

16Lr0(1− γµ)k ln 4N
β

}
, (96)

where r0 = f(x0)− f(x∗) and stepsize

γ =
1

81L ln 4N
β

, (97)

that with probability at least 1− β

f(xN )− f(x∗) ≤ 2(1− γµ)N (f(x0)− f(x∗)). (98)

In other words, the method achieves f(xN ) − f(x∗) ≤ ε with probability at least 1 − β after
O
(
L
µ ln

(
r0
ε

)
ln
(
L
µβ ln r0

ε

))
iterations and requires

O

(
max

{
L

µ
,
σ2

µε
· L
µ

}
ln
(r0

ε

)
ln

(
L

µβ
ln
r0

ε

))
oracle calls. (99)

Unfortunately, our approach leads to worse complexity bound than we have for R-clipped-SGD: in
the second term of the maximum in (99) we get an extra factor L/µ that can be large. Nevertheless, to
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the best of our knowledge it is the first non-trivial complexity result for clipped-SGD that guarantees
convergence with high probability. One can find the full proof of Theorem G.3 in Section G.3.3.

G.3 Proofs

G.3.1 Proof of Theorem G.1

Since f(x) is convex and L-smooth, we get the following inequality:

‖xk+1 − x∗‖22 = ‖xk − γ∇̃f(xk, ξk)− x∗‖22 = ‖xk − x∗‖22 + γ2‖∇̃f(xk, ξk)‖22 − 2γ
〈
xk − x∗, gk

〉
= ‖xk − x∗‖22 + γ2‖∇f(xk) + θk‖22 − 2γ

〈
xk − x∗,∇f(xk) + θk

〉
(12)
≤ ‖xk − x∗‖22 + 2γ2‖∇f(xk)‖22 + 2γ2‖θk‖22 − 2γ

〈
xk − x∗,∇f(xk) + θk

〉
(8)
≤ ‖xk − x∗‖22 + 4γ2L

(
f(xk)− f(x∗)

)
+ 2γ2‖θk‖22 − 2γ

〈
xk − x∗,∇f(xk) + θk

〉
≤ ‖xk − x∗‖22 + (4γ2L− 2γ)

(
f(xk)− f(x∗)

)
+ 2γ2‖θk‖22 − 2γ

〈
xk − x∗, θk

〉
,

where θk = ∇̃f(xk, ξk)−∇f(xk) and the last inequality follows from the convexity of f . Using
notation Rk

def
= ‖xk − x∗‖2 we derive that for all k ≥ 0

R2
k+1 ≤ R2

k + (4γ2L− 2γ)
(
f(xk)− f(x∗)

)
+ 2γ2‖θk‖22 − 2γ

〈
xk − x∗, θk

〉
.

Let us define A =
(
2γ − 4γ2L

)
, then

A
(
f(xk)− f(x∗)

)
≤ R2

k −R2
k+1 + 2γ2‖θk‖22 − 2γ

〈
xk − x∗, θk

〉
.

Summing up these inequalities for k = 0, . . . , N − 1 we obtain

A

N

N−1∑
k=0

[
f(xk)− f(x∗)

]
≤ 1

N

N−1∑
k=0

(
R2
k −R2

k+1

)
+

2γ2

N

N−1∑
k=0

‖θk‖22 −
2γ2

N

N−1∑
k=0

〈
xk − x∗, θk

〉
=

1

N

(
R2

0 −R2
N

)
+

2γ2

N

N−1∑
k=0

‖θk‖22 −
2γ2

N

N−1∑
k=0

〈
xk − x∗, θk

〉
.

Noticing that for x̄N = 1
N

N−1∑
k=0

xk Jensen’s inequality gives f(x̄N ) = f

(
1
N

N−1∑
k=0

xk
)
≤

1
N

N−1∑
k=0

f(xk) we have

AN
(
f(x̄N )− f(x∗)

)
≤ R2

0 −R2
N + 2γ2

N−1∑
k=0

‖θk‖22 − 2γ

N−1∑
k=0

〈
xk − x∗, θk

〉
. (100)

Taking into account that f(x̄N )− f(x∗) ≥ 0 and changing the indices we get that for all k ≥ 0

R2
k ≤ R2

0 + 2γ2
k−1∑
l=0

‖θl‖22 − 2γ

k−1∑
l=0

〈
xl − x∗, θk

〉
. (101)

The remaining part of the proof is based on the analysis of inequality (101). In particular, via induction
we prove that for all k = 0, 1, . . . , N with probability at least 1− kβ

N the following statement holds:
inequalities

R2
t

(101)
≤ R2

0 + 2γ2
t−1∑
l=0

‖θk‖22 − 2γ

t−1∑
l=0

〈
xk − x∗, θk

〉
≤ C2R2

0 (102)

hold for t = 0, 1, . . . , k simultaneously where C is defined in (88). Let us define the probability
event when this statement holds as Ek. Then, our goal is to show that P{Ek} ≥ 1 − kβ

N for all
k = 0, 1, . . . , N . For t = 0 inequality (102) holds with probability 1 since C ≥ 1. Next, assume
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that for some k = T − 1 ≤ N − 1 we have P{Ek} = P{ET−1} ≥ 1− (T−1)β
N . Let us prove that

P{ET } ≥ 1− Tβ
N . First of all, probability event ET−1 implies that

f(x̄N )− f(x∗)
(100)
≤ 1

AN

(
R2

0 + 2γ2
N−1∑
k=0

‖θk‖22 − 2γ

N−1∑
k=0

〈
xk − x∗, θk

〉) (102)
≤ C2R2

0

AN

hold for t = 0, 1, . . . , T − 1. Since f is L-smooth, we have that probability event ET−1 implies∥∥∇f(xt)
∥∥

2
≤ L‖xt − x∗‖2 ≤ LCR0 =

λ

2
(103)

for t = 0, . . . , T − 1, where the clipping level is defined as

λ = 2LCR0. (104)

Having inequalities (103) in hand we show in the rest of the proof that (102) holds for t = T with
big enough probability. First of all, we introduce new random variables:

ηl =

{
x∗ − zl, if ‖x∗ − zl‖2 ≤ CR0,

0, otherwise,
(105)

for l = 0, 1, . . . T − 1. Note that these random variables are bounded with probability 1, i.e. with
probability 1 we have

‖ηl‖2 ≤ CR0. (106)
Secondly, we use the introduced notation and get that ET−1 implies

R2
T

(101),(102),(103),(105)
≤ R2

0 + 2γ

T−1∑
l=0

〈θl, ηl〉+ 2γ2
T−1∑
l=0

‖θl+1‖22.

Finally, we do some preliminaries in order to apply Bernstein’s inequality (see Lemma D.1) and
obtain that ET−1 implies

R2
T

(12)
≤ R2

0 + 2γ

T−1∑
l=0

〈θul , ηl〉︸ ︷︷ ︸
¬

+ 2γ

T−1∑
l=0

〈
θbl , ηl

〉
︸ ︷︷ ︸

­

+ 4γ2
T−1∑
l=0

(
‖θul ‖22 − Eξl

[
‖θul ‖22

])
︸ ︷︷ ︸

®

+ 4γ2
T−1∑
l=0

Eξl
[
‖θul ‖22

]
︸ ︷︷ ︸

¯

+ 4γ2
T−1∑
l=0

‖θbl ‖22︸ ︷︷ ︸
°

(107)

where we introduce new notations:

θul
def
= ∇̃f(xl, ξl)− Eξl

[
∇̃f(xl, ξl)

]
, θbl

def
= Eξl

[
∇̃f(xl, ξl)

]
−∇f(xl), (108)

θl = θul + θbl .

It remains to provide tight upper bounds for ¬, ­, ®, ¯ and °, i.e. in the remaining part of the proof
we show that ¬ + ­ + ® + ¯ + ° ≤ δC2R2

0 for some δ < 1.

Upper bound for ¬. First of all, since Eξl [θ
u
l ] = 0 summands in ¬ are conditionally unbiased:

Eξl [2γ 〈θul , ηl〉] = 0.

Secondly, these summands are bounded with probability 1:

|2γ 〈θul , ηl〉| ≤ 2γ‖θul ‖2 ‖ηl‖2
(38),(106)
≤ 4γλCR0

(104)
= 8γ(CR0)2L.

Finally, one can bound conditional variances σ2
l

def
= Eξl

[
4γ2 〈θul , ηl〉

2
]

in the following way:

σ2
l ≤ Eξl

[
4γ2 ‖θul ‖

2
2 ‖ηl‖

2
2

] (106)
≤ 4γ2(CR0)2Eξl

[
‖θul ‖

2
2

]
.
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In other words, sequence {2γ 〈θul , ηl〉}l≥0 is a bounded martingale difference sequence with bounded
conditional variances {σ2

l }l≥0. Therefore, we can apply Bernstein’s inequality, i.e. we apply

Lemma D.1 with Xl = 2γ 〈θul , ηl〉, c = 8γ(CR0)2L and F =
c2 ln 4N

β

6 and get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣ > b and
T−1∑
l=0

σ2
l ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
or, equivalently, with probability at least 1− 2 exp

(
− b2

2F+2cb/3

)
either

T−1∑
l=0

σ2
l > F or

∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣︸ ︷︷ ︸
|¬|

≤ b.

The choice of F will be clarified further, let us now choose b in such a way that 2 exp
(
− b2

2F+2cb/3

)
=

β
2N . This implies that b is the positive root of the quadratic equation

b2 −
2c ln 4N

β

3
b− 2F ln

4N

β
= 0,

hence

b =
c ln 4N

β

3
+

√
c2 ln2 4N

β

9
+ 2F ln

4N

β
=
c ln 4N

β

3
+

√
4c2 ln2 4N

β

9

= c ln
4N

β
= 8γ(CR0)2L ln

4N

β
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ2
l > F or |¬| ≤ 8γ(CR0)2L ln

4N

β︸ ︷︷ ︸
probability eventE¬

.

Next, we notice that probability event ET−1 implies that
T−1∑
l=0

σ2
l ≤ 4γ2(CR0)2

T−1∑
l=0

Eξl
[
‖θul ‖22

] (41)
≤ 72γ2(CR0)2σ2 T

m

(85)
≤ 72γ2(CR0)2σ2

2T (CR0)2L2 ln 4N
β

27Nσ2

T≤N
≤ 16

3
γ2(CR0)4L2 ln

4N

β
≤
c2 ln 4N

β

6
= F,

where the last inequality follows from c = 8γ(CR0)2L and simple arithmetic.

Upper bound for ­. First of all, we notice that probability event ET−1 implies

2γ
〈
θbl , ηl

〉
≤ 2γ

∥∥θbl ∥∥2
‖ηl‖2

(39),(106)
≤ 2γ

4σ2

mλ
CR0

(104)
=

4γσ2

Lm
.

This implies that

­ = 2γ

T−1∑
l=0

〈
θbl , ηl

〉 T≤N
≤ 4γNσ2

mL
.

Upper bound for ®. We derive the upper bound for ® using the same technique as for ¬. First of
all, we notice that the summands in ® are conditionally independent:

Eξl
[
4γ2

(
‖θul ‖22 − Eξl

[
‖θul ‖22

])]
= 0.
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Secondly, the summands are bounded with probability 1:∣∣4γ2
(
‖θul ‖22 − Eξl

[
‖θul ‖22

])∣∣ ≤ 4γ2
(
‖θul ‖22 + Eξl

[
‖θul ‖22

]) (38)
≤ 4γ2

(
4λ2 + 4λ2

)
(104)
= 128γ2(CR0)2L2 def

= c1. (109)

Finally, one can bound conditional variances σ̂2
l

def
= Eξl

[∣∣4γ2
(
‖θul ‖22 − Eξl

[
‖θul ‖22

])∣∣2] in the
following way:

σ̂2
l

(109)
≤ c1Eξl

[∣∣4γ2
(
‖θul ‖22 − Eξl

[
‖θul ‖22

])∣∣]
≤ 4γ2c1Eξl

[
‖θul ‖22 + Eξl

[
‖θul ‖22

]]
= 8γ2c1Eξl

[
‖θul ‖22

]
. (110)

In other words, sequence
{

4γ2
(
‖θul ‖22 − Eξl

[
‖θul ‖22

])}
l≥0

is a bounded martingale difference se-
quence with bounded conditional variances {σ̂2

l }l≥0. Therefore, we can apply Bernstein’s inequality,
i.e. we apply Lemma D.1 with Xl = X̂l = 4γ2

(
‖θul ‖22 − Eξl

[
‖θul ‖22

])
, c = c1 = 128γ2(CR0)2L2

and F = F1 =
c21 ln 4N

β

6 and get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣ > b and
T−1∑
l=0

σ̂2
l ≤ F1

}
≤ 2 exp

(
− b2

2F1 + 2c1b/3

)

or, equivalently, with probability at least 1− 2 exp
(
− b2

2F1+2c1b/3

)
either

T−1∑
l=0

σ̂2
l > F1 or

∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣︸ ︷︷ ︸
|®|

≤ b.

As in our derivations of the upper bound for ¬ we choose such b that 2 exp
(
− b2

2F1+2c1b/3

)
= β

2N ,
i.e.

b =
c1 ln 4N

β

3
+

√
c21 ln2 4N

β

9
+ 2F1 ln

4N

β
= c1 ln

4N

β
= 128γ2(CR0)2L2 ln

4N

β
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ̂2
l > F1 or |®| ≤ 128γ2(CR0)2L2 ln

4N

β︸ ︷︷ ︸
probability eventE®

.

Next, we notice that probability event ET−1 implies that

T−1∑
l=0

σ̂2
l

(110)
≤ 8γ2c1

T−1∑
l=0

Eξl

[
‖θul ‖

2
2

] (41)
≤ 144γ2c1σ

2 T

m

(85)
≤ 32

3
γ2c1(CR0)2L2 T

N
ln

4N

β

T≤N
≤

c21 ln 4N
β

6
≤ F1.

Upper bound for ¯. The probability event ET−1 implies

¯ = 4γ2
T−1∑
l=0

Eξl
[
‖θul ‖22

] (41)
≤ 72γ2σ2

T−1∑
l=0

1

m

T≤N
≤ 72γ2Nσ2

m
.
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Upper bound for °. Again, we use corollaries of probability event ET−1:

° = 4γ2
T−1∑
l=0

‖θbl ‖22
(39)
≤ 64γ2σ4 T

m2λ2

(104)
=

64γ2σ4

4(CR0)2L2
· T
m2

T≤N
≤ 16γ2Nσ4

(CR0)2L2m2
.

Now we summarize all bound that we have: probability event ET−1 implies

R2
T

(101)
≤ R2

0 + 2γ2
T−1∑
l=0

‖θl‖22 − 2γ

T−1∑
l=0

〈
xl − x∗, θl

〉
(107)
≤ R2

0 + ¬ + ­ + ® + ¯ + °,

­ ≤ 4γNσ2

mL
, ¯ ≤ 72γ2Nσ2

m
, ° ≤ 16γ2Nσ4

(CR0)2L2m2
,

T−1∑
l=0

σ2
l ≤ F,

T−1∑
l=0

σ̂2
l ≤ F1

and

P{ET−1} ≥ 1− (T − 1)β

N
, P{E¬} ≥ 1− β

2N
, P{E®} ≥ 1− β

2N
,

where

E¬ =

{
either

T−1∑
l=0

σ2
l > F or |¬| ≤ 8γ(CR0)2L ln

4N

β

}
,

E® =

{
either

T−1∑
l=0

σ̂2
l > F1 or |®| ≤ 128γ2(CR0)2L2 ln

4N

β

}
.

Taking into account these inequalities and our assumptions on m and γ (see (85) and (86)) we get
that probability event ET−1 ∩ E¬ ∩ E® implies

R2
T

(101)
≤ R2

0 + 2γ2
T−1∑
l=0

‖θl‖22 − 2γ

T−1∑
l=0

〈
xl − x∗, θl

〉
≤ R2

0 +

(
1

10
+

1

10
+

1

10
+

1

10
+

1

10

)
C2R2

0 ≤
(

1 +
1

2
C2

)
R2

0

(88)
≤ C2R2

0. (111)

Moreover, using union bound we derive

P {ET−1 ∩ E¬ ∩ E®} = 1− P
{
ET−1 ∪ E¬ ∪ E®

}
≥ 1− Tβ

N
. (112)

That is, by definition of ET and ET−1 we have proved that

P{ET }
(111)
≥ P {ET−1 ∩ E¬ ∩ E®}

(112)
≥ 1− Tβ

N
,

which implies that for all k = 0, 1, . . . , N we have P{Ek} ≥ 1− kβ
N . Then, for k = N we have that

with probability at least 1− β

ANf(x̄N )− f(x∗)
(100)
≤ R2

0 + 2γ2
N−1∑
k=0

‖θk‖22 − 2γ

N−1∑
k=0

〈
xk − x∗, θk

〉 (102)
≤ C2R2

0.

Since A = 2γ (1− 2γL) and 1− γL ≥ 1
2 we get that with probability at least 1− β

f(x̄N )− f(x∗) ≤ C2R2
0

AN
≤ C2R2

0

γN

(86)
≤

80C2R2
0L ln 4N

β

N
.
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In other words, clipped-SGD achieves f(x̄N ) − f(x∗) ≤ ε with probability at least 1 − β after
O
(
LR2

0

ε ln
LR2

0

εβ

)
iterations and requires

N−1∑
k=0

mk
(85)
=

N−1∑
k=0

O

(
max

{
1,

Nσ2

C2R2
0L

2 ln N
β

})
= O

(
max

{
N,

N2σ2

C2R2
0L

2 ln N
β

})

= O

(
max

{
LR2

0

ε
,
σ2R2

0

ε2

}
ln
LR2

0

εβ

)
oracle calls.

G.3.2 Proof of Theorem G.2

First of all, consider behavior of clipped-SGD during the first run in R-clipped-SGD. We notice
that the proof of Theorem G.1 will be valid if we substitute R0 everywhere by its upper bound R.
From µ-strong convexity of f we have

R2
0 = ‖x0 − x∗‖22

(10)
≤ 2

µ

(
f(x0)− f(x∗)

)
,

therefore, one can choose R =
√

2
µ (f(x0)− f(x∗)). It implies that after N0 iterations of

clipped-SGD we have

f(x̄N0)− f(x∗) ≤
80LC2R2 ln 4N0τ

β

N0
=

160LC2R2 ln 4N0τ
β

N0µ
(f(x0)− f(x∗)).

with probability at least 1− β
τ , hence with the same probability f(x̄N0)−f(x∗) ≤ 1

2 (f(x0)−f(x∗))

since N0

ln
4N0τ
β

≥ 320C2L
µ . In other words, with probability at least 1− β

τ

f(x̂1)− f(x∗) ≤ 1

2

(
f(x0)− f(x∗)

)
=

1

4
µR2.

Then, by induction one can show that for arbitrary k ∈ {0, 1, . . . , τ − 1} the inequality

f(x̂k+1)− f(x∗) ≤ 1

2

(
f(x̂k)− f(x∗)

)
holds with probability at least 1− β

τ . Therefore, these inequalities hold simultaneously with probability
at least 1− β. Using this we derive that inequality

f(x̂τ )− f(x∗) ≤ 1

2

(
f(x̂τ−1)− f(x∗)

)
≤ 1

22

(
f(x̂τ−2)− f(x∗)

)
≤ . . . ≤ 1

2τ
(
f(x0)− f(x∗)

)
=

µR2

2τ+1

holds with probability ≥ 1− β. That is, after τ =
⌈
log2

µR2

2ε

⌉
restarts R-clipped-SGD generates

such point x̂τ that f(x̂τ )− f(x∗) ≤ ε with probability at least 1− β. Moreover, if N0

ln
4N0τ
β

≤ C1L
µ

with some numerical constant C1 ≥ 320C2, then the total number of iterations of clipped-SGD
equals

N0τ = O

(
L

µ
ln

(
µR2

ε

)
ln

(
L

µβ
ln
µR2

ε

))
and the overall number of stochastic first-order oracle calls is

τ−1∑
t=0

N0m
t =

τ−1∑
t=0

O

(
max

{
N0,

2tN2
0σ

2

R2L2 ln 4N0τ
β

})

= O

(
max

{
N0τ,

τ−1∑
t=0

2tN2
0σ

2

R2L2 ln 4N0τ
β

})

= O

(
max

{
L

µ
ln

(
µR2

ε

)
,
σ2

µε

}
ln

(
L

µβ
ln
µR2

ε

))
.
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G.3.3 Proof of Theorem G.3

Since f is L-smooth we have

f(xk+1) ≤ f(xk)− γ
〈
∇f(xk), ∇̃f(xk, ξk)

〉
+
Lγ2

2
‖∇̃f(xk, ξk)‖22

(12)
≤ f(xk)− γ‖∇f(xk)‖22 − γ

〈
∇f(xk), θk

〉
+ Lγ2‖∇f(xk)‖22 + Lγ2‖θk‖22

= f(xk)− γ(1− Lγ)‖∇f(xk)‖22 − γ
〈
∇f(xk), θk

〉
+ Lγ2‖θk‖22

≤ f(xk)− γ

2
‖∇f(xk)‖22 − γ

〈
∇f(xk), θk

〉
+ Lγ2‖θk‖22,

θk
def
= ∇̃f(xk, ξk)−∇f(xk) (113)

where in the last inequality we use 1−γL ≥ 1
2 . Next, µ-strong convexity of f implies ‖∇f(xk)‖22 ≥

2µ(f(xk)− f(x∗)) and

f(xk+1)− f(x∗)) ≤ f(xk)− f(x∗)− γµ(f(xk)− f(x∗))− γ
〈
∇f(xk), θk

〉
+ Lγ2‖θk‖22

= (1− γµ)(f(xk)− f(x∗))− γ
〈
∇f(xk), θk

〉
+ Lγ2‖θk‖22.

Unrolling the recurrence we obtain

f(xN )− f(x∗)) ≤ (1− γµ)N (f(x0)− f(x∗)) + γ

N−1∑
l=0

(1− γµ)N−1−l 〈−∇f(xl), θl
〉

+Lγ2
N−1∑
l=0

(1− γµ)N−1−l‖θl‖22, (114)

for all N ≥ 0. Using notation rk
def
= f(xk)− f(x∗) we rewrite this inequality in the following form:

rk ≤ (1− γµ)kr0 + γ

k−1∑
l=0

(1− γµ)k−1−l 〈−∇f(xl), θl
〉

+ Lγ2
k−1∑
l=0

(1− γµ)k−1−l‖θl‖22. (115)

The rest of the proof is based on the refined analysis of inequality (115). In particular, via induction
we prove that for all k = 0, 1, . . . , N with probability at least 1− kβ

N the following statement holds:
inequalities

rt
(115)
≤ (1− γµ)tr0 + γ

t−1∑
l=0

(1− γµ)t−1−l 〈−∇f(xl), θl
〉

+ Lγ2
t−1∑
l=0

(1− γµ)t−1−l‖θl‖22

≤ 2(1− γµ)tr0 (116)

hold for t = 0, 1, . . . , k simultaneously. Let us define the probability event when this statement
holds as Ek. Then, our goal is to show that P{Ek} ≥ 1 − kβ

N for all k = 0, 1, . . . , N . For t = 0

inequality (116) holds with probability 1 since 2(1 − γµ)0 ≥ 1, hence P{E0} = 1. Next, assume
that for some k = T − 1 ≤ N − 1 we have P{Ek} = P{ET−1} ≥ 1− (T−1)β

N . Let us prove that
P{ET } ≥ 1− Tβ

N . First of all, probability event ET−1 implies that

f(xt)− f(x∗)
(116)
≤ 2(1− γµ)tr0 (117)

hold for t = 0, 1, . . . , T − 1. Since f is L-smooth, we have that probability event ET−1 implies∥∥∇f(xl)
∥∥

2
≤
√

2L(f(xl)− f(x∗)) ≤
√

4L(1− γµ)lr0 =
λl
2

(118)

for t = 0, . . . , T − 1 and

λl = 4
√
L(1− γµ)lr0. (119)
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Having inequalities (118) in hand we show in the rest of the proof that (116) holds for t = T with
big enough probability. First of all, we introduce new random variables:

ζl =

{
−∇f(xl+1), if ‖∇f(xl+1)‖2 ≤ λl

2 ,

0, otherwise,
(120)

for l = 0, 1, . . . T − 1. Note that these random variables are bounded with probability 1, i.e. with
probability 1 we have

‖ζl‖2 ≤
λl
2
. (121)

Secondly, we use the introduced notation and get that ET−1 implies

rT
(115),(116),(118),(120)

≤ (1− γµ)T r0 + γ

T−1∑
l=0

(1− γµ)T−1−l 〈ζl, θl〉

+Lγ2
T−1∑
l=0

(1− γµ)T−1−l‖θl‖22.

Finally, we do some preliminaries in order to apply Bernstein’s inequality (see Lemma D.1) and
obtain that ET−1 implies

rT
(12)
≤ (1− γµ)T r0 + γ

T−1∑
l=0

(1− γµ)T−1−l 〈θul , ζl〉︸ ︷︷ ︸
¬

+ γ

T−1∑
l=0

(1− γµ)T−1−l 〈θbl , ζl〉︸ ︷︷ ︸
­

+ 2Lγ2
T−1∑
l=0

(1− γµ)T−1−l (‖θul ‖22 − Eξl
[
‖θul ‖22

])
︸ ︷︷ ︸

®

+ 2Lγ2
T−1∑
l=0

(1− γµ)T−1−lEξl
[
‖θul ‖22

]
︸ ︷︷ ︸

¯

+ 2Lγ2
T−1∑
l=0

(1− γµ)T−1−l‖θbl ‖22︸ ︷︷ ︸
°

(122)

where we introduce new notations:

θul
def
= ∇̃f(xl, ξl)− Eξl

[
∇̃f(xl, ξl)

]
, θbl

def
= Eξl

[
∇̃f(xl, ξl)

]
−∇f(xl), (123)

θl = θul + θbl .

It remains to provide tight upper bounds for ¬, ­, ®, ¯ and °, i.e. in the remaining part of the proof
we show that ¬ + ­ + ® + ¯ + ° ≤ (1− γµ)T r0.

Upper bound for ¬. First of all, since Eξl [θ
u
l ] = 0 summands in ¬ are conditionally unbiased:

Eξl
[
γ(1− γµ)T−1−l 〈θul , ζl〉

]
= 0.

Secondly, these summands are bounded with probability 1:∣∣γ(1− γµ)T−1−l 〈θul , ζl〉
∣∣ ≤ γ(1− γµ)T−1−l‖θul ‖2 ‖ζl‖2

(38),(121)
≤ γ(1− γµ)T−1−lλ2

l
(119)
= 16γLr0(1− γµ)T−1.

Finally, one can bound conditional variances σ2
l

def
= Eξl

[
γ2(1− γµ)2(T−1−l) 〈θul , ζl〉

2
]

in the fol-
lowing way:

σ2
l ≤ Eξl

[
γ2(1− γµ)2(T−1−l)‖θul ‖22, ‖ζl‖22

] (121)
≤ γ2(1− γµ)2(T−1−l)λ

2

4
Eξl

[
‖θul ‖

2
2

]
(119)
≤ 4γ2Lr0(1− γµ)2(T−1)−lEξl

[
‖θul ‖

2
2

]
. (124)
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In other words, sequence
{
γ(1− γµ)T−1−l 〈θul , ζl〉

}
l≥0

is a bounded martingale difference sequence
with bounded conditional variances {σ2

l }l≥0. Therefore, we can apply Bernstein’s inequality, i.e. we

apply Lemma D.1 with Xl = γ(1− γµ)T−1−l 〈θul , ζl〉, c = 16γLr0(1− γµ)T−1 and F =
c2 ln 4N

β

6
and get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣ > b and
T−1∑
l=0

σ2
l ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
or, equivalently, with probability at least 1− 2 exp

(
− b2

2F+2cb/3

)
either

T−1∑
l=0

σ2
l > F or

∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣︸ ︷︷ ︸
|¬|

≤ b.

The choice of F will be clarified further, let us now choose b in such a way that 2 exp
(
− b2

2F+2cb/3

)
=

β
2N . This implies that b is the positive root of the quadratic equation

b2 −
2c ln 4N

β

3
b− 2F ln

4N

β
= 0,

hence

b =
c ln 4N

β

3
+

√
c2 ln2 4N

β

9
+ 2F ln

4N

β
=
c ln 4N

β

3
+

√
4c2 ln2 4N

β

9

= c ln
4N

β
= 16γLr0(1− γµ)T−1 ln

4N

β
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ2
l > F or |¬| ≤ 16γLr0(1− γµ)T−1 ln

4N

β︸ ︷︷ ︸
probability eventE¬

.

Next, we notice that probability event ET−1 implies that

T−1∑
l=0

σ2
l

(124)
≤ 4γ2Lr0σ

2(1− γµ)2(T−1)
T−1∑
l=0

Eξl

[
‖θul ‖

2
2

]
(41)
≤ 72γ2Lr0σ

2(1− γµ)2(T−1)
T−1∑
l=0

1

ml(1− γµ)l

(96)
≤ 128

3
γ2L2r2

0(1− γµ)2(T−1) ln
4N

β
=
c2 ln 4N

β

6
= F,

where the last inequality follows from c = 16γLr0(1− γµ)T−1 and simple arithmetic.

Upper bound for ­. First of all, we notice that probability event ET−1 implies

γ(1− γµ)T−1−l 〈θbl , ζl〉 ≤ γ(1− γµ)T−1−l ∥∥θbl ∥∥2
‖ζl‖2

(39),(121)
≤ γ(1− γµ)T−1−l 4σ2

mlλl

λl
2

=
2σ2γ(1− γµ)T−1−lσ2

ml

(96)
=

64

27

γLr0(1− γµ)T−1 ln 4N
β

N
.
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This implies that

­ =

T−1∑
l=0

γ(1− γµ)T−1−l 〈θbl , ζl〉 T≤N≤ 64

27
γLr0(1− γµ)T−1 ln

4N

β
.

Upper bound for ®. We derive the upper bound for ® using the same technique as for ¬. First of
all, we notice that the summands in ® are conditionally independent:

Eξl
[
2Lγ2(1− γµ)T−1−l (‖θul ‖22 − Eξl

[
‖θul ‖22

])]
= 0.

Secondly, the summands are bounded with probability 1:∣∣2Lγ2(1− γµ)T−1−l (‖θul ‖22 − Eξl
[
‖θul ‖22

])∣∣ ≤ 2Lγ2(1− γµ)T−1−l (‖θul ‖22 + Eξl
[
‖θul ‖22

])
(38)
≤ 2Lγ2(1− γµ)T−1−l (4λ2

l + 4λ2
l

)
(119)
= 256γ2L2r0(1− γµ)T−1 def

= c1. (125)

Finally, one can bound conditional variances σ̂2
l

def
= Eξl

[∣∣2Lγ2(1− γµ)T−1−l (‖θul ‖22 − Eξl
[
‖θul ‖22

])∣∣2]
in the following way:

σ̂2
l

(125)
≤ c1Eξl

[∣∣2Lγ2(1− γµ)T−1−l (‖θul ‖22 − Eξl
[
‖θul ‖22

])∣∣]
≤ 2Lγ2(1− γµ)T−1−lc1Eξl

[
‖θul ‖22 + Eξl

[
‖θul ‖22

]]
= 4Lγ2(1− γµ)T−1−lc1Eξl

[
‖θul ‖22

]
. (126)

In other words, sequence
{

2Lγ2(1− γµ)T−1−l (‖θul ‖22 − Eξl
[
‖θul ‖22

])}
l≥0

is a bounded mar-
tingale difference sequence with bounded conditional variances {σ̂2

l }l≥0. Therefore, we can
apply Bernstein’s inequality, i.e. we apply Lemma D.1 with Xl = X̂l = 2Lγ2(1 −
γµ)T−1−l (‖θul ‖22 − Eξl

[
‖θul ‖22

])
, c = c1 = 256γ2L2r0(1 − γµ)T−1 and F = F1 =

c21 ln 4N
β

6
and get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣ > b and
T−1∑
l=0

σ̂2
l ≤ F1

}
≤ 2 exp

(
− b2

2F1 + 2c1b/3

)
or, equivalently, with probability at least 1− 2 exp

(
− b2

2F1+2c1b/3

)
either

T−1∑
l=0

σ̂2
l > F1 or

∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣︸ ︷︷ ︸
|®|

≤ b.

As in our derivations of the upper bound for ¬ we choose such b that 2 exp
(
− b2

2F1+2c1b/3

)
= β

2N ,
i.e.

b =
c1 ln 4N

β

3
+

√
c21 ln2 4N

β

9
+ 2F1 ln

4N

β
= c1 ln

4N

β
= 256γ2L2r0(1− γµ)T−1 ln

4N

β
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ̂2
l > F1 or |®| ≤ 256γ2L2r0(1− γµ)T−1 ln

4N

β︸ ︷︷ ︸
probability eventE®

.

Next, we notice that probability event ET−1 implies that
T−1∑
l=0

σ̂2
l

(126)
≤ 4Lγ2(1− γµ)T−1c1

T−1∑
l=0

1

(1− γµ)l
Eξl

[
‖θul ‖

2
2

]
(41)
≤ 72Lγ2(1− γµ)T−1c1σ

2
T−1∑
l=0

1

(1− γµ)l
1

ml

(96),T≤N
≤

c21 ln 4N
β

6
= F1.
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Upper bound for ¯. The probability event ET−1 implies

¯ = 2Lγ2
T−1∑
l=0

(1− γµ)T−1−lEξl
[
‖θul ‖22

] (41)
≤ 2Lγ2(1− γµ)T−1

T−1∑
l=0

1

(1− γµ)l
18σ2

ml

(96),T≤N
≤ 64

3
γ2L2r0(1− γµ)T−1 ln

4N

β
.

Upper bound for °. Again, we use corollaries of probability event ET−1:

° = 2Lγ2
T−1∑
l=0

(1− γµ)T−1−l‖θbl ‖22
(39)
≤ 2Lγ2(1− γµ)T−1

T−1∑
l=0

1

(1− γµ)l
16σ4

m2
l λ

2
l

(119),(96)
=

512

729
γ2L2r0(1− γµ)T−1 ln2 4N

β

T−1∑
l=0

1

N2

T≤N
≤ 512

729

γ2L2r0(1− γµ)T−1 ln2 4N
β

N
.

Now we summarize all bounds that we have: probability event ET−1 implies

rT
(115)
≤ (1− γµ)T r0 + γ

T−1∑
l=0

(1− γµ)T−1−l 〈−∇f(xl), θl
〉

+ Lγ2
T−1∑
l=0

(1− γµ)T−1−l‖θl‖22

(122)
≤ (1− γµ)T r0 + ¬ + ­ + ® + ¯ + °,

­ ≤ 32

27
γLr0(1− γµ)T−1 ln

4N

β
, ¯ ≤ 64

3
γ2L2r0(1− γµ)T−1 ln

4N

β
,

° ≤ 512

729

γ2L2r0(1− γµ)T−1 ln2 4N
β

N
,

T−1∑
l=0

σ2
l ≤ F,

T−1∑
l=0

σ̂2
l ≤ F1

and

P{ET−1} ≥ 1− (T − 1)β

N
, P{E¬} ≥ 1− β

2N
, P{E®} ≥ 1− β

2N
,

where

E¬ =

{
either

T−1∑
l=0

σ2
l > F or |¬| ≤ 16γLr0(1− γµ)T−1 ln

4N

β

}
,

E® =

{
either

T−1∑
l=0

σ̂2
l > F1 or |®| ≤ 256γ2L2r0(1− γµ)T−1 ln

4N

β

}
.

Taking into account these inequalities and our assumptions on mk and γ (see (96) and (97)) we get
that probability event ET−1 ∩ E¬ ∩ E® implies

rT
(115)
≤ (1− γµ)T r0 + γ

T−1∑
l=0

(1− γµ)T−1−l 〈−∇f(xl), θl
〉

+ Lγ2
T−1∑
l=0

(1− γµ)T−1−l‖θl‖22

≤ (1− γµ)T r0 +

(
1

5
+

1

5
+

1

5
+

1

5
+

1

5

)
(1− γµ)T r0 = 2(1− γµ)T r0. (127)

Moreover, using union bound we derive

P {ET−1 ∩ E¬ ∩ E®} = 1− P
{
ET−1 ∪ E¬ ∪ E®

}
≥ 1− Tβ

N
. (128)

That is, by definition of ET and ET−1 we have proved that

P{ET }
(127)
≥ P {ET−1 ∩ E¬ ∩ E®}

(128)
≥ 1− Tβ

N
,
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which implies that for all k = 0, 1, . . . , N we have P{Ek} ≥ 1− kβ
N . Then, for k = N we have that

with probability at least 1− β

f(xN )− f(x∗))
(114)
≤ (1− γµ)N (f(x0)− f(x∗)) + γ

N−1∑
l=0

(1− γµ)N−1−l 〈−∇f(xl), θl
〉

+Lγ2
N−1∑
l=0

(1− γµ)N−1−l‖θl‖22
(116)
≤ 2(1− γµ)N (f(x0)− f(x∗)).(129)

As a result, we get that with probability at least 1− β

f(xN )− f(x∗) ≤ 2(1− γµ)N (f(x0)− f(x∗)) ≤ 2 exp (−γµN) (f(x0)− f(x∗))

(97)
≤ 2 exp

(
− µN

80L ln 4N
β

)
(f(x0)− f(x∗)).

In other words, clipped-SGD achieves f(xN )− f(x∗) ≤ ε with probability at least 1− β after

O

(
L

µ
ln
(r0

ε

)
ln

(
L

µβ
ln
(r0

ε

)))
iterations, where r0 = f(x0)− f(x∗) and requires

N−1∑
k=0

mk
(96)
=

N−1∑
k=0

O

(
max

{
1,

Nσ2

Lr0(1− γµ)k ln 4N
β

})
(97)
= O

(
max

{
N,

Nσ2

µr0(1− γµ)N−1

})
= O

(
max

{
N,

Nσ2

µε

})
= O

(
max

{
L

µ
,
σ2

µε
· L
µ

}
ln
(r0

ε

)
ln

(
L

µβ
ln
(r0

ε

)))
.

oracle calls.
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H Extra Experiments

H.1 Detailed Description of Experiments from Section 1.2

In this section we provide a detailed description of experiments from Section 1.2 together with
additional experiments. In these experiments we consider the following problem:

min
x∈Rn

f(x), f(x) = ‖x‖
2
2/2 = Eξ [f(x, ξ)] , f(x, ξ) = ‖x‖

2
2/2 + 〈ξ, x〉 (130)

where ξ is a random vector with zero mean and bounded variance. Clearly, f(x) is µ-strongly convex
and L-smooth with µ = L = 1. We assume that E

[
‖ξ‖22

]
≤ σ2 for some non-negative number

σ. Then, the stochastic gradient ∇f(x, ξ) = x + ξ satisfies conditions (2) and the state-of-the-art
theory (e.g. [24, 25]) says that after k iterations of SGD with constant stepsize γ ≤ 1/L = 1 we have
E
[
‖xk − x∗‖22

]
≤ (1− γµ)k‖x0 − x∗‖22 + γσ2

/µ. Taking into account that for our problem x∗ = 0,
f(x) = 1

2‖x‖
2
2, f(x∗) = 0 and µ = 1 we derive

E
[
f(xk)− f(x∗)

]
≤ (1− γ)k

(
f(x0)− f(x∗)

)
+ γσ2

/2. (131)

That is, for given k the r.h.s. of the formula above depends only on the stepsize γ, initial suboptimality
f(x0)− f(x∗) and the variance σ.

We emphasize that the obtained bound and the convergence in expectation itself does not imply
non-trivial upper bound for f(xk) − f(x∗) with high-probability without additional assumptions
on the distribution of random vector ξ. In fact, the trajectory of SGD significantly depends on the
distribution of ξ. To illustrate this we consider 3 different distributions of ξ with the same σ.

1. In the first case we consider ξ from standard normal distribution, i.e. ξ is a Gaussian random
vector with zero mean and covariance matrix I . Clearly, in this situation σ2 = n.

2. Next, we consider a random vector ξ with i.i.d. components having Weibull distribution
[69]. The cumulative distribution function (CDF) for Weibull distribution with parameters
c > 0 and α > 0 is

CDFW (x) =

{
1− exp

(
−
(
x
α

)c)
, if x ≥ 0,

0, if x < 0.
(132)

There are explicit formulas for mean and variance for Weibull distribution:

mean = αΓ

(
1 +

1

c

)
, variance = α2

(
Γ

(
1 +

2

c

)
−
(

Γ

(
1 +

1

c

))2
)
,

where Γ denotes the gamma function. Having these formulas one can easily shift and scale
the distribution in order to get a random variable with zero mean and the variance equal 1.
In our experiments, we take c = 0.2,

α =
1√

Γ
(
1 + 2

c

)
−
(
Γ
(
1 + 1

c

))2 ,
shift the distribution by −αΓ

(
1 + 1

c

)
and sample from the obtained distribution n i.i.d.

random variables to form ξ. Such a choice of parameters implies that E[ξ] = 0 and
E[‖ξ‖22] = n.

3. Finally, we consider a random vector ξ with i.i.d. components having Burr Type XII
distribution [3] having the following cumulative distribution function

CDFB(x) =

{
1− (1 + xc)

−d
, if x > 0,

0, if x ≤ 0,
(133)

where c > 0 and d > 0 are the positive parameters. There are explicit formulas for mean
and variance for Burr distribution:

mean = µ1, variance = −µ2
1 + µ2,
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where the r-th moment (if exists) is defined as follows [42]:

µr = dB
(
cd− r
c

,
c+ r

c

)
,

where B denotes the beta function.
In our experiments, we take c = 1 and d = 2.3 and then apply shifts and scales similarly to
the case with Weibull distribution. Again, such a choice of parameters implies that E[ξ] = 0
and E[‖ξ‖22] = n.

For all experiments we considered the dimension n = 100, the stepsize γ = 0.001 and for
clipped-SGD we set λ = 100. The result of 10 independent runs of SGD and clipped-SGD
are presented in Figures 6-10. These numerical tests show that for Weibull and Burr Type XII
distributions SGD have significantly larger oscillations than for Gaussian distribution in all 10 tests. In
contrast, clipped-SGD behaves much more robust in all 3 cases during all 10 runs without significant
oscillations.
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Figure 6: 2 independent runs of SGD (blue) and clipped-SGD (red) applied to solve (130) with ξ
having Gaussian (left column), Weibull (central column) and Burr Type XII (right column) tails.

H.2 Additional Details and Experiments with Logistic Regression

In this section, we provide additional details of the experiments presented in Section 4 together with
extra numerical results. In particular, we consider the logistic regression problem:

min
x∈Rn

f(x) =
1

r

r∑
i=1

log (1 + exp (−yi · (Ax)i))︸ ︷︷ ︸
fi(x)

(134)
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Figure 7: 2 independent runs of SGD (blue) and clipped-SGD (red) applied to solve (130) with ξ
having Gaussian (left column), Weibull (central column) and Burr Type XII (right column) tails.

where A ∈ Rr×n is matrix of instances and y ∈ {0, 1}r is vector of labels. It is well-known that
f(x) from (134) is convex and L-smooth with L = λmax(A>A)/4r where λmax(A>A) denotes the
maximal eigenvalue of A>A. One can consider problem (134) as a special case of (1) where ξ is a
random index uniformly distributed on {1, . . . , r} and f(x, ξ) = fξ(x). We take the datasets from
LIBSVM library [4]: see Table 3 with the summary of the datasets we used.

Table 3: Summary of used datasets.

heart diabetes australian a9a w8a
Size 270 768 690 32561 49749

Dimension 13 8 13 123 300

We notice that in all experiments that we did with logistic regression the initial suboptimality
f(x0) − f(x∗) was of order 10. Moreover, as it was mentioned in the main part of the paper the
parameters for the methods were tuned. One can find parameters that we used in the experiments
from Section 4 in Table 4.

Next, we provide our numerical study of the distribution of ‖∇fi(xk)−∇f(xk)‖2, where xk is the
last iterate produced by SGD in experiments presented in Section 4, see Figure 11. As we mentioned
in the main part of the paper these histograms are very similar to ones presented in Figure 2, so, the
insights that we got from Figure 2 are right. However, in our experiments with australian dataset
SGD with the stepsize γ = 1/L did not reach needed suboptimality in order to oscillate.

Therefore, we run SGD along with its clipped variants with the same batchsize m = 50 for bigger
number of epochs and also tuned their parameters. One can find the results of these runs in Figure 12.
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Figure 8: 2 independent runs of SGD (blue) and clipped-SGD (red) applied to solve (130) with ξ
having Gaussian (left column), Weibull (central column) and Burr Type XII (right column) tails.

Table 4: Parameters that are used to produce plots presented in Figures 3-5. In the first contains the
name of the dataset and the batchsize m that was used for all methods tested on the dataset. For
d-clipped-SGD λ0 is an initial clipping level, l is a period (in terms of epochs) of decreasing the
clipping level and α is a coefficient of decrease, i.e. every l epochs the clipping level is multiplied by
α. For SSTM parameter a was picked the same as for clipped-SSTM in order to emphasize the effect
of clipping.

SGD clipped-SGD d-clipped-SGD SSTM clipped-SSTM
heart
m = 20

γ = 1
2L γ = 1

2L , λ = 2.72
γ = 1

2L , λ0 = 2.72,
l = 103, α = 0.9

a = 104 a = 104,
B = 2 · 10−4

diabetes
m = 100

γ = 1
10L γ = 1

10L , λ = 68.86
γ = 1

10L , λ0 = 68.86,
l = 103, α = 0.7

a = 5 · 103 a = 5 · 103,
B = 7 · 10−4

australian
m = 50

γ = 1
L γ = 1

L , λ = 74.47
γ = 1

L , λ0 = 74.47,
l = 1000, α = 0.9

a = 103 a = 5 · 103,
B = 2 · 10−4

a9a
m = 100

γ = 1
2L γ = 1

2L , λ = 0.025
γ = 1

L , λ0 = 4.9,
l = 5, α = 0.5

a = 1
a = 1,

B = 3 · 10−2

w8a
m = 1000

γ = 1
L γ = 1

L , λ = 1.3
γ = 1

L , λ0 = 64.78,
l = 50, α = 0.9

a = 1
a = 1,

B = 19 · 10−2

We see that SGD with this stepsize achieves better suboptimality but it also oscillates significantly more.
In contrast, clipped-SGD and d-clipped-SGD do not have significant oscillations and converge
with the same rate as SGD. Moreover, clipped-SSTM shows slightly better performance in this case.
Finally, we numerically studied the distribution of ‖∇fi(xk)−∇f(xk)‖2, where xk is the last iterate
produced by SGD, see Figure 13. These histograms imply that the noise in stochastic gradients is
heavy-tailed and explain an unstable behavior of SGD in this case.
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Figure 9: 2 independent runs of SGD (blue) and clipped-SGD (red) applied to solve (130) with ξ
having Gaussian (left column), Weibull (central column) and Burr Type XII (right column) tails.

Finally, we conducted experiments on larger datasets: a9a and w8a. The results of our numerical test
are reported on Figures 14 and 15. We notice that SSTM with given stepsize and batchsize suffers
from noise accumulation, while clipped-SSTM does not have this drawback and shows comparable
performance with SGD on a9a and much better performance on w8a.

Figure 15 shows the gradient’s noise distributions for both datasets. While the distribution of
stochastic gradients at the optimum for a9a have sub-Gaussian-like distribution, for w8a they have
heavy-tailed distribution.
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Figure 10: 2 independent runs of SGD (blue) and clipped-SGD (red) applied to solve (130) with ξ
having Gaussian (left column), Weibull (central column) and Burr Type XII (right column) tails.

0 50 100 150 200 250 300 350 400
Noise norm

10−4

10−3

10−2

De
ns

ity

heart, real samples

0 100 200 300 400 500 600 700
Noise norm

10−10

10−8

10−6

10−4

10−2

De
ns

ity

diabetes, real samples

0 1000 2000 3000 4000 5000
Noise norm

10−76
10−66
10−56
10−46
10−36
10−26
10−16
10−6

De
ns

ity

australian, real samples

0 50 100 150 200 250 300 350 400
Noise norm

10−4

10−3

10−2

De
ns

ity

heart, synthetic Gaussian samples

0 100 200 300 400 500 600 700
Noise norm

10−10

10−8

10−6

10−4

10−2

De
ns

ity

diabetes, synthetic Gaussian samples

0 1000 2000 3000 4000 5000
Noise norm

10−76
10−66
10−56
10−46
10−36
10−26
10−16
10−6

De
ns

ity

australian, synthetic Gaussian samples

Figure 11: Histograms of ‖∇fi(xk)−∇f(xk)‖2 for different datasets (the first row) and synthetic
Gaussian samples with mean and variance estimated via empirical mean and variance of real samples
‖∇f1(xk) − ∇f(xk)‖2, . . . , ‖∇fr(xk) − ∇f(xk)‖2 (the second row) where xk is the last point
produced by SGD. Red lines correspond to probability density functions of normal distributions with
empirically estimated means and variances.
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Figure 12: Trajectories of SGD, clipped-SGD, d-clipped-SGD and clipped-SSTM applied to solve
logistic regression problem on australian dataset. For SGD and its clipped variants stepsize γ = 20

L
was used. For clipped-SGD we used λ = 18.62 and for d-clipped-SGD the parameters are as
follows: λ0 = 74.47, l = 1500, α = 0.9. Parameters for clipped-SSTM are the same as in the
corresponding cell in Table 4.
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Figure 13: Histograms of ‖∇fi(xk) − ∇f(xk)‖2 for australian dataset and synthetic Gaus-
sian samples with mean and variance estimated via empirical mean and variance of real samples
‖∇f1(xk) − ∇f(xk)‖2, . . . , ‖∇fr(xk) − ∇f(xk)‖2 where xk is the last point produced by SGD
with γ = 20

L . Red lines correspond to probability density functions of normal distributions with
empirically estimated means and variances.
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Figure 14: Trajectories of SGD, clipped-SGD, d-clipped-SGD and clipped-SSTM applied to solve
logistic regression problem on a9a and w8a datasets. Parameters of the methods used in experiments
are presneted in Table 4.
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Figure 15: Histograms of ‖∇fi(x∗)‖2 for a9a and w8a dataset and synthetic Gaussian sam-
ples with mean and variance estimated via empirical mean and variance of real samples
‖∇f1(x∗)‖2, . . . , ‖∇fr(x∗)‖2. Red lines correspond to probability density functions of normal
distributions with empirically estimated means and variances.
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