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Abstract

Similarity-based Hierarchical Clustering (HC) is a classical unsupervised machine
learning algorithm that has traditionally been solved with heuristic algorithms like
Average-Linkage. Recently, Dasgupta [25] reframed HC as a discrete optimization
problem by introducing a global cost function measuring the quality of a given
tree. In this work, we provide the first continuous relaxation of Dasgupta’s discrete
optimization problem with provable quality guarantees. The key idea of our method,
HYPHC, is showing a direct correspondence from discrete trees to continuous
representations (via the hyperbolic embeddings of their leaf nodes) and back (via a
decoding algorithm that maps leaf embeddings to a dendrogram), allowing us to
search the space of discrete binary trees with continuous optimization. Building on
analogies between trees and hyperbolic space, we derive a continuous analogue
for the notion of lowest common ancestor, which leads to a continuous relaxation
of Dasgupta’s discrete objective. We can show that after decoding, the global
minimizer of our continuous relaxation yields a discrete tree with a (1 + )-factor
approximation for Dasgupta’s optimal tree, where € can be made arbitrarily small
and controls optimization challenges. We experimentally evaluate HYPHC on a
variety of HC benchmarks and find that even approximate solutions found with
gradient descent have superior clustering quality than agglomerative heuristics or
other gradient based algorithms. Finally, we highlight the flexibility of HYPHC
using end-to-end training in a downstream classification task.

1 Introduction

Hierarchical Clustering (HC) is a fundamental problem in data analysis, where given datapoints and
their pairwise similarities, the goal is to construct a hierarchy over clusters, in the form of a tree
whose leaves correspond to datapoints and internal nodes correspond to clusters. HC naturally arises
in standard applications where data exhibits hierarchical structure, ranging from phylogenetics [26]
and cancer gene sequencing [47, 48] to text/image analysis [49], community detection [36] and
everything in between. A family of easy to implement, yet slow, algorithms includes agglomerative
methods (e.g., Average-Linkage) that build the tree in a bottom-up manner by iteratively merging
pairs of similar datapoints or clusters together. In contrast to “flat” clustering techniques like k-means,
HC provides fine-grained interpretability and rich cluster information at all levels of granularity and
alleviates the requirement of specifying a fixed number of clusters a priori.

Despite the abundance of HC algorithms, the HC theory was underdeveloped, since no “global”
objective function was associated with the final tree output. A well-formulated objective allows us to
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compare different algorithms, measure their quality, and explain their success or failure.! To address
this issue, Dasgupta [25] recently introduced a discrete cost function over the space of binary trees
with n leaves. A key property of his cost function is that low-cost trees correspond to meaningful
hierarchical partitions in the data. He initially proved this for symmetric stochastic block models,
and later works provided experimental evidence [44], or showed it for hierarchical stochastic block
models, suitable for inputs that contain a ground-truth hierarchical structure [20, 21]. These works
led to important steps towards understanding old and building new HC algorithms [14, 15, 40, 4].

The goal of this paper is to improve the performance of HC algorithms using a differentiable relaxation
of Dasgupta’s discrete optimization problem. There have been recent attempts at gradient-based HC
via embedding methods, which do not directly relax Dasgupta’s optimization problem. UFit [19]
addresses a different “ultrametric fitting” problem using Euclidean embeddings, while gHHC [39]
assumes that partial information about the optimal clustering—more specifically leaves’ hyperbolic
embeddings—is known. Further, these two approaches lack theoretical guarantees in terms of
clustering quality and are outperformed by discrete agglomerative algorithms.

A relaxation of Dasgupta’s discrete optimization combined with the powerful toolbox of gradient-
based optimization has the potential to yield improvements in terms of (a) clustering quality (both
theoretically and empirically), (b) scalability, and (c) flexibility, since a gradient-based approach
can be integrated into machine learning (ML) pipelines with end-to-end training. However, due to the
inherent discreteness of the HC optimization problem, several challenges arise:

(1) How can we continuously parameterize the search space of discrete binary trees? A promising
direction is leveraging hyperbolic embeddings which are more aligned with the geometry of trees
than standard Euclidean embeddings [46]. However, hyperbolic embedding methods typically
assume a fully known [41, 45] or partially known graph [39] that will be embedded, whereas the
challenge here is searching over an exponentially large space of trees with unknown structure.

(2) How can we derive a differentiable relaxation of the HC cost? One of the key challenges is that
this cost relies on discrete properties of trees such as the lowest common ancestor (LCA).

(3) How can we decode a discrete binary tree from continuous representations, while ensuring that
the ultimate discrete cost is close to the continuous relaxation?

Here, we introduce HYPHC, an end-to-end differentiable model for HC with provable guarantees in
terms of clustering quality, which can be easily incorporated into ML pipelines.

(1) Rather than minimizing the cost function by optimizing over discrete trees, we parameterize
trees using leaves’ hyperbolic embeddings. In contrast with Euclidean embeddings, hyperbolic
embeddings can represent trees with arbitrarily low distortion in just two dimensions [46]. We
show that the leaves themselves provide enough information about the underlying tree, avoiding
the need to explicitly represent the discrete structure of internal nodes.

(2) We derive a continuous LCA analogue, which leverages the analogies between shortest paths in
trees and hyperbolic geodesics (Fig. 1), and propose a differentiable variant of Dasgupta’s cost.

(3) We propose a decoding algorithm for the internal nodes which maps the learned leaf embeddings
to a dendrogram (cluster tree) of low distortion.

We show (a) that our approach produces good clustering quality, in terms of Dasgupta cost. The-
oretically, assuming perfect optimization, the optimal clustering found using HYPHC yields a
(1 + ¢)-approximation to the minimizer of the discrete cost, where & can be made arbitrarily small,
and controls the tradeoffs between quality guarantees and optimization challenges. Notice that due
to our perfect optimization assumption, this does not contradict previously known computational
hardness results based on the Small Set Expansion for achieving constant approximations [14], but
allows us to leverage the powerful toolbox of nonconvex optimization. Empirically, we find that even
approximate HYPHC solutions found with gradient descent outperform or match the performance
of the best discrete and continuous methods on a variety of HC benchmarks. Additionally, (b) we
propose two extensions of HYPHC that enable us to scale to large inputs and we also study the
tradeoffs between clustering quality and speed. Finally, (c) we demonstrate the flexibility of HYyPHC
by jointly optimizing embeddings for HC and a downstream classification task, improving accuracy
by up to 3.8% compared to the two-stage embed-then-classify approach.

!Contrast this lack of HC objectives with flat clustering, where k-means objectives and others have been
studied intensively from as early as 1960s (e.g., [29]), leading today to a comprehensive theory on clustering.
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Figure 1: The tree shown in (a) is embedded into hyperbolic space (B5) in (b), (c), and (d). In (c) and
(d) we show the hyperbolic LCA (in red) and illustrate the relationship between the discrete LCA,
which is central to Dasgupta’s cost, and geodesics (shortest paths) in hyperbolic space.

2 Related Work

We review related work for gradient-based HC and refer to Appendix A for an extended discussion of
HC related works. Chierchia et al. [19] introduce an ultra-metric fitting framework (UFit) to learn
embeddings in ultra-metric spaces. These are restrictive metric spaces (and a special case of tree
metrics) where the triangle inequality is strengthened to d(z, z) < max{d(z,y), d(y, z)}. UFit can
be extended to HC using an agglomerative method to produce a dendrogram. gHHC [39], which
inspired our work, is the first attempt at HC with hyperbolic embeddings. This model assumes
input leaves’ hyperbolic embeddings are given (by fixing their distance to the origin) and optimizes
embeddings of internal nodes. Observing that the internal tree structure can be directly inferred from
leaves’ hyperbolic embeddings, we propose an approach that is a direct relaxation of Dasgupta’s
discrete optimization framework and does not assume any information about the optimal clustering.
In contrast with previous gradient-based approaches, our approach has theoretical guarantees in terms
of clustering quality and empirically outperforms agglomerative heuristics.

3 Background

We first introduce our notations and the problem setup. We then briefly review basic notions from
hyperbolic geometry and refer to standard texts for a more in-depth treatment [10]. Appendix B
includes additional background about hyperbolic geometry for our technical proofs.

3.1 Similarity-Based Hierarchical clustering

Notations We consider a dataset D with n datapoints and pairwise similarities (w;;); je[n). A HC
of D is a rooted binary tree 1" with exactly n leaves, such that each leaf corresponds to a datapoint in
D, and intermediate nodes represent clusters. For two leaves (4, j) in T', we denote 7 V j their LCA,
and T'[i V j] the subtree rooted at i V j, which represents the smallest cluster containing both ¢ and j.
In particular, we denote leaves(T[i V j]) the leaves of T'[i V j], which correspond to datapoints in the
cluster 7 V j. Finally, given three leaf nodes (4, j, k) in T, we say that the relation {4, j|k} holds if
iV jis adescendant of 7 V j V k (Fig. 1a). In this scenario, we have i V k = j V k.

HC discrete optimization framework The goal of HC is to find a binary tree 7" that is mind-
ful of pairwise similarities in the data. Dasgupta [25] introduced a cost function over possible
binary trees with the crucial property that good trees should have a low cost: CDasgupta(T; w) =
>4 wij|leaves(T'[i V j])|. Intuitively, a good tree for Dasgupta’s cost merges similar nodes (high
w;;) first in the hierarchy (small subtree). In other words, a good tree should cluster the data such
that similar datapoints have LCAs further from the root than dissimilar datapoints. As the quantity
[leaves(T[i V j])| may be hard to parse, we note here a simpler way to think of this term based on
triplets of datapoints 4, j, k: whenever a tree splits ¢, j, k for the first time, then k ¢ leaves(T'[¢ V j])
if and only if k& was separated from ¢, j. In particular, Wang and Wang [50] observe that:

Cpasgupta(T; w) = Z[w” + wik + Wik — wik(Tiw)] + 2 ZwU
ijk ij (D
where w;i, (T w) = wi; 1[{i, j|k}] + wip 1[{i, k|5 }] + win L[{7, kli}],



Figure 2: Visualization of HYPHC embeddings and decoded trees during optimization.

which reduces difficult-to-compute quantities about subtree sizes to simpler statements about LCAs.
For binary trees, exactly one of 1[{i,j|k}], 1[{4, k|7}], L[{J, k|¢}] holds, and these are defined
through the notion of LCA. As we shall see next, we can relax this objective using a continuous
notion of LCA in hyperbolic space. Dasgupta’s cost-based perspective leads to a natural optimization
framework for HC, where the goal is to find 7™ such that:

* : .
T*= argmin  Cpasgupta(T;w). )
all binary trees T'

3.2 Hyperbolic geometry

Poincaré model of hyperbolic space Hyperbolic geometry is a non-Euclidean geometry with
a constant negative curvature. We work with the Poincaré model with negative curvature —1:
By = {z € R?: ||z||2 < 1}. Curvature measures how an object deviates from a flat surface; small
absolute curvature values recover Euclidean geometry, while negative curvatures become “tree-like”.

Distance function and geodesics The hyperbolic distance between two points (z,y) € (Bg)? is:

2
d(z.y) = h1(1+2 e~ vilz ) :
(z,y) = cos (1= [lz13)(L = [lylI3) v

If y = o, the origin of the hyperbolic space, the distance function has the simple expression:
do(z) == d(o,z) = 2 tanh™'(||z||2). This distance function induces two types of geodesics:
straight lines that go through the origin, and segments of circles perpendicular to the boundary of the
ball. These geodesics resemble shortest paths in trees: the hyperbolic distance between two points

approaches the sum of distances between the points and the origin, similar to trees, where the shortest
path between two nodes goes through their LCA (Fig. 1).

4 Hyperbolic Hierarchical Clustering

Our goal is to relax the discrete optimization problem in Eq. (2). To do so, we represent trees
using the hyperbolic embeddings of their leaves in the Poincaré disk (Section 4.1).> We introduce a
differentiable HC cost, using a continuous LCA analogue (Section 4.2), and then propose a decoding
algorithm, dec(+), which maps embeddings to discrete binary trees (Section 4.3). Our main result
is that, when embeddings are optimized over a special set of spread embeddings (Definition 4.1),
solving our continuous relaxation yields a (1 + ¢)-approximation to the minimizer of Dasgupta’s cost
(Section 4.4), where ¢ can be made arbitrarily small. Next, we present our continuous optimization
framework and then detail the different components of HYPHC.

HYPHC continuous optimization framework Formally, if Z C B denotes an arbitrary con-
strained set of embeddings, we propose to optimize the following continuous constrained optimization
problem as a proxy for the discrete problem in Eq. (2):

Z* = argming .z Cuyeuc(Z;w,7) and T = dec(Z*) 4)

where Cuypnc(+; w, 7) is our differentiable cost and 7 is a temperature used to relax the max function.

>We developed our theory in two dimensions. As shown in Sala et al. [45], this can present optimization
difficulties due to precision requirements. However, using Prop 3.1 of [45], we can increase the dimension to
reduce this effect.



4.1 Continuous tree representation via hyperbolic embeddings

To perform gradient-based HC, one needs a continuous parameterization of possible binary trees on a
fixed number of leaves. We parameterize binary trees using the (learned) hyperbolic embedding of
their leaves. Our insight is that because hyperbolic space induces a close correspondence between
embeddings and tree metrics [46], the leaf embeddings alone provide enough information to recover
the full tree. In fact, as hyperbolic points are pushed towards the boundary, the embedding becomes
more tree-like (Fig. 2) [45]. Thus, rather than optimize over all possible tree structures, which
could lead to combinatorial explosion, we embed only the leaf nodes in the Poincaré disk using an
embedding look-up:

1 — 2 € Bo. (5)
These leaves’ embeddings are optimized with gradient-descent using a continuous relaxation of
Dasgupta’s cost (Section 4.2), and are then decoded into a discrete binary tree to produce a HC on
the leaves (Section 4.3).

4.2 Differentiable objective function

Having a continuous representation of trees is not sufficient for gradient-based HC, since Dasgupta’s
cost requires computing the discrete LCA. We leverage the similarities between geodesics in hyper-
bolic space and shortest paths in trees, to derive a continuous analogue of the discrete LCA. We then
use this hyperbolic LCA to introduce a differentiable version of Dasgupta’s cost, Cuypuc(+; w, 7).

Hyperbolic lowest common ancestor Given two leaf nodes ¢ and j, their LCA ¢V j in T is the
node on the shortest path connecting ¢ and j (denoted ¢ ~~ j) that is closest to the root node r:

iV j=argmingg, . ;dr(rk). (6)
Analogously, we define the hyperbolic LCA between two points (z;, z;) in hyperbolic space as the
point on their geodesic (shortest path, denoted z; ~~ z;) that is closest to the origin (the root):
d(o, 2). (7)
Note that z; V z; is also the orthogonal projection of the origin onto the geodesic (Fig. 1) and its
hyperbolic distance to the origin can be computed exactly.

Zi Vozj = argmin, e, .

Lemma 4.1. Let (z,y) € (By)? and x \V y denote the point on the geodesic connecting x and y that
minimizes the distance to the origin o. Let 0 be the angle between (x,y) and « be the angle between

(x,2 Vy). We have:
(L (lelebB Y
‘ (sinw) <||y|2<|m||§+1> (9)»’

and d,(zVy) =2tanh~'(v/R2 + 1 — R), (8)

2 1 2
where R = (||a:|2—|—> —1.
2||z||2cos(c)

We provide a high-level overview of the proof and refer to Appendix C for a detailed derivation.
Geodesics in the Poincaré disk are straight lines that go through the origin or segments of circles that
are orthogonal to the boundary of the disk. In particular, given two points, one can easily compute
the coordinates of the circle that goes through the points and that is orthogonal to the boundary of the
disk using circle inversions [9]. One can then use this circle to recover the hyperbolic LCA, which is
simply the point on the diameter that is closest to the origin (i.e. smallest Euclidean norm).

HYPHC’s objective function The non-differentiable term in Eq. (1) is w;;x (T'; w), which is the
similarity of the pair that has the deepest LCA in 7', i.e. the LCA that is farthest—in tree distance—
from the root. We use this qualitative interpretation to derive a continuous version of Dasgupta’s cost.
Consider an embedding of T with n leaves, Z = {z1, ..., z, }. The notion of deepest LCA can be
extended to continuous embeddings by looking at the continuous LCA that is farthest—in hyperbolic
distance—from the origin. Our differentiable HC objective is then:

Cuyerc(Z;w, 1) = Zijk(wij + Wik + Wik — Wayenc,ijk(Z;w, 7)) + 2 Zij Wi ©

where wiypnc,ijk(Z; w, T) = (Wij, Wik, wik) - 0 (do(2i V 25), do(2i V 21), do(25 V 21)) T

and o (+) is the scaled softmax function: o, («a); = eo‘i/T/Zj eil/T,



4.3 Hyperbolic decoding

The output of HC needs to be a discrete binary tree, and optimizing the HYPHC loss in Eq. (4)
only produces leaves’ embeddings. We propose a way to decode a binary tree structure from
embeddings by iteratively merging the most similar pairs based on their hyperbolic LCA distance
to the origin (Algorithm 1). Intuitively, because dec(-) uses LCA distances to the origin (and not
pairwise distances), it can recover the underlying tree that is directly being optimized by HYPHC
(which is only defined through these LCA depths).

Algorithm 1 Hyperbolic binary tree decoding dec(Z)

Input: Embeddings Z = {z1, ..., z, }; Output: Rooted binary tree with n leaves.
F <+ forest ({i} : i € [n])
S < {(4, 7): pairs sorted by deepest hyperbolic LCA (d,(z; V z;))};
for (i, j) € S do
if 7 and j not in same tree in F’ then
4,7 < roots of trees containing 7, j;
create new node with children r;, r;;

A S ol ey

return F' (which is a binary tree at the end of the algorithm)

4.4 Approximation ratio result

Assuming one can perfectly solve the constrained optimization in Eq. (4), our main result is that
the solution of the continuous optimization, once decoded, recovers the optimal tree with a constant
approximation factor, which can be made arbitrarily small. We first provide more conditions on the
constrained set of embeddings in Eq. (4) by introducing a special set of spread embeddings Z C B3

Definition 4.1. An embedding Z € BY is called spread if for every triplet (i, j, k):

max{d,(2 V2;),do(2: V 21), do(2; V 21) } —min{do(2; V 25), do (2 V 21), do(2; V 21) } > 0-O(n),
(10)
where 0 is a constant of hyperbolic space (Gromov’s delta hyperbolicity, see Appendix B.2).

Intuitively, the spread constraints spread points apart and force hyperbolic LCAs to be distinguish-
able from each other. Theoretically, we show that this induces a direct correspondence between
embeddings and binary trees, i.e. the embeddings yield a metric that is close to that of a binary
tree metric. More concretely, every spread leaf embedding is compatible with an underlying tree,
in the sense that our decoding algorithm is guaranteed to return the underlying tree. This is the
essence of the correspondence between spread embeddings and trees, which is the main ingredient
behind Theorem 4.1.

Theorem 4.1. Consider a dataset with n datapoints and pairwise similarities (w;;) and let T* be
the solution of Eq. (2). Let Z be the set of spread embeddings and Z* € Z be the solution of Eq. (4)
for some T > 0. Foranye > 0, if 7 < O(1/log(1/¢)), then:
CDasg;upta(dec(Z*); w)
CDasgupta(T*; ’LU)

<l+e. (11)

The proof is detailed in Appendix D. The insight is that when embeddings are sufficiently spread out,
there is an equivalence between leaf embeddings and trees. In one direction, we show that any spread
embedding Z has a continuous cost Cuypuc(Z; w, T) close to the discrete cost Cpasgupta(T; w) of
some underlying tree 7T". Conversely, we can leverage classical hyperbolic embedding results [46] to
show that Dasgupta’s optimum 7™ can be embedded as a spread embedding in Z.

Optimization challenges Note that smaller 7 values in Eq. (11) lead to better approximation
guarantees but make the optimization more difficult. Indeed, hardness in the discrete problem arises
from the difficulty in enumerating all possible solutions with discrete exhaustive search; on the other
hand, in this continuous setting it is easier to specify the solution, which trades off for challenges
arising from nonconvex optimization—i.e. how do we find the global minimizer of the constrained
optimization problem in Eq. (4). In our experiments, we use a small constant for 7 following standard



Zoo Iris Glass Segmentation Spambase Letter CIFAR-100

# Points 101 150 214 2310 4601 20K 50K
Cost DC.10~° DC.107° DC.10-6 DC.107* DC.1071 DC.107'2 DC.10713
Upper Bound 3.887 14.12 3.959 4.839 3.495 3.031 4.408
Lower Bound 2.750 7.709 2.750 3.258 3.025 2.244 3.990
SL 2.897 8.120 3.018 3.705 3.250 2.625 4.149
AL 2.829 7.939 2.906 3.408 3.159 2.437 4.056
Discrete CL 2.802 7.950 2.939 3.460 3.184 2.481 4.078
WL 2.827 7.938 2.920 3.434 3.170 2.453 4.060
BKM 2.861 8.223 2.948 3.375 3.127 2.383 4.056
. UFit 2.896 7916 2.925 3.560 3.204 - -
Continuous e
HypHC 2.802 7.881 2.902 3.341 3.126 2.384 4.053

Table 1: Clustering quality results measured in discrete Dasgupta’s cost (DC). Best score in bold,
second best underlined. Dashes indicate that the method could not scale to large datasets.

practice. To optimize over the set of spread embeddings, one could add triplet constraints on the
embeddings to the objective function. We empirically find that even solutions of the unconstrained
problem found with stochastic gradient descent have a good approximation ratio for the discrete
objective, compared to baseline methods (Section 6.2).

5 HYPHC Practical Considerations

Here, we propose two empirical techniques to reduce the runtime complexity of HYPHC and
improve its scalability, namely triplet sampling and a greedy decoding algorithm. Note that while
our theoretical guarantees in Theorem 4.1 are valid under the assumptions that we use the exact
decoding and compute the exact loss, we empirically validate that HYPHC, combined with these two
techniques, still produces a clustering of good quality in terms of Dasgupta’s cost (Section 6.3).

Greedy decoding Algorithm 1 requires solving the closest pair problem, for which an almost-
quadratic n2~°(1) Jower bound holds under plausible complexity-theoretic assumptions [3, 22].
Instead, we propose a greedy top-down decoding that runs significantly faster. We normalize leaves’
embeddings so that they lie on a hyperbolic diameter and sort them based on their angles in the
Poincaré disk. We then recursively split the data into subsets using the largest angle split (Fig. 8
in Appendix E.2). Intuitively, if points are normalized, the LCA distance to the origin is a monotonic
function of the angle between points. Therefore, this top-down decoding acts as a proxy for the
bottom-up decoding in Algorithm 1. In the worst case, this algorithm runs in quadratic time. However,
if the repeated data splits are roughly evenly sized, it can be asymptotically faster, i.e., O(nlogn). In
our experiments, we observe that this algorithm is significantly faster than the exact decoding.

Triplet sampling Computing the loss term in Eq. (9) requires summing over all triplets which
takes O(n?) time. Instead, we generate all unique pairs of leaves and sample a third leaf uniformly at
random from all the other leaves, which yields roughly n? triplets. Note that an important benefit of
HyYPHC is that no matter how big the input is, HYPHC can always produce a clustering by sampling
fewer triplets. We view this as an interesting opportunity to scale to large datasets and discuss the
scalability-clustering quality tradeoff of HYPHC in Section 6.3. Finally, note that triplet sampling
can be made parallel, unlike agglomerative algorithms, even if both take O(n?) time.

6 Experiments

We first describe our experimental protocol (Section 6.1) and evaluate the clustering quality of
HYPHC in terms of discrete Dasgupta cost (Section 6.2). We then analyze the clustering qual-
ity/speed tradeoffs of HYPHC (Section 6.3). Finally, we demonstrate the flexibility of HYPHC
using end-to-end training for a downstream classification task (Section 6.4).

6.1 Experimental setup

We describe our experimental setup and refer to Appendix E.1 for more details.



Datasets We measure the clustering quality of HYPHC on six standard datasets from the UCI
Machine Learning repository,® as well as CIFAR-100 [35], which exhibits a hierarchical structure
(each image belongs to a fine-grained class that is itself part of a coarse superclass). Note that the
setting studied in this work is similarity-based HC, where the input is only pairwise similarities, rather
than features representing the datapoints. For all datasets, we use the cosine similarity to compute a
complete input similarity graph.

Baselines We compare HYPHC to similarity-based HC methods, including competitive agglomer-
ative clustering approaches such as single, average, complete and Ward Linkage (SL, AL, CL and
WL respectively). We also compare to Bisecting K-Means (BKM) [40], which is a fast top-down
algorithm that splits the data into two clusters at every iteration using local search.* Finally, we
compare to the recent gradient-based Ultrametric Fitting (UFit) approach [19].5

Evaluation metrics Our goal in this work is not to show an advantage on different heuristics, but
rather to optimize a single well-defined search problem to the best of our abilities. We therefore
measure the clustering quality by computing the discrete Dasgupta Cost (DC). A lower DC means a
better clustering quality. We also report upper and lower bounds for DC (defined in the Appendix E.1).
For classification experiments (Section 6.4) where the goal is to predict labels, we measure the
classification accuracy.

Training procedure We train HYPHC for 50 epochs (of the sampled triples) and optimize embed-
dings with Riemannian Adam [7]. We set the embedding dimension to two in all experiments, and
normalize embeddings during optimization as described in the greedy decoding strategy (Section 5).
We perform a hyper-parameter search over learning rate values [le =3, 5¢ =%, 1e~%] and temperature
values [le™!, 5e2 1e72].

Implementation We implemented HypHC in PyTorch and make our implementation publicly
available.® To optimize the HYPHC loss in Eq. (9), we used the open-source Riemannian optimization
software geoopt [32]. We conducted our experiments on a single NVIDIA Tesla P100 GPU.

6.2 Clustering quality

We report the performance of HYPHC—fast version with greedy decoding and triplet sampling—
in Table 1, and compare to baseline methods. On all datasets, HYPHC outperforms or matches the
performance of the best discrete method, and significantly improves over UFit, the only similarity-
based continuous method. This confirms our intuition that directly optimizing a continuous relaxation
of Dasgupta’s objective can improve clustering quality, compared to baselines that are optimized
independently of the objective.

We visualize embeddings during different iterations of HYPHC on the zoo dataset in Fig. 2. Colors
indicate ground truth flat clusters for the datapoints and we observe that these are better separated
in the dendrogram as optimization progresses. We note that embeddings are pushed towards the
boundary of the disk, where the hyperbolic distances are more “tree-like” and produce a better HC.
This illustrates our intuition that the optimal embedding will be close to a tree metric embedding.

6.3 Analysis

In our experiments, we used the greedy decoding Algorithm and triplet sampling with O(n?)
triplets (Section 5). Since our theoretical guarantees apply to the full triplet loss and exact de-
coding, we are interested in understanding how much quality is lost by using these two empirical
techniques.

Decoding We report HC costs obtained using the exact (Section 4.3) and the greedy (Section 5)
decoding in Fig. 3b, as well as the corresponding runtime in milliseconds (ms), averaged over 10
runs. We observe that the greedy decoding is approximately 60 times faster than the exact decoding,
while still achieving almost the same cost. This confirms that, when embeddings are normalized in
two dimensions, using angles as a proxy for the LCA’s distances to the origin is a valid approach.

*https://archive.ics.uci.edu/ml/datasets.php

*BKM is the direct analog of Hierarchical K-Means in the context of similarity-based HC [40].

>Note that we do not directly compare to gHHC [39] since this method requires input features. For
completeness, we include a comparison in the Appendix E.3.

https://github.com/HazyResearch/HypHC
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Figure 3: (a): Triplet sampling analysis. (b): Downstream classification task. (c): Decoding analysis.

Triplet sampling We plot the discrete cost (normalized to be in [0, 1]) of HYPHC for different
number of sampled triplets in Fig. 3a. As expected, we note that increasing the number of sampled
triplets reduces DC, and therefore improves the clustering quality. This tradeoff forms one of the key
benefits of using gradient-based methods: HYPHC can always produce a hierarchical clustering, no
matter how large the input is, at the cost of reducing clustering quality or increasing runtime. In our
experiments, we find that O(n?) is sufficient to achieve good clustering quality, which is the most
expensive step of HYPHC in terms of runtime complexity. Future work could explore better triplet
sampling strategies, to potentially use less triplets while still achieving a good clustering quality.

6.4 End-to-end training

Here, we demonstrate the flexibility of our approach and the benefits of joint training on a downstream
similarity-based classification task. Since HYPHC is optimized with gradient-descent, it can be used
in conjunction with any standard ML pipeline, such as downstream classification. We consider four
of the HC datasets that come with categorical labels for leaf nodes, split into training, testing and
validation sets (30/60/10% splits). We follow a standard graph-based semi-supervised learning setting,
where all the nodes (trainining/validation/testing) are available at training time, but only training
labels can be used to train the models. We use the embeddings learned by HYPHC as input features
for a hyperbolic logistic regression model [27]. Note that none of the other discrete HC methods
apply here, since these do not produce representations. In Fig. 3c, we compare jointly optimizing the
HYPHC and the classification loss (End-to-End) versus a two-step embed-then-classify approach
which trains the classification module using freezed HYPHC embeddings (Two-Step) (average scores
and standard deviation computed over 5 runs). We also compare to Label Propagation (LP), which
is a simple graph-based semi-supervised algorithm that does not perform any clustering step. We
find that LP is outperformed by both the end-to-end and the two-step approaches on most datasets,
suggesting that clustering learns meaningful partitions of the input similarity graph. Further, we
observe that end-to-end training improves classification accuracy by up to 3.8%, confirming the
benefits of a differentiable method for HC.

7 Conclusion

We introduced HYPHC, a differentiable approach to learn HC with gradient-descent in hyperbolic
space. HYPHC uses a novel technical approach to optimize over discrete trees, by showing an
equivalence between trees and constrained hyperbolic embeddings. Theoretically, HYPHC has
a (1 + e)-factor approximation to the minimizer of Dasgupta’s cost, and empirically, HYPHC
outperforms existing HC algorithms. While our theoretical analysis assumes a perfect optimization,
interesting future directions include a better characterization of the hardness arising from optimization
challenges, as well as providing an approximation for the continuous optimum. While no constant
factor approximation of the continuous optimum is possible, achieving better (e.g. polylogarithmic)
approximations, is an interesting future direction for this work. Finally, we note that our continuous
optimization framework can be extended beyond the scope of HC, to applications that require
searching of discrete tree structures, such as constituency parsing in natural language processing.



Broader Impact

Clustering is arguably one of the most commonly used tools in computer science applications. Here,
we study a variation where the goal is to output a hierarchy over clusters, as data often contain
hierarchical structures. We believe our approach based on triplet sampling and optimization should
not raise any ethical considerations, to the extent that the input data for our algorithm is unbiased. Of
course, bias in data is by itself another challenging problem, as biases can lead to unfair clustering and
discriminatory decisions for different datapoints. However here we study a downstream application,
after data has been collected. As such, we hope only a positive impact can emerge from our work, by
more faithfully finding hierarchies in biological, financial, or network data, as these are only some of
the applications that we listed in the introduction.
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