
A Proofs

In this section, we provide the proofs of the propositions stated in the main text.

A.1 Proposition 2.1

Proof. By definition

KL(Q̄|P̄) = �
⌧
log

p(X|Z; ✓)p(Z)p⇢(Z 0|Z)p(X 0|Z 0; ✓)

⇡̂(X)q(Z|X, ⌘)p⇢(Z 0|Z)p(X 0|Z 0, ✓)

�

Q̄
= KL(Q|P)

Equality follows as for any test function of form f(X,Z), that does not depend on X
0 and Z

0 we
have hf(X,Z)iQ̄ = hf(X,Z)iQ.

A.2 Proposition 2.2

Proof. P̄ is symmetric (exchangeable) in (X 0
, Z

0) and (X,Z). Hence, the pairwise marginal

P̄(X 0
, X; ✓, ⇢) =

Z
P̄(X,X

0
, Z, Z

0; ✓, ⇢)dZdZ
0 (11)

is also symmetric by the parametrization, and X
0 and X are exchangeable with identical marginal

densities. We have P̄(X; ✓, ⇢) = p(X; ✓) as the marginals of p⇢(Z 0
, Z) do not depend on ⇢. Hence

we have P̄(X 0|X = x; ✓, ⇢) = P̄(X 0
, X; ✓, ⇢)/p(X; ✓).

A.3 Proposition 2.3

Proof. Consider the joint distribution

Q̄(X 0|X; ⌘, ✓, ⇢)p(X; ✓) =

Z
(q(Z|X, ⌘)p(X; ✓)) p⇢(Z

0|Z)p(X 0|Z 0
, ✓)dZdZ

0

=

Z
p(X|Z; ✓)p(Z)p⇢(Z

0|Z)p(X 0|Z 0
, ✓)dZdZ

0 = P̄(X,X
0; ✓, ⇢)

The invariance of p(X; ✓) follows from symmetry as
R
Q̄(X 0|X; ·)p(X; ✓) = p(X 0; ✓).

A.4 Proposition 3.1

Proof. Consider

QAVAE(Z
0|Z; ⌘, ✓)p(Z) ⌘

Z
q(Z 0|X̃, ⌘)p(X̃|Z; ✓)p(Z)dX̃ =

Z
q(Z 0|X̃, ⌘)q(Z|X̃, ⌘)p(X̃; ✓)dX̃

As the expression at the right is symmetric in Z and Z
0, p(Z)-invariance follows. When the

observation noise v ! 0, the probability of observing x̃ out of the image of g vanishes, i.e.,
Pr {x̃ /2 Xg} = 0. When g is continuous and differentiable, the image of g is a manifold Xg . As g is
one-to-one, it is invertible on Xg , x̃ = g(z; ✓), g

�1(x̃) = z and the optimal encoder will have the
mean mapping f

µ(x̃; ⌘⇤) = g
�1(x̃; ⌘⇤) and variance mapping f

⌃(x̃; ⌘⇤) = 0. As z0 = g
�1(x̃) and

x̃ = g(z), we have z
0 = z and have QAVAE(Z 0|Z; ⌘, ✓) = p(Z 0|Z; ⇢ = 1).

B Example: PCA case

As a special case, it is informative to consider the probabilistic principal component analysis (pPCA)
[16, 19], a special case of VAE where g and f

µ are constrained to be linear functions. When
g(Z; ✓ = W) = Wz, using standard results about Gaussian distributions, the optimal encoder is
given by the exact posterior and is available in closed form as

q⇤(Z|X = x) = N (Z; fµ
⇤ (x), f

⌃
⇤)

where f
µ
⇤ (x) = (W>

W + vI)�1
W

>
x, f⌃

⇤ = v(W>
W + vI)�1. The transition kernel can be

shown to be the following form

Q(X 0|X = x) = N (X 0;PW,vx, v(PW,v + I))

12

where PW,v = W (W>
W + vI)�1

W
>.

In the limit when v is zero, we have the PCA case and the mean mapping of the transition kernel
g � fµ

⇤ corresponds to a projection matrix PW,0 = PW = W (W>
W)�1

W
>, as PW = P

2
W .

Hence all noise will vanish, and iterating the encode-decode steps would generate the sequence
PWx0 = x1 = x2 = . . . ; any initial input will be projected first into the range space of the projector,
and subsequent points will be confined to the invariant subspace.

Note that the encoder and the decoder are also consistent, as any possible sample x that can be
generated by the decoder, is mapped to a representation in the vicinity of the original representation.
To see this, consider the transition kernel that can be shown to be

Q(Z 0|Z = z) = N (Z 0; JW,vz, S)

where JW,v = (W>
W + vI)�1

W
>
W and S = v(JW,v + I)(W>

W + vI)�1. In the limit, when v

goes to zero, we have JW,v ⇡ I , or equivalently z
0 = z.

However, if an ‘inconsistent’ decoder-encoder pair would be used, an encoder with a perturbed mean
transform (W>

W + vI)�1
W

> +� for some nonzero matrix �, the resulting transition matrix of
Q(X 0|X = x) won’t be in general a projection and the chains will ’drift away’ from the original
invariant subspace depending upon the norm of the perturbation and the spectrum of the resulting
matrix W�.

In the PCA case, the invariant subspace is explicitly known thanks to the linearity. In contrast, for
a VAE with flexible nonlinear decoder and encoder functions, the analogous object to an invariant
subspace would be a global invariant manifold (sometimes referred as the data manifold), embedded
in X and each manifold point charted by x = g(z; ✓) where z is the coordinate of x in Z , given
by f

µ(x). While it seems to be hard to characterize the invariant manifold, we can argue that
"autoencoding" requires that realizations generated by the decoder are approximately invariant when
encoded again; i.e. autoencoding means that the coordinate of the point g(z) is z, or equivalently
z ⇡ f

µ(g(z)). However, this requirement is enforced by the VAE only for the samples in the dataset
but not for typical samples z from the prior p(Z). So the name autoencoder is perhaps a misnomer as
the resulting model is not necessarily autoencoding the samples it can generate.

C Variational Approximations

In this appendix, we provide the derivation of the variational objective for the AVAE and then an
alternative derivation for the smooth encoder [5], and other hybrid models that we used in our
experiments as contender models.

C.1 Autoencoding Variational Autoencoder QAVAE

The AVAE objective is
(✓⇤, ⌘⇤) = argmax

✓,⌘
BAVAE(✓, ⌘)

where
BAVAE(✓, ⌘) = �KL(QAVAE|P⇢) = hlog(P⇢/QAVAE)iQAVAE

The target distribution is

P⇢ = p(X|Z; ✓)p(Z)p⇢(Z
0|Z)u(X̃) (12)

where ⇢ is considered as a fixed hyper-parameter and u(x̃) = 1. The approximating distribution is

QAVAE = ⇡(X)q(Z|X; ⌘)q(Z 0|X̃; ⌘)p✓(X̃|Z)

BAVAE(✓, ⌘) =

*
log

p(X|Z; ✓)p(Z)p⇢(Z 0|Z)u(X̃)

⇡(X)q(Z|X; ⌘)q(Z 0|X̃; ⌘)p✓(X̃|Z)

+

QAVAE

= �KL(⇡(X)q(Z|X; ⌘)|p(X|Z; ✓)p(Z))

+

⌧
log

p⇢(Z 0|Z)

q(Z 0|X̃; ⌘)p✓(X̃|Z)

�

q̃(Z;⌘)q(Z0|X̃;⌘)p✓(X̃|Z)

13

We have used p✓ in the subscript to denote the fact that the decoder parameters will be assumed to be
fixed. Cancelling the constant terms we obtain

BAVAE =+ hlog p(X|Z; ✓)i⇡(X)q(Z|X;⌘) + hlog p(Z)i⇡(X)q(Z|X;⌘) � hlog q(Z|X; ⌘)i⇡(X)q(Z|X;⌘)

+ hlog p(Z 0|Z; ⇢)iq̃(Z;⌘)q̃(Z0|Z;⌘) �
D
log q(Z 0|X̃; ⌘)

E

q(Z0|X̃;⌘)q̃(X̃;⌘)

where q̃✓(Z 0|Z; ⌘) ⌘
R
q(Z 0|X̃; ⌘)p✓(X̃|Z)dX̃ , q̃(X̃; ⌘) ⌘

R
q(X̃|X; ⌘)⇡(X)dX and q̃(Z; ⌘) ⌘R

q(Z|X; ⌘)⇡(X)dX .

The algorithm is shown in Algorithm 1. We approximate the required expectations by their Monte
Carlo estimates and the objective function to maximize becomes

B̂AVAE(✓, ⌘;x, x̃, z) = log p(X = x|Z = z; ✓)

+ hlog p(Z)iq(Z|X=x;⌘) + hlog p(Z
0|Z; ⇢)iq̃(Z|X=x;⌘)q̃(Z0|X̃=x̃;⌘)

�
D
log q(Z 0|X̃ = x̃; ⌘)

E

q(Z0|X̃=x̃;⌘)

�hlog q(Z|X = x; ⌘)iq(Z|X=x;⌘) (13)

Algorithm 1: AVAE Training
1: function TRAINAVAE(x, iterations)
2: encoder (fµ(·; ⌘), f⌃(·; ⌘))
3: decoder g(·; ✓)
4: for i 1 to iterations do
5: µx, ⌃1/2

x encoder(x)
6: z µx + ⌃1/2

x N (0, 1)
7: x̃ stopgradient(decoder(z))
8: µx̃, ⌃1/2

x̃ encoder(x̃)

9: Maximize✓,⌘ B̂AVAE(✓, ⌘;x, x̃, z)
. See (13)

10: end for
11: end function

Algorithm 2: SE Training
1: function TRAINSE(x, iterations)
2: encoder (fµ(·; ⌘), f⌃(·; ⌘))
3: decoder g(·; ✓)
4: for i 1 to iterations do
5: x̃ stopgradient(PGD(x))

6: µx, ⌃1/2
x encoder(x)

7: z µx + ⌃1/2
x N (0, 1)

8: Maximize✓,⌘ B̂SE(✓, ⌘;x, x̃, z)
. See (32)

9: end for
10: end function

Algorithm 3: SE-AVAE Training
1: function TRAINSE-AVAE(x, iterations)
2: encoder (fµ(·; ⌘), f⌃(·; ⌘))
3: decoder g(·; ✓)
4: for i 1 to iterations do
5: ˜̃x stopgradient(PGD(x))

6: µx, ⌃1/2
x encoder(x)

7: z µx + ⌃1/2
x N (0, 1)

8: x̃ stopgradient(decoder(z))

9: Maximize✓,⌘
B̂SE-AVAE(✓, ⌘;x, x̃, ˜̃x, z)

. See (35)
10: end for
11: end function

Algorithm 4: AVAE-SS Training
1: function TRAINAVAE-SS(x, iterations)
2: encoder (fµ(·; ⌘), f⌃(·; ⌘))
3: decoder g(·; ✓)
4: for i 1 to iterations do
5: z

00 N (0, 1)
6: x stopgradient(decoder(z00))
7: µx, ⌃1/2

x encoder(x)
8: z µx + ⌃1/2

x N (0, 1)
9: x̃ stopgradient(decoder(z))

10: Maximize✓,⌘ B̂AVAE-SS(✓, ⌘;x, x̃, z)
. See (34)

11: end for
12: end function

14

C.2 Smooth Encoder

Smooth encoder model proposed in [5] employs an alternative variational approximation strategy to
learn a representation. While SE introduced an ’external selection mechanism’ to generate adversarial
examples, the analysis in this appendix shows that the approach could be viewed as a robust Bayesian
approach to variational inference and choosing a different variational distribution than AVAE.

SE aims at learning a model that is insensitive to a class of input transformations, in particular small
input perturbations T↵(x) = x+ ↵ where ↵ 2 A = {↵ : k↵k  ✏}. The variational distribution has
the form

QSE = ⇡(X)q(Z|X; ⌘)qT (X̃|X;uA)q(Z
0|X̃; ⌘) (14)

where qT (X̃|X;uA) is the conditional distribution defined by

↵ ⇠ uA(↵) X̃ = T↵(X) (15)

Here, uA is an arbitrary distribution with uA 2 UA, where UA is the set of distributions defined on A.
The notation suggests that uA is now taken as a parameter. The bound is

B̃SE(⌘, ✓;uA) = �KL(QSE(⌘, uA)||P⇢(✓)) (16)

We can employ a robust Bayesian approach to define a ’pessimistic’ bound in the sense of selecting
the worst prior distribution uA

BSE(⌘, ✓) = min
uA2UA

B̃SE(⌘, ✓;uA) (17)

This optimization is still computationally feasible as the maximum will be attained by a degenerate
distribution concentrated on an adversarial example xa = x+ ↵ as uA(↵) = �(↵� (xa � x)) and
can be computed using projected gradient descent to find xa. Once uA is fixed, we can optimize
model parameters in the outer maximization.

The resulting algorithm has two steps i) (Augmentation) Generate a new empirical data distribution
⇡̂a(X̃|X) adversarially, by finding the worst case transformation for each data point in the sense
of maximizing the change between representations; and ii) (Maximization) Maximizing the bound
denoted by BSE that has the following form

BSE =+ hlog p(X|Z; ✓)i⇡(X)q(Z|X;⌘) �KL(⇡̃a(X, X̃)q(Z,Z 0|X, X̃; ⌘)|p(Z,Z 0; ⇢)) (18)

where q(Z,Z 0|X, X̃; ⌘) ⌘ q(Z|X; ⌘)q(Z 0|X̃; ⌘) and ⇡̃a(X, X̃) ⌘ ⇡(X)⇡̂a(X̃|X).

This objective measures the data fidelity (first term) and the divergence of the joint encoder mapping
from the pairwise coupling target (second term). The second term forces the encoder mapping to be
smooth when ⇢ ⇡ 1.

C.3 Derivation Details
• The SE objective:

(✓⇤, ⌘⇤) = argmax
✓,⌘

min
uA2UA

B̃SE(✓, ⌘;uA)

B̃SE(✓, ⌘;uA) = �KL(QSE(⌘;uA)|P⇢(✓)) = hlog(P⇢/QSE)iQSE

• Target:

P⇢ = p(X|Z; ✓)p(Z)p⇢(Z
0|Z)u(X̃) (19)

fixed hyper-parameter ⇢ 2 [0, 1) and u(x̃) = 1.
• The variational distribution:

QSE(⌘;uA) = ⇡(X)q(Z|X; ⌘)qT (X̃|X;uA)q(Z
0|X̃; ⌘) (20)

– ⇡(X): Data distribution to be replaced by empirical data distribution
– q(Z|X; ⌘), q(Z 0|X̃; ⌘): Encoders tied with same parameters ⌘

15

– qT (X̃|X;uA): Distribution induced by random translations

↵ ⇠ uA(↵) X̃ = X + ↵ (21)

Here, uA is an arbitrary distribution on A = {a : kak1  ✏} with uA 2 UA.

B̃SE(✓, ⌘;uA) =+ hlog p(X|Z; ✓)p(Z)p⇢(Z
0|Z)iQSE

�
D
log q(Z|X; ⌘)q(Z 0|X̃; ⌘)

E

QSE

�
D
log qT (X̃|X;uA)

E

QSE

(22)

= hlog p(X|Z; ✓)i⇡(X)q(Z|X;⌘)

+ hlog p(Z)i⇡(X)q(Z|X;⌘)

�hlog q(Z|X; ⌘)i⇡(X)q(Z|X;⌘)

+ hlog p⇢(Z 0|Z)i⇡(X)q(Z|X;⌘)qT (X̃|X;uA)q(Z0|X̃;⌘)

�
D
log q(Z 0|X̃; ⌘)

E

⇡(X)q(Z|X;⌘)qT (X̃|X;uA)q(Z0|X̃;⌘)

�
D
log qT (X̃|X;uA)

E

⇡(X)qT (X̃|X;uA)
(23)

The objective is

(⌘⇤, ✓⇤) = argmax
⌘,✓

min
uA2UA

B̃SE(✓, ⌘;uA) (24)

Iterative optimization for ⌧ = 1, 2, . . . :

• Augmentation step: Solve or improve u
(⌧)
A = argminuA2UA B̃SE(✓(⌧�1)

, ⌘
(⌧�1);uA)

• Maximization step: Solve or improve (⌘(⌧), ✓(⌧)) = argmax⌘,✓ B̃SE(✓, ⌘;u
(⌧)
A)

Augmentation step: In the inner optimization we seek for the worst case uA that will minimize the
ELBO, or equivalently

u
⇤
A = arg min

uA2UA

n
B̃SE(✓, ⌘;uA)

o

While this optimization seems to be on the space of all distributions, we can see that the last term (23)
of the bound BSE is the entropy of qT , H[qT]. Consequently, the bound B̃SE is minimized when the
entropy H[qT] is minimized, i.e. when qT is degenerate, and concentrated on a point. Consequently,
focusing on the remaining terms we can rewrite this optimization problem for each data point as

↵
⇤ = argmax

↵2A

n
�hlog p(Z 0|Z; ⇢)iq(Z|X=x;⌘)q(Z0|X̃=T↵(x);⌘) (25)

�H[q(Z 0|X̃ = T↵(x); ⌘)]�H[q(Z|X = x; ⌘)]
o

(26)

x̃a = x+ ↵
⇤ (27)

This term can be identified as a lower bound to the entropy regularized `2 optimal transport [5] hence
is measuring the discrepancy between q(Z|X = x; ⌘) and q(Z 0|X̃ = x̃; ⌘). It can be interpreted as an
adversarial attack trying to maximize the change in the representations. We will denote the empirical
distribution that is obtained by attacking each sample adversarially as ⇡̂a(X̃|X) =

P
i �(X̃ � x̃

(i)
a).

16

Maximization step: Given the empirical distribution of inputs and their augmentation via adversarial
attacks, denoted as ⇡̂a(X, X̃) ⌘ ⇡(X)⇡̂a(X̃|X) is fixed in an iteration, the objective is

B̃SE(✓, ⌘) =+ hlog p(X|Z; ✓)i⇡(X)q(Z|X;⌘)

+ hlog p(Z)i⇡(X)q(Z|X;⌘)

�hlog q(Z|X; ⌘)i⇡(X)q(Z|X;⌘)

+ hlog p⇢(Z 0|Z)iq(Z|X;⌘)q(Z0|X̃;⌘)⇡̂a(X,X̃)

�
D
log q(Z 0|X̃; ⌘)

E

q(Z|X;⌘)q(Z0|X̃;⌘)⇡̂a(X,X̃)

= hlog p(X|Z; ✓)i⇡(X)q(Z|X;⌘)

�KL(⇡̂a(X, X̃)q(Z,Z 0|X,X
0; ⌘)|p⇢(Z 0

, Z)) (28)

where q(Z,Z 0|X,X
0; ⌘) ⌘ q(Z|X; ⌘)q(Z 0|X̃; ⌘).

C.3.1 A Tighter bound

Even though we derived the above bound using a factorized distribution assumption
q(Z,Z 0|X,X

0; ⌘) = q(Z|X; ⌘)q(Z 0|X̃; ⌘), [5] is using a tighter bound using

q(Z 0
, Z|X = x, X̃ = x̃; ⌘) = N

✓✓
f
µ(x; ⌘)

f
µ(x̃; ⌘)

◆
,

✓
f
⌃(x; ⌘)

 f
⌃(x̃; ⌘)

◆◆

Here, is a diagonal matrix with the i’th diagonal element

 i =
1

2�

✓q
1 + 4�2f⌃(x; ⌘)if⌃(x̃; ⌘)i � 1

◆

where � ⌘ ⇢/(1� ⇢2).
ith this modification we get

hlog p⇢(Z 0
, Z)iq̃(Z0,Z|X=x,X̃=X̃;⌘) = � 1

1� ⇢2
�
f
µ(x; ⌘) + f

⌃(x; ⌘) + f
µ(x̃; ⌘) + f

⌃(x̃; ⌘)
�

+
2⇢

1� ⇢2 (+ f
µ(x; ⌘)fµ(x̃; ⌘)) + C (29)

Under the q distribution, the desired expectations are
⌦
TrZ 0

Z
0>↵ = Tr(⌃̃+ µ̃µ̃

>)
⌦
ZZ

>↵ = Tr(⌃+ µµ
>)

⌦
Z

0
Z

>↵ = Tr(+ µ̃µ
>) (30)

µ ⌘ f
µ(x; ⌘), µ̃ ⌘ f

µ(x̃; ⌘), ⌃ ⌘ f
⌃(x; ⌘), ⌃̃ ⌘ f

⌃(x̃; ⌘)

hlog p⇢(Z 0
, Z)iq̃ = � 1

2(1� ⇢2) Tr
⇣
⌃̃+ ⌃+ µ̃µ̃

> + µµ
> � 2⇢(+ µ̃µ

>)
⌘

(31)

With the given tighter bound the algorithm for SE is shown in Algorithm 2. From Equation 18 we
approximate the required expectations by their Monte Carlo estimates and the objective function to
maximize becomes

B̂SE(✓, ⌘;x, x̃, z) = hlog p(X = x|Z = z)iq(Z|X=x;⌘)

+ hlog p(Z 0
, Z)iq̃(Z,Z0|X=x,X̃=x̃)

�hlog q̃(Z,Z 0)iq̃(Z,Z0|X̃=x̃,X=x) (32)

17

Z

X

Z
0

X̃

Z
00 Z

X

Z
0

Z
00

X̃

P⇢,AVAE-SS QAVAE-SS

Figure 6: Graphical model of the AVAE-
SS target distribution P⇢,AVAE-SS, and the
variational approximation QAVAE-SS. Here
both X and X̃ is a sample generated by the
decoder.

C.4 AVAE-SS (Self Supervised)

This algorithm can be used for post training an already trained VAE. Figure 6 shows the graphical
model describing AVAE-SS model.

BAVAE-SS =+ �KL
⇣
p(Z 00)p(X|Z 00)q(Z|X; ⌘)p(X̃|Z)q(Z 0|X̃)||p(Z 00)p(Z 0|Z)p(Z)u(X̃)u(X)

⌘

= hlog p(Z)iq(Z|X) + hlog p(Z
0|Z)iq(Z|X)q(Z0|X̃)

�
D
log p(Z 00)p(X|Z 00)q(Z|X; ⌘)p(X̃|Z)q(Z 0|X̃)

E

p(X|Z00)q(Z|X;⌘)p(X̃|Z)q(Z0|X̃)
(33)

The algorithm is shown in Algorithm 4. We approximate the required expectations by their Monte
Carlo estimates and the objective function to maximize becomes

B̂AVAE-SS(✓, ⌘;x, x̃, z) = hlog p(Z)iq(Z|X=x;⌘) + hlog p(Z
0|Z; ⇢)iq̃(Z|X=x;⌘)q̃(Z0|X̃=x̃;⌘)

�
D
log q(Z 0|X̃ = x̃; ⌘)

E

q(Z0|X̃=x̃;⌘)

�hlog q(Z|X = x; ⌘)iq(Z|X=x;⌘) (34)

Also see Section C.1 for further expansion on terms.

C.5 SE-AVAE

Figure 7 shows the graphical model describing AVAE-SS model.

BSE-AVAE =+ �KL(⇡(X)p(˜̃X|X)q(Z 00| ˜̃X; ⌘)q(Z|X)p(X̃|Z; ⌘)q(Z 0|X̃)

||p(Z 0|Z)p(Z 00|Z)p(X|Z)p(Z))

The algorithm is shown in Algorithm 3. We approximate the required expectations by their Monte
Carlo estimates and the objective function to maximize becomes

B̂SE-AVAE(✓, ⌘;x, x̃, ˜̃x, z) = hlog p(Z)iq(Z|X=x;⌘) + hlog p(Z
0|Z; ⇢)iq̃(Z|X=x;⌘)q̃(Z0|X̃=x̃;⌘)

+ hlog p(Z 00|Z; ⇢SE)iq̃(Z|X=x;⌘)q̃(Z00| ˜̃X=˜̃x;⌘)

�
D
log q(Z 0|X̃ = x̃; ⌘)

E

q(Z0|X̃=x̃;⌘)

�hlog q(Z|X = x; ⌘)iq(Z|X=x;⌘)

�
D
log q(Z 00| ˜̃X = ˜̃x; ⌘)

E

q(Z00| ˜̃X=˜̃x;⌘)
(35)

D Details of the 1-D Example

In this example Section 3.1, we will assume that both the observations x and latents z can only take
values from discrete sets and to avoid boundary effects we adopt a parametrization reminiscent of a

18

Z

X

Z
0

X̃

Z
00

˜̃
X

Z

X

Z
0

Z
00

X̃
˜̃
X

P⇢,⇢SE QSE-AVAE

Figure 7: Graphical model of the target dis-
tribution P⇢,⇢SE , and the variational approx-
imation QSE-AVAE. Here X̃ is a sample gen-
erated by the decoder that is subsequently
encoded by the encoder.

Figure 8: Results of a VAE. (Left to
right) i) The empirical data distribution
⇡̂(X), ii) Encoder weighted by the empir-
ical distribution ⇡̂(X)q(Z|X; ⌘), iii) En-
coder weighted by the model distribu-
tion p(X; ✓)q(Z|X; ⌘), iv) the decoder
p(X|Z)p(Z), v) the model distribution
p(X; ✓), obtained by marginalizing the de-
coder.

von-Mises distribution with normalization constant J :

VM(X;µ, v) ⌘ 1

J(µ, v)
exp (cos (X � µ) /v) J(µ, v) =

X

x2X
exp (cos (X � µ) /v)

As these densities (up to quantization effects) are unimodal and symmetric around their means with a
bell-shape, this example is qualitatively similar to a standard conditionally Gaussian VAE. We define
the following system of conditional distributions as the decoder and encoder models as:

p(X|Z = z; ✓) = VM(X; g(z; ✓), v) q(Z|X = x; ⌘) = VM(Z; fµ(x; ⌘), f⌃(x; ⌘))

where we let X 2 {cx, 2cx, 3cx, . . . , Nxcx}, with cx = 2⇡/Nx and Z 2 {cz, 2cz, 3cz, . . . , Nzcz},
with cz = 2⇡/Nz where Nx and Nz are the cardinalities of each set. As both X and Z are discrete we
can store g, f

µ
, f

⌃ as tables, hence the trainable parameters are just the function values at each point
✓ = (g1, . . . , gNz) and ⌘ = (µ1, . . . , µNx ,�1, . . . ,�Nx). This emulates a high capacity network that
can model any functional relationship between latents and observations. The prior p(Z) is chosen as
uniform and the coupling term is

p(Z 0|Z = z) = VM(Z 0; z, ⌫⇢)

where the spread term ⌫⇢ is chosen on the order of 10�3.

In Figure 8, we illustrate an example where we fit a VAE to the empirical data distribution ⇡̂(X).
The encoder-empirical data joint distribution ⇡̂(X)q(Z|X; ⌘) and the decoder joint distribution
p(X|Z)p(Z) are in fact closely matching but only on the support of ⇡̂. In the next panel, we show
the encoder-model data joint distribution p(X; ✓)q(Z|X; ⌘). The nonsmooth nature of the encoder
is evident, conditional distributions at each row are quite different from one other. This reveals
that samples that can be still generated with high probability with the decoder would be mapped to
unrelated states when encoded again.

E Wasserstein Distance

The `2-Wasserstein distance W2 between two Gaussians Pa and Pb with means µa, µb and covariance
matrices ⌃a,⌃b is given by

W2
2 (Pa, Pb) ⌘ kµa � µbk22

+Tr
�
⌃a + ⌃b � 2

�
⌃1/2

b ⌃a⌃
1/2
b

�1/2�

F Experimental Details

All experiments are performed on NVIDIA Tesla P100 GPU. Optimization is performed using
AdamOptimizer with learning rate 1e-4.

19

Figure 9: Comparison of Algorithms (on ColorMnist with Conv arch) for various different ⇢ and
⇢SE values. (LEFT) ⇢ = 0.95 and ⇢SE = 0.975. (MIDDLE) ⇢ = 0.97 and ⇢SE = 0.97. (RIGHT)
⇢ = 0.97 and ⇢SE = .975

Color Mnist For experiments with the Color MNIST dataset with MLP architecture, a 4 layer multi
layer perceptron (MLP), with 200 neurons at each layer, is used for both encoder and decoder. For
experiments with the Color MNIST dataset and conv architecture, a 7 layer VGG network is used for
encoder with number of output channels 8, 16, 32, 64, 128, 256 and 512 respectively with strides 2, 1,
2, 1, 2, 1 and 2 respectively and kernel shape of (3, 3). For decoder a de-convolutional architecture 3
de-conv layers with output channels 64, 32 and 3, strides 1, 2 and 1, and kernel shape (3, 3) is used.
Convolutional architectures are stabilized using BatchNorm between each convolutional layer. In
training where adversarial attack is required, PGD with L-inf perturbation radius and iteration budget
20 is used. In PGD no random restarts are used for training, while evaluating 10 random restarts are
used. In evaluation, PGD with iteration budget 40 is used.

CelebA CelebA experiments are performed using VGG encoder with 4 convolutional layers, output
channels 128, 256, 512, and 1024 respectively, stride 2 and kernel size (5, 5). CelebA decoder is
VGG network with 4 layers, output channels 512, 256, 128 and 3, stride 2 and kernel shape (5, 5). Al
convolutional layers are normalized with BatchNorm. In training where adversarial attack is required,
PGD attack with iteration budget 5 is used with L-inf perturbation radius. In training no random
restarts are used in PGD where as in evaluation 10 random restarts are used with 20 iteration budget.

G Comparing Algorithms for different ⇢ settings

Figure 9 shows comparison of all algorithms for different ⇢ and ⇢SE values. Figure solidifies the
claim that SE-AVAE achieves better downstream adversarial accuracy than both SE and VAEA, for
smaller ✏ values for reasonable ⇢ and ⇢SE values.

H CelebA Results for All Downstream Tasks

Table 3 shows adversarial downstream accuracy for all 17 downstream tasks of CelebA, compared
across models VAE, AVAE, SE with 5 PGD iteration budget, SE with 20 PGD iteration budget, SE
AVAE and AVAE SS. Here ✏ = 0.0 represents the nominal downstream accuracy.

20

VAE AVAE SE5 SE20 SE AVAE AVAE SS
Task 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1
Bald 97.9 2.1 97.8 83.9 97.9 71.0 97.4 86.5 97.8 87.0 97.8 70.0
Mustache 94.9 0.7 94.8 89.8 95.0 69.5 95.7 84.4 96.3 92.3 95.2 74.0
Eyeglasses 95.4 0.0 94.9 71.7 95.9 20.3 95.7 33.0 95.3 67.5 94.3 56.8
Necklace 87.7 0.7 88.2 76.7 88.0 56.0 88.0 78.9 86.1 80.3 87.9 59.9
Smiling 87.7 0.4 78.5 3.0 86.9 3.1 85.7 1.1 77.9 6.3 81.6 1.0
Lipstick 84.5 0.0 80.4 6.5 84.5 2.0 80.3 0.6 80.7 11.2 80.3 0.9
Bangs 90.3 0.2 89.7 36.0 90.8 19.3 89.6 27.0 89.6 45.9 89.6 22.2
Black Hair 83.5 0.0 82.5 31.7 83.4 23.0 81.4 31.4 79.5 33.3 83.3 26.2
Blond Hair 91.5 0.2 91.1 46.4 92.5 35.9 90.7 53.5 92.4 55.8 90.6 37.6
Brown Hair 78.4 1.0 77.8 35.9 77.9 24.1 80.5 41.5 82.9 46.0 78.2 19.3
Gender 87.6 0.0 82.6 5.4 87.8 1.5 81.6 0.7 82.1 10.7 82.1 0.7
Beard 85.8 0.0 83.8 39.2 85.4 18.3 85.3 24.3 86.0 50.1 84.4 16.3
Straight Hair 79.6 2.3 79.2 72.2 79.6 64.8 78.7 77.3 78.8 74.9 79.2 64.8
Wavy Hair 75.8 0.1 75.8 17.8 76.1 10.0 72.8 10.2 72.7 22.1 75.5 9.3
Earrings 81.3 0.1 81.0 60.9 81.0 26.8 81.3 55.3 79.5 64.1 81.2 24.7
Hat 96.5 0.2 96.6 75.2 96.9 55.3 96.4 77.3 97.3 82.7 96.0 65.5
Necktie 92.6 0.2 92.5 61.9 92.7 41.0 92.7 51.7 93.0 72.5 92.6 39.8
Time Factor ⇥1 ⇥2.2 ⇥3.1 ⇥7.8 ⇥4.3 ⇥2.2
MSE 7203.9 7276.6 7208.8 N/A 7269.2 7347.3
FID 99.86 97.92 98.00 N/A 109.4 99.86

Table 3: Adversarial test accuracy (in percentage) of the representations for all of classification tasks
on CelebA.

21

	Introduction
	The Variational Autoencoder
	Extended VAE model for a pair of observations

	Autoencoding Variational Autoencoder (AVAE)
	Illustration

	Experimental Results
	Conclusions
	Societal Impact
	Proofs
	Proposition 2.1
	Proposition 2.2
	Proposition 2.3
	Proposition 3.1

	Example: PCA case
	Variational Approximations
	Autoencoding Variational Autoencoder QAVAE
	Smooth Encoder
	Derivation Details
	A Tighter bound

	AVAE-SS (Self Supervised)
	SE-AVAE

	Details of the 1-D Example
	Wasserstein Distance
	Experimental Details
	Comparing Algorithms for different settings
	CelebA Results for All Downstream Tasks

