
Supplementary Material

A Glossary

We use the following abbreviations in this work:

• L2: L2 reguarization a.k.a. weight decay;
• LR: using large learning rate;
• U: allowing underfitting;
• DA: using data augmentation;
• C: centering the network so that the logits are always zero at initialization;
• Ens: neural network ensembling logits over multiple initialization;
• ZCA: zero-phase component analysis regularization preprocessing;
• FCN: fully-connected neural network.;
• CNN-VEC: convolutional neural network with a vectorized readout layer;
• CNN-GAP: convolutional neural network with a global average pooling readout layer;
• NNGP: neural network Gaussian process;
• NTK: neural tangent kernel.

B Main table

Table S1: CIFAR-10 classification accuracy for nonlinear and linearized finite neural networks,
as well as for NTK and NNGP kernel methods. Starting from Base network of given architecture
class described in §2, performance change of centering (+C), large learning rate (+LR), allowing
underfitting by early stopping (+U), input preprocessing with ZCA regularization (+ZCA), multi-
ple initialization ensembling (+Ens), and some combinations are shown, for Standard and NTK
parameterization. See also Figure 1.

Param Base +C +LR +L2 +L2
+U

+L2
+LR

+L2
+LR
+U

+ZCA Best
w/o DA +Ens +Ens

+C
+DA
+U

+DA
+L2
+LR
+U

FCN STD
NTK

47.82
46.16

53.22
51.74

49.07
48.14

49.82
54.27

49.82
54.27

55.32
55.11

55.32
55.44

44.29
44.86

55.90
55.44

58.11
58.14

58.25
58.31

65.29
61.87

67.43
69.35

CNN-VEC STD
NTK

56.68
60.73

60.82
58.09

62.16
60.73

57.15
61.30

67.07
75.85

62.16
76.93

68.99
77.47

57.39
61.35

68.99
77.47

67.30
71.32

65.65
67.23

76.73
83.92

83.01
85.63

CNN-GAP STD
NTK

80.26
80.61

81.25
81.73

80.93
82.44

81.67
81.17

81.10
81.17

83.69
82.44

83.01
82.43

84.90
83.75

84.22
83.92

84.15
85.22

84.62
85.75

84.36
84.07

86.45
86.68

Param Lin Base +C +L2 +L2
+U +Ens +Ens

+C NTK +ZCA +DA
+ZCA NNGP +ZCA +DA

+ZCA

FCN STD
NTK

43.09
48.61

51.48
52.12

44.16
51.77

50.77
51.77

57.85
58.04

57.99
58.16

58.05
58.28

59.65
59.68

-
61.54 58.61 59.70 62.40

CNN-VEC STD
NTK

52.43
55.88

60.61
58.94

58.41
58.52

58.41
58.50

64.58
65.45

64.67
65.54

66.64
66.78

69.65
69.79

-
70.52 66.69 69.44 73.23

CNN-GAP STD
NTK

>70.00* (Train accuracy 86.22 after 14M steps)
>68.59* (Train accuracy 79.90 after 14M steps)

76.97
77.00

83.24
83.24

-
83.74 78.0 83.45 84.82

C Experimental details

For all experiments, we use Neural Tangents (NT) library [15] built on top of JAX [133]. First
we describe experimental settings that is mostly common and then describe specific details and
hyperparameters for each experiments.

Finite width neural networks We train finite width networks with Mean Squared Error (MSE) loss

L =
1

2|D|K
∑

(xi,yi)∈D

‖f(xi)− yi‖2 ,
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where K is the number of classes and ‖ · ‖ is the L2 norm in RK . For the experiments with +L2, we
add L2 regularization to the loss

RL2 =
λ

2

∑
l

‖W l‖2 , (S1)

and tune λ using grid-search optimizing for the validation accuracy.

We optimize the loss using mini-batch SGD with constant learning rate. We use batch-size of 100 for
FCN and 40 for both CNN-VEC and CNN-GAP (see §H for further details on this choice). Learning rate
is parameterized with learning rate factor c with respect to the critical learning rate

η = c ηcritical . (S2)

In practice, we compute empirical NTK Θ̂(x, x′) =
∑
j ∂jf(x)∂jf(x′) on 16 random points in the

training set to estimate ηcritical [24] by maximum eigenvalue of Θ̂(x, x). This is readily available
in NT library [15] using nt.monte_carlo_kernel_fn and nt.predict.max_learning_rate.
Base case considered without large learning rate indicates c ≤ 1, and large learning rate (+LR) runs
are allowing c > 1. Note that for linearized networks ηcritical is strict upper-bound for the learning
rates and no c > 1 is allowed [24, 36, 39].

Training steps are chosen to be large enough, such that learning rate factor c ≤ 1 can reach above
99% accuracy on 5k random subset of training data for 5 logarithmic spaced measurements. For
different learning rates, physical time t = η × (# of steps) roughly determines learning dynamics and
small learning rate trials need larger number of steps. Achieving termination criteria was possible
for all of the trials except for linearized CNN-GAP and data augmented training of FCN, CNN-VEC. In
these cases, we report best achieved performance without fitting the training set.

NNGP / NTK For inference, except for data augmentation ensembles for which default zero regular-
ization was chosen, we grid search over diagonal regularization in the range numpy.logspace(-7,
2, 14) and 0. Diagonal regularization is parameterized as

Kreg = K + ε tr(K)
m I

where K is either NNGP or NTK for the training set. We work with this parameterization since ε is
invariant to scale of K.

Dataset For all our experiments (unless specified) we use train/valid/test split of 45k/5k/10k for
CIFAR-10/100 and 50k/10k/10k for Fashion-MNIST. For all our experiments, inputs are standardized
with per channel mean and standard deviation. ZCA regularized whitening is applied as described in
§F. Output is encoded as mean subtracted one-hot-encoding for the MSE loss, e.g. for a label in class
c, −0.1 · 1 + ec. For the softmax-cross-entropy loss in §G, we use standard one-hot-encoded output.

For data augmentation, we use widely-used augmentation for CIFAR-10; horizontal flips with 50%
probability and random crops by 4-pixels with zero-padding.

Details of architecture choice: We only consider ReLU activation (with the exception of Myrtle-
kernel which use scaled Gaussian activation [43]) and choose critical initialization weight variance of
σ2
w = 2 with small bias variance σ2

b = 0.01. For convolution layers, we exclusively consider 3× 3
filters with stride 1 and SAME (zero) padding so that image size does not change under convolution
operation.

C.1 Hyperparameter configurations for all experiments

We used grid-search for tuning hyperparameters and use accuracy on validation set for deciding on
hyperparameter configuration or measurement steps (for underfitting / early stopping). All reported
numbers unless specified is test set performance.

Figure 1, Table S1: We grid-search over L2 regularization strength λ ∈ {0}∪{10−k|k from -9 to -3}
and learning rate factor c ∈ {2k|k from -2 to 5}. For linearized networks same search space is used
except that c > 1 configuration is infeasible and training diverges. For non-linear, centered runs
c ∈ {2k|k from 0 to 4} is used. Network ensembles uses base configuration with λ = 0, c = 1 with
64 different initialization seed. Kernel ensemble is over 50 predictors for FCN and CNN-VEC and 32
predictors for CNN-GAP. Finite networks trained with data-augmentation has different learning rate
factor range of c ∈ {1, 4, 8}.
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Figure 2: Each datapoint corresponds to either standard preprocessed or ZCA regularization
preprocessed (as described in §3.10) with regularization strength was varied in {10−k|k ∈
[−6,−5, ..., 4, 5]} for FCN and CNN-VEC, {10−k|k ∈ [−3,−2, ..., 2, 3]} for CNN-GAP.

Figure 3, Figure 4, Figure S6, Figure S7: Learning rate factors are c = 1 for non-linear networks
and c = 0.5 for linearized networks. While we show NTK parameterized runs, we also observe similar
trends for STD parameterized networks. Shaded regions show range of minimum and maximum
performance across 64 different seeds. Solid line indicates the mean performance.

Figure 5 While FCN is the base configuration, CNN-VEC is a narrow network with 64 channels per
layer since moderate width benefits from L2 more for the NTK parameterization Figure S10. For
CNN-GAP 128 channel networks is used. All networks with different L2 strategy are trained with +LR
(c > 1).

Figure 6, Figure S8, Figure S10: λ ∈ {0, 10−9, 10−7, 10−5, 10−3} and c ∈ {2k|k from− 2 to 5}.
Figure 7: We use 640 subset of validation set for evaluation. CNN-GAP is a variation of the base
model with 3 convolution layers with σ2

b = 0.1 while FCN and CNN-VEC is the base model. Training
evolution is computed using analytic time-evolution described in Lee et al. [24] and implemented in
NT library via nt.predict.gradient_descent_mse with 0 diagonal regularization.

Figure 9: Kernel experiments details are same as in Figure 2. Finite networks are base configuration
with c = 1 and λ = 0.

Figure 10: Evaluated networks uses NTK parameterization with c = 1. CNN-VEC+L2+narrow
uses 128 channels instead of 512 of the base CNN-VEC and CNN-GAP networks, and trained with
L2 regularization strength λ = 10−7. Crop transformation uses zero-padding while Translate
transformation uses circular boundary condition after shifting images. Each transformation is applied
to the test set inputs where shift direction is chosen randomly. Each points correspond to average
accuracy over 20 random seeds. FCN had 2048 hidden units.

Figure 11, Table 1: For all data augmentation ensembles, first instance is taken to be from non-
augmented training set. Further details on kernel ensemble is described in §E. For all kernels, inputs
are preprocessed with optimal ZCA regularization observed in Figure 9 (10 for FCN, 1 for CNN-VEC,
CNN-GAP and Myrtle.). We ensemble over 50 different augmented draws for FCN and CNN-VEC,
whereas for CNN-GAP, we ensemble over 32 draws of augmented training set.

Figure S3, Table S2: Details for MSE trials are same as Figure 1 and Table S1. Trials with softmax-
cross-entropy loss was tuned with same hyperparameter range as MSE except that learning rate factor
range was c ∈ {1, 4, 8}.
Figure S4: We present result with NTK parameterized networks with λ = 0. FCN network is width
1024 with η = 10.0 for MSE loss and η = 2.0 for softmax-cross-entropy loss. CNN-GAP uses 256
channels with η = 5.0 for MSE loss and η = 0.2 for softmax-cross-entropy loss. Random seed was
fixed to be the same across all runs for comparison.

Figure S9: NTK pamareterization with c = 4 was used for both L2 to zero or initialization. Random
seed was fixed to be the same across all runs for comparison.

D Noise model

In this section, we provide details on noise model discussed in §3.8. Consider a random m ×m
Hermitian matrix N with entries order of σn which is considered as noise perturbation to the kernel
matrix

K̃ = K +N . (S3)

Eigenvalues of this random matrix N follow Wigner’s semi-circle law, and the smallest eigenvalue
is given by λmin(N) ≈ −

√
2mσn. When the smallest eigenvalue of K is smaller (in order) than

|λmin(N)|, one needs to add diagonal regularizer larger than the order of |λmin(N)| to ensure positive
definiteness. For estimates, let us use machine precision5 ε32 ≈ 10−7 and ε64 ≈ 2× 10−16 which
we use as proxy values for σn. Note that noise scale is relative to elements in K which is assume to
be O(1). Naively scaling K by multiplicative constant will also scale σn.

5np.finfo(np.float32).eps, np.finfo(np.float64).eps
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Empirically one can model tail ith eigenvalues of infinite width kernel matrix of size m×m as

λi ≈ C
m

iα
. (S4)

Note that we are considering O(1) entries for K and typical eigenvalues scale linearly with dataset
size m. For a given dataset size, the power law observed is α and C is dataset-size independent
constant. Thus the smallest eigenvalue is order λmin(K) ∼ Cm1−α.

In the noise model, we can apply Weyl’s inequality which says

λmin(K)−
√

2mσn ≤ λmin(K̃) ≤ λmin(K) +
√

2mσn . (S5)

Consider the worst-case where negative eigenvalue noise affecting the kernel’s smallest eigenvalue.
In that case perturbed matrices minimum eigenvalue could become negative, breaking positive
semi-definiteness(PSD) of the kernel.

This model allows to predict critical dataset size (m∗) over which PSD can be broken under specified
noise scale and kernel eigenvalue decay. With condition that perturbed smallest eigenvalue becomes
negative

Cm1−α .
√

2mσn , (S6)
we obtain

m∗ &


(

C√
2σn

) 2
2α−1 if α > 1

2

∞ else
(S7)

When PSD is broken, one way to preserve PSD is to add diagonal regularizer (§3.7). For CIFAR-10
with m = 50k, typical negative eigenvalue from float32 noise is around 4× 10−5 and 7× 10−14

with float64 noise scale, considering
√

2mσn. Note that Arora et al. [26] regularized kernel with
regularization strength 5× 10−5 which is on par with typical negative eigenvalue introduced due to
float32 noise. Of course, this only applies if kernel eigenvalue decay is sufficiently fast that full
dataset size is above m∗.

We observe that FCN and CNN-VEC kernels with small α would not suffer from increasing dataset-
size under float32 precision. On the other-hand, worse conditioning of CNN-GAP not only affects
the training time (§3.9) but also required precision. One could add sufficiently large diagonal
regularization to mitigate effect from the noise at the expense of losing information and generalization
strength included in eigen-directions with small eigenvalues.

E Data augmentation via kernel ensembling

We start considering general ensemble averaging of predictors. Consider a sequence of training
sets {Di} each consisting of m input-output pairs {(x1, y1), . . . , (xm, ym)} from a data-generating
distribution. For a learning algorithm, which we use NNGP/NTK inference for this study, will give
prediction µ(x∗,Di) of unseen test point x∗. It is possible to obtain better predictor by averaging
output of different predictors

µ̂(x∗) =
1

E

E∑
i

µ(x∗,Di) , (S8)

where E denotes the cardinality of {Di}. This ensemble averaging is simple type of committee
machine which has long history [136, 137]. While more sophisticated ensembling method exists
(e.g. [138–143]), we strive for simplicity and considered naive averaging. One alternative we
considered is generalizing average by

µ̂w(x∗) =
1

E

E∑
i

wi µ(x∗,Di) , (S9)

were wi in general is set of weights satisfying
∑
i wi = 1. We can utilize posterior variance σ2

i from
NNGP or NTK with MSE loss via Inverse-variance weighting (IVW) where weights are given as

wi =
σ−2i∑
j σ
−2
j

. (S10)
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Figure S1: The CNN-GAP architecture has poor kernel conditioning (a) Eigenvalue spectrum of
infinite network kernels on 10k datapoints. Dashed lines are noise eigenvalue scale from float32
precision. Eigenvalue for CNN-GAP’s NNGP decays fast and negative eigenvalue may occur when
dataset size is O(104) in float32 but is well-behaved with higher precision. (b-c) Critical dataset
size as function of eigenvalue decay exponent α or noise strength σn given by Equation 1.

In simple bagging setting [139], we observe small improvements with IVW over naive averaging.
This indicates posterior variance for different draw of {Di} was quite similar.

Application to data augmentation (DA) is simple as we consider process of generating {Di} from
a (stochastic) data augmentation transformation T . We consider action of T (x, y) = T (x, y) be
stochastic (e.g. T is a random crop operator) with probability p augmentation transformation (which
itself could be stochastic) and probability (1− p) of T = Id. Considering D0 as clean un-augmented
training set, we can imagine dataset generating process Di ∼ T (D0), where we overloaded definition
of T on training-set to be data generating distribution.

For experiments in §3.12, we took T to be standard augmentation strategy of horizontal flip and ran-
dom crop by 4-pixels with augmentation fraction p = 0.5 (see Figure S12 for effect of augmentation
fraction on kernel ensemble). In this framework, it is trivial to generalize the DA transformation to be
quite general (e.g. learned augmentation strategy studied by Cubuk et al. [116, 117]).

F ZCA whitening

Consider m (flattened) d-dimensional training set inputs X (a d×m matrix) with data covariance

ΣX =
1

d
XXT . (S11)

The goal of whitening is to find a whitening transformation W , a d× d matrix, such that the features
of transformed input

Y = WX (S12)
are uncorrelated, e.g. ΣY ≡ 1

dY Y
T = I . Note that ΣX is constructed only from training set while

W is applied to both training set and test set inputs. Whitening transformation can be efficiently
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Figure S2: Illustration of ZCA whitening. Whitening is a linear transformation of a dataset that
removes correlations between feature dimensions, setting all non-zero eigenvalues of the covariance
matrix to 1. ZCA whitening is a specific choice of the linear transformation that rescales the data in
the directions given by the eigenvectors of the covariance matrix, but without additional rotations or
flips. (a) A toy 2d dataset before and after ZCA whitening. Red arrows indicate the eigenvectors of
the covariance matrix of the unwhitened data. (b) ZCA whitening of CIFAR-10 images preserves
spatial and chromatic structure, while equalizing the variance across all feature directions. Figure
reproduced with permission from Wadia et al. [112]. See also §3.10.

computed by eigen-decomposition6

ΣX = UDUT (S13)

where D is diagonal matrix with eigenvalues, and U contains eigenvector of ΣX as its columns.

With this ZCA whitening transformation is obtained by following whitening matrix

WZCA = U

√(
D + ε tr(D)

d Id

)−1
UT . (S14)

Here, we introduced trivial reparameterization of conventional regularizer such that regularization
strength ε is input scale invariant. It is easy to check ε→ 0 corresponds to whitening with ΣY = I . In
§3.10, we study the benefit of taking non-zero regularization strength for both kernels and finite net-
works. We denote transformation with non-zero regularizer, ZCA regularization preprocessing. ZCA
transformation preserves spatial and chromatic structure of original image as illustrated in Figure F.
Therefore image inputs are reshaped to have the same shape as original image.

In practice, we standardize both training and test set per (RGB channel) features of the training set
before and after the ZCA whitening. This ensures transformed inputs are mean zero and variance of
order 1.

G MSE vs Softmax-cross-entropy loss training of neural networks

Our focus was mainly on fininte networks trained with MSE loss for simple comparison with kernel
methods that gives closed form solution. Here we present comparison of MSE vs softmax-cross-
entropy trained networks. See Table S2 and Figure S3.

H Comment on batch size

Correspondence between NTK and gradient descent training is direct in the full batch gradient descent
(GD) setup (see [64] for extensions to mini-batch SGD setting). Therefore base comparison between
finite networks and kernels is the full batch setting. While it is possible to train our base models with
GD, for full CIFAR-10 large emprical study becomes impractical. In practice, we use mini-batch
SGD with batch-size 100 for FCN and 40 for CNNs.

We studied batch size effect of training dynamics in Figure S4 and found that for these batch-size
choices does not affecting training dynamics compared to much larger batch size. Shallue et al.
[144], McCandlish et al. [145] observed that universally for wide variety of deep learning models
there are batch size beyond which one could gain training speed benefit in number of steps. We
observe that maximal useful batch-size in workloads we study is quite small.

6For PSD matricies, it is numerically more reliable to obtain via SVD.
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Figure S3: MSE trained networks are competitive while there is a clear benefit to using Cross-
entropy loss

Table S2: Effects of MSE vs softmax-cross-entropy loss on base networks with various interventions
Architecture Type Param Base +LR+U +L2+U +L2+LR+U Best

FCN MSE STD 47.82 49.07 49.82 55.32 55.90
NTK 46.16 49.17 54.27 55.44 55.44

XENT STD 55.01 57.28 53.98 57.64 57.64
NTK 53.39 56.59 56.31 58.99 58.99

MSE+DA STD 65.29 66.11 65.28 67.43 67.43
NTK 61.87 62.12 67.58 69.35 69.35

XENT+DA STD 64.15 64.15 67.93 67.93 67.93
NTK 62.88 62.88 67.90 67.90 67.90

CNN-VEC MSE STD 56.68 63.51 67.07 68.99 68.99
NTK 60.73 61.58 75.85 77.47 77.47

XENT STD 64.31 65.30 64.57 66.95 66.95
NTK 67.13 73.23 72.93 74.05 74.05

MSE+DA STD 76.73 81.84 76.66 83.01 83.01
NTK 83.92 84.76 84.87 85.63 85.63

XENT+DA STD 81.84 83.86 81.78 84.37 84.37
NTK 86.83 88.59 87.49 88.83 88.83

CNN-GAP MSE STD 80.26 80.93 81.10 83.01 84.22
NTK 80.61 82.44 81.17 82.43 83.92

XENT STD 83.66 83.80 84.59 83.87 83.87
NTK 83.87 84.40 84.51 84.51 84.51

MSE+DA STD 84.36 83.88 84.89 86.45 86.45
NTK 84.07 85.54 85.39 86.68 86.68

XENT+DA STD 86.04 86.01 86.42 87.26 87.26
NTK 86.87 87.31 86.39 88.26 88.26

I Addtional tables and plots
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Figure S4: Batch size does not affect training dynamics for moderately large batch size.
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Table S3: CIFAR-10 classification mean squared error(MSE) for nonlinear and linearized finite
neural networks, as well as for NTK and NNGP kernel methods. Starting from Base network of
given architecture class described in §2, performance change of centering (+C), large learning rate
(+LR), allowing underfitting by early stopping (+U), input preprocessing with ZCA regularization
(+ZCA), multiple initialization ensembling (+Ens), and some combinations are shown, for Standard
and NTK parameterization. See also Table S1 and Figure 1 for accuracy comparison.

Param Base +C +LR +L2 +L2
+U

+L2
+LR

+L2
+LR
+U

+ZCA Best
w/o DA +Ens +Ens

+C
+DA
+U

+DA
+L2
+LR
+U

FCN STD 0.0443 0.0363 0.0406 0.0411 0.0355 0.0337 0.0329 0.0483 0.0319 0.0301 0.0304 0.0267 0.0242
NTK 0.0465 0.0371 0.0423 0.0338 0.0336 0.0308 0.0308 0.0484 0.0308 0.0300 0.0302 0.0281 0.0225

CNN-VEC STD 0.0381 0.0330 0.0340 0.0377 0.0279 0.0340 0.0265 0.0383 0.0265 0.0278 0.0287 0.0228 0.0183
NTK 0.0355 0.0353 0.0355 0.0355 0.0231 0.0246 0.0227 0.0361 0.0227 0.0254 0.0278 0.0164 0.0143

CNN-GAP STD 0.0209 0.0201 0.0207 0.0201 0.0201 0.0179 0.0177 0.0190 0.0159 0.0172 0.0165 0.0185 0.0149
NTK 0.0209 0.0201 0.0195 0.0205 0.0181 0.0175 0.0170 0.0194 0.0161 0.0163 0.0157 0.0186 0.0145

Param Lin Base +C +L2 +L2
+U +Ens +Ens

+C NTK +ZCA +DA
+ZCA NNGP +ZCA +DA

+ZCA

FCN STD 0.0524 0.0371 0.0508 0.0350 0.0309 0.0305 0.0306 0.0302 - 0.0309 0.0308 0.0297NTK 0.0399 0.0366 0.0370 0.0368 0.0305 0.0304 0.0305 0.0302 0.0298

CNN-VEC STD 0.0436 0.0322 0.0351 0.0351 0.0293 0.0291 0.0287 0.0277 - 0.0286 0.0281 0.0256NTK 0.0362 0.0337 0.0342 0.0339 0.0286 0.0286 0.0283 0.0274 0.0273

CNN-GAP STD < 0.0272* (Train accuracy 86.22 after 14M steps) 0.0233 0.0200 - 0.0231 0.0204 0.0191NTK < 0.0276* (Train accuracy 79.90 after 14M steps) 0.0232 0.0200 0.0195

2.8 3.0

2.8

2.9

3.0

NN
GP

Boston

5.0 5.5

5.0

5.2

5.4

5.6
Concrete

0.5 1.0

0.50

0.75

1.00

1.25
Energy

0.075 0.100 0.125
0.06

0.08

0.10

0.12

Kin8nm

0.00002 0.00004
NTK

0.00002

0.00004

NN
GP

Naval

3.6 3.8
NTK

3.6

3.7

3.8

Power Plant

0.55 0.60 0.65
NTK

0.550

0.575

0.600

0.625

0.650
Wine

1 2
NTK

1

2

Yacht

Figure S5: On UCI dataset NNGP often outperforms NTK on RMSE. We evaluate predictive
performance of FC NNGP and NTK on UCI regression dataset in the standard 20-fold splits first
utilized in [146, 147]. We plot average RMSE across the splits. Different scatter points are varying
hyperparameter settings of (depth, weight variance, bias variance). In the tabular data setting,
dominance of NNGP is not as prominent across varying dataset as in image classification domain.
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10-9 10-7 10-5 10-3

L2 Regularization

0.2

0.3

0.4

0.5

Te
st 

Ac
cu

ra
cy

FC LIN

10-9 10-7 10-5 10-3

L2 Regularization

0.2

0.3

0.4

0.5

FCN

w128
w256
w512
w1024
w2048

10-9 10-7 10-5 10-3

L2 Regularization

0.2

0.3

0.4

0.5

0.6
CNN-VEC LIN

10-9 10-6 10-3 100

L2 Regularization

0.4

0.6

0.8
CNN-VEC

10-10 10-8 10-6 10-4

L2 Regularization

0.65

0.70

0.75

0.80

0.85
CNN-GAP

w64
w128
w256
w512
w724

Figure S8: Performance of nonlinear and linearized networks as a function of L2 regularization
for a variety of widths. Dashed lines are NTK parameterized networks while solid lines are
networks with standard parameterization. We omit linearized CNN-GAP plots as they did not converge
even with extensive compute budget. L2 regularization is more helpful in networks with an NTK
parameterization than a standard parameterization

100 101 102 103 104 105 106

Steps

0.2

0.4

0.6

0.8

Va
lid

at
ion

 A
cc

ur
ac

y

CNN-VEC: L2 to 0
l2: 0.0
l2: 1e-09
l2: 1e-07
l2: 1e-05
l2: 0.001

100 101 102 103 104 105 106

Steps

CNN-VEC: L2 to Init
l2: 0.0
l2: 1e-10
l2: 1e-09
l2: 1e-08
l2: 1e-07
l2: 1e-06

l2: 1e-05
l2: 0.0001
l2: 0.001
l2: 0.01
l2: 0.1

(a)
10-10 10-8 10-6 10-4 10-2

L2 Regularization

0.2

0.4

0.6

0.8

Te
st 

Ac
cu

ra
cy

CNN-VEC

L2 to 0: w512
L2 to 0: w128
L2 to Init: w512
L2 to Init: w128

(b)

Figure S9: L2 regularization to initial weights does not provide performance benefit. (a) Com-
paring training curves of L2 regularization to either 0 or initial weights. (b) Peak performance of after
L2 regularization to either 0 or initial weights. Increasing L2 regularization to initial weights do not
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Figure S11: ZCA regularization helps finite network training. (upper) Standard parameterization,
(lower) NTK parameterization. See also §3.10 and Figure 9.
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Figure S12: Data augmentation ensemble for infinite network kernels with varying augmenta-
tion fraction. See also §3.12.
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