
Algorithm 1 One-Shot(f,x,W, k, {M i}ki=1,H)

1: α←
[

1
k

1
k ... 1

k

]
. Initialize α

2: p← f
(
x,W �

(∑k
i=1 αiM

i
))

. Superimposed output

3: return arg maxi

(
−∂H(p)

∂αi

)
. Return coordinate for which objective maximally decreasing

Algorithm 2 Binary(f,x,W, k, {M i}ki=1,H)

1: α←
[

1
k

1
k ... 1

k

]
. Initialize α

2: while ‖α‖0 > 1 do . Iterate until α has a single nonzero entry

3: p← f
(
x,W �

(∑k
i=1 αiM

i
))

. Superimposed output
4: g ← −∇αH (p) . Gradient of objective
5: for i ∈ {1, ..., k} do . In code this for loop is vectorized
6: if gi ≤ median (g) then
7: αi ← 0 . Zero out αi for which objective minimally decreasing
8: α← α/ ‖α‖1 . Re-normalize α to sum to 1
9: return arg maxi αi

A Algorithm pseudo-code

Algorithms 1 and 2 respectively provide pseudo-code for the One-Shot and Binary algorithms
detailed in Section 3.3. Both aim to infer the task j ∈ {1, ..., k} associated with input data x by
minimizing the objectiveH.

B Extended Details for HopSupSup

This section provides further details and experiments for HopSupSup (introduced in Section 3.5).
HopSupSup provides a method for storing the growing set of supermasks in a fixed size reservoir
instead of explicitly storing each mask.

B.1 Training

Recall that HopSupSup operates in Scenario GNu and so task identity is known during training.
Instead of explicitly storing each mask, we will instead store two fixed sized variables Ψ and µ which
are both initially 0. The weights of the Hopfield network are Ψ and µ stores a running mean of
all masks learned so far. For a new task k we use the same algorithm as in Section 4.2 to learn a
binary mask mi which performs well for task k. Since Hopfield networks consider binary strings
in {−1, 1}d and we use masks mi ∈ {0, 1}d we will consider zk = 2mk − 1. In practice we then
update Ψ and µ as

Ψ← Ψ +
1

d

(
zkzk

> − zk
(
Ψzk

)> − (Ψzk
)
zk
> − Id

)
, µ← k − 1

k
µ+

1

k
zk (6)

where Id is the identity matrix. This update rule for Ψ is referred to as the Storkey learning rule [46]
and is more expressive than the alternative—the Hebbian rule Ψ← Ψ + 1

dz
kzk
> [20] provided for

brevity in Section 3.3. With either update rules the learned zi will be a minimizer of the Hopfield
energy EΨ(z) =

∑
uv Ψuvzuzv .

B.2 Inference

During inference we receive data x from some task j, but this task information is not given to
the model. HopSupSup first initializes a new binary string z with µ. Next, HopSupSup uses
gradient descent to minimize the Hopfield energy in conjunction with the output entropy using mask
m = 1

2z + 1, a process we refer to as Hopfield Recovery. Minimizing the energy will hopefully push
m (equivalently z) towards a mask learned during training and minimizing the entropy will hopefully

13

0

250

500

750

1000

H
am

m
in

g
D

is
t

L
ay

er
0

Task 0 Task 1 Task 2 Task 3 Task 4

10 20 30
Step

0

250

500

750

1000

H
am

m
in

g
D

is
t

L
ay

er
1

10 20 30
Step

10 20 30
Step

‖m−m0‖1 ‖m−m1‖1 ‖m−m2‖1 ‖m−m3‖1 ‖m−m4‖1

10 20 30
Step

10 20 30
Step

Figure 7: During Hopfield Recovery the new mask m converges to the correct mask learned during
training. Note that mi denotes the mask learned for task i.

push m towards the correct mask mj . We may then use the recovered mask to compute the network
output.

In practice we use one pass through the evaluation set (with batch size 64, requiring T ≈ 30 steps) to
recover a mask and another to perform evaluation with the recovered mask. When recovering the
mask we gradually increase the strength of the Hopfield term and decrease the strength of the entropy
term. Otherwise the Hopfield term initially pulls z in the wrong direction or the final z does not lie at
a minimum of EΨ. For step t ∈ {1, ..., T}, and constant γ we use the objective J as

J (z, t) =
γt

T
EΨ(z) +

(
1− t

T

)
H (p) (7)

where p denotes the output using mask m = 1
2z + 1.

Figure 7 illustrates that after approximately 30 steps of gradient descent on z using objective J ,
the mask m = 1

2z + 1 converges to the correct mask learned during training. This experiment is
conducted for 20 different random seeds on SplitMNIST (see Section 4.2) training for 1 epoch per
task. Evaluation with the recovered mask for each seed is then given by Figure 8. As expected, when
the correct mask is successfully recovered, accuracy matches directly using the correct mask. For
hyperparameters we set γ = 1.5 · 10−3 and perform gradient descent during Hopfield recovery with
learning rate 0.5 · 103, momentum 0.9, and weight decay 10−4.

B.3 Network Architecture

Let BN denote non-affine batch normalization [21], i.e. batch normalization with no learned parameters.
Also recall that we are masking layer outputs instead of weights, and the weights still remain fixed
(see Section 3.5). Therefore, with mask m = (m1,m2) and weights W = (W1,W2,W3) we
compute outputs as

f(x,m,W) = softmax
(
W>3 σ

(
m2 � BN

(
W>2 σ

(
m1 � BN

(
W>1 x

)))))
(8)

where σ denotes the Swish nonlinearity [38]. Without masking or normalization f is a fully connected
network with two hidden layers of size 2048. We also note that HopSupSup requires 10 output
neurons for SplitMNIST in Scenario GNu, and the composition of non-affine batch normalization
with a binary mask was inspired by BatchNets [9].

C Augmenting BatchE For Scnario GNu

In Section 4.2 we demonstrate that BatchE [51] is able to infer task identity using the One-Shot
algorithm. In this section we show that, equipped withH from Section 3, BatchE can also infer task
identity by using a large batch size. We refer to this method as Augmented BatchE (ABatchE).

14

0.9

1.0

Ta
sk

 0
0.9

1.0

Ta
sk

 1

0.9

1.0

Ac
cu

ra
cy

Ta
sk

 2

0.9

1.0

Ta
sk

 3

1 3 5 7 9 11 13 15 17 19
Seed

0.9

1.0

Ta
sk

 4

Hopfield Recovery
Correct Supermask

Figure 8: Evaluating (with 20 random seeds) on SplitM-
NIST after finding a mask with Hopfield Recovery. Average
accuracy is 97.43%.

Task ID given during
train & inference

GG

Yes

Task ID given
during training

Tasks share
labels

GNs

Yes

GNu

No

Yes

Tasks share
labels

NNs

Yes

No

No

Figure 9: Continual learning scenarios
detailed in Table 1 represented in a tree
graph, as in [55].

For clarity we describe ABatchE for one linear layer, i.e. we describe the application of ABatchE to

f(x,W) = softmax
(
W>x

)
(9)

for input data x ∈ Rm and weights W ∈ Rm×n. In BatchE [51], W is trained on the first task then
frozen. For task i BatchE learns “fast weights” ri ∈ Rm, si ∈ Rn and outputs are computed via

f(x,W) = softmax
((
W � ris>i

)>
x
)
. (10)

Wen et al. [51] further demonstrate that Equation 10 can be vectorized as

f(x,W) = softmax
((
W> (x� ri)

)
� si

)
(11)

or, for a batch of data X ∈ Rb×m,

f(X,W) = softmax
(((

X �Rbi
)
W
)
� Sbi

)
. (12)

In Equation 12, Rbi ∈ Rb×m is a matrix where each of the b rows is ri (likewise Sbi ∈ Rb×n is a
matrix where each of the b rows is si).

As in Section 3.3 we now consider the case where data X ∈ Rb×m comes from task j but this
information is not known to the model. For ABatchE we repeat the data k times, where k is the
number of tasks learned so far, and use different “fast weights” for each repetiton. Specifically, we
consider repeated data X̃ ∈ Rbk×m and augmented matricies R̃ ∈ Rbk×m and S̃ ∈ Rbk×n given by

X̃ =


X
X
...
X

 , R̃ =


Rb1
Rb2
...
Rbk

 , S̃ =


Sb1
Sb2
...
Sbk

 . (13)

Outputs are then computed as

f(X,W) = softmax
(((

X̃ � R̃
)
W
)
� S̃

)
(14)

15

10 50 100 150 200 250
Num Tasks Learned

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

10 50 100 150 200 250
Num Tasks Learned

ABatchE (GNu, b = 1, H)

ABatchE (GNu, b = 1, M)

ABatchE (GNu, b = 4, H)

ABatchE (GNu, b = 4, M)

ABatchE (GNu, b = 16, H)

ABatchE (GNu, b = 16, M)

Upper Bound

Figure 10: Testing ABatchE on PermutedMNIST with LeNet 300-100 (left) and FC 1024-1024
(right) with output size 100.

where the b rows (bi, ..., bi+ b− 1) of the output correspond exactly to Equation 12. The task may
then be inferred by choosing the i for which the rows (bi, ..., b(i+ 1)− 1) minimize the objectiveH.
If f(X,W)i denotes row i of f(X,W) then for objectiveH the inferred task for ABatchE is

arg min
i

b−1∑
ω=0

H (f(X,W)bi+ω) . (15)

To extend ABatchE to deep neural networks the matricies R̃ and S̃ are constructed for each layer.

One advantage of ABatchE over SupSup is that no backwards pass is required. However, ABatchE
uses a very large batch size for large k, and the forward pass therefore requires more compute and
memory. Another disadvantage of ABatchE is that the performance of ABatchE is limited by the
performance of BatchE. In Section 4.2 we demonstrate that SupSup outperforms BatchE when BatchE
is given task identity information.

Since the objective for ABatchE need not be differentiable we also experiment with an alternative
metric of confidenceM(p) = −maxi pi. We showcase results for ABatchE on PermutedMNIST in
Figure 10 for various values of b. The entropy objectiveH performs better thanM, and forgetting is
only mitigated when using 16 images (b = 16). With 250 tasks, b = 16 corresponds to a batch size
of 4000.

D Extended Training Details

D.1 SplitCIFAR-100 (GG)

As in [51] we train each model for 250 epochs per task. We use standard hyperparameters—the
Adam optimizer [22] with a batch size of 128 and learning rate 0.001 (no warmup, cosine decay [28]).
For SupSup we follow [39] and use non-affine normalization so there are no learned parameters. We
do have to store the running mean and variance for each task, which we include in the parameter
count. We found it better to use a higher learning rate (0.1) when training BatchE (Rand W), and the
standard BatchE number is taken from [51].

D.2 SplitImageNet (GG)

We use the Upper Bound and BatchE number from [51]. For SupSup we train for 100 epochs with a
batch size of 256 using the Adam optimizer [22] with learning rate 0.001 (5 epochs warmup, cosine
decay [28]). For SupSup we follow [39] and use non-affine normalization so there are no learned
parameters. We do have to store the running mean and variance for each task, which we include in
the parameter count.

D.3 GNu Experiments

We clarify some experimental details for GNu experiments & baselines. For the BatchE [51] baseline
we find it best to use kaiming normal initialization with a learning rate of 0.01 (0.0001 for the first
task when the weights are trained). As we are considering hundreds of tasks, instead of training

16

5 10 15 20 25 30 35
Number of Tasks Learned

0.4

0.6

0.8

A
cc

ur
ac

y

SupSup (GNu, γ = 1/2)

SupSup (GNu, γ = 1/4)

SupSup (GNu, γ = 1/8)

SupSup (GNu, γ = 1/16)

SupSup (GNu, γ = 1/36)

106 2× 106

Total Number of Bytes

0.83

0.84

0.85

0.86

0.87

A
cc

ur
ac

y

SupSup (GG) (100 epochs)

SupSup (GG) Transfer (50 epochs)

Figure 11: (left) Interpolating between the binary and one-shot algorithm with γ. (right) Transfer
enables faster learning on SplitCIFAR.

separate heads per tasks when training BatchE we also apply the rank one pertubation to the final
layer. PSP [4] provides MNISTPerm results so we use the same hyperparameters as in their code.
We compare with rotational superposition, the best performing model from PSP.

D.4 Speed of the Masked Forward Pass

We now provide justification for the calculation mentioned in Section 4.1—when implemented
properly the masking operation should require ∼ 1% of the total time for a forward pass (for a
ResNet-50 on a NVIDIA GTX 1080 Ti GPU). It is reasonable to assume that selecting indices is
roughly as quick as memory access. A NVIDIA GTX 1080 Ti has a memory bandwidth of 480 GB/s.
A ResNet-50 has around 2.5 · 107 4-byte (32-bit) parameters—roughly 0.1 GB. Therefore, indexing
over a ResNet-50 requires at most 0.1 GB/ (480 GB/s) ≈ 0.21 ms. For comparison, the average
forward pass of a ResNet-50 for a 3× 224× 224 image on the same GPU is about 25 ms.

Note that NVIDIA hardware specifications generally assume best-case performance with sequential
page reads. However, even if real-world memory bandwidth speeds are 60-70% slower than advertised,
the fraction of masking time would remain in the ≤ 3% range.

D.5 Additional Transfer Experiment

For our transfer experiments, we initialize the score matrix (see Appendix E) for task i with the
running mean of the supermasks for tasks 0 through i − 1. The scores for task 0 are initialized
as in [39]. We further normalize by the Kaiming fan-in constant from [17], so that the norm of
our supermask matrix is reasonable. If we do not perform this normalization, accuracy degrades
significantly. All other training hyperparameters are the same as in Section D.1.

In Figure 11, we demonstrate that Transfer enables faster learning for SplitCIFAR. In this experiment,
we train task 0 for the full 250 epochs and all subsequent tasks for either 50 epochs (with transfer) or
100 epochs (without transfer). We see that adding transfer yields an improvement even while using
about half the number of training iterations overall.

E Supermask Training with Edge-Popup

For completeness we briefly recap the Edge-Popup algorithm for training supermasks as introduced
by [39]. Consider a linear layer with inputs x ∈ Rm and outputs y = (W�M)>x whereW ∈ Rm×n
are the fixed weights and M ∈ {0, 1}m×n is the supermask. The Edge-Popup algorithm learns a
score matrix S ∈ Rm×n+ and computes the mask via M = h(S). The function h sets the top k% of
entries in S to 1 and the remaining to 0. Edge-Popup updates S via the straight through estimator—h
is considered to be the identity on the backwards pass.

17

F Comparing Binary and One-Shot

In Figure 11 (left) we interpolate between the Binary and One-Shot algorithms. We replace line 6
of Algorithm 2, gi ≤ median(g), with gi ≤ top-γ%-element(g). Then when γ = 1/2 we recover
the binary algorithm (as median(g) = top-50%-element(g)) and when γ = 1/k we recover the
one-shot algorithm. A performance drop is observed from binary to one-shot for the difficult task of
MNISTRotate—sequentially learning 36 rotations of MNIST (each rotation differing by 10 degrees).

G Tree Representation for the Continual Learning Scenarios

In Figure 9 the Continual Learning scenarios are represented as a tree. This resembles the formulation
from [55] with some modifications, i.e. “Tasks share output head?” is replaced with “Tasks share
labels” as it is possible to share the output head but not labels, e.g. SupSup in GNu.

H Corresponding Tables

In this section we provide tabular results for figures from Section 4.

Table 2: Accuracy on SplitCIFAR100 corresponding to Figure 2 (right). SupSup with Transfer
approaches the upper bound.

Entry Avg Acc@1 Bytes

SupSup (GG) 77.56 ± 0.73 408432
SupSup (GG) 83.62 ± 0.74 508432
SupSup (GG) 86.45 ± 0.61 695592
SupSup (GG) 88.09 ± 0.64 1035792
SupSup (GG) 89.06 ± 0.75 1630032
SupSup (GG) 89.57 ± 0.64 2487472
SupSup (GG) Transfer 79.53 ± 1.31 408432
SupSup (GG) Transfer 85.33 ± 1.05 508432
SupSup (GG) Transfer 88.52 ± 0.85 695592
SupSup (GG) Transfer 90.12 ± 0.75 1035792
SupSup (GG) Transfer 91.31 ± 0.74 1630032
SupSup (GG) Transfer 91.66 ± 0.74 2487472
BatchE (GG) 79.75 ± 1.00 4640800
BatchE (GG) - Rand W 74.96 ± 0.68 400240
Separate Heads 70.60 ± 1.40 4544560
Separate Heads - Rand W 50.00 ± 1.37 184000

Upper Bound 91.62 ± 0.89 89675200

Table 3: Accuracy on PermutedMNIST with LeNet 300-100 corresponding to Figure 3 (left).
Entry 10 50 100 150 200 250 Avg

SupSup (GNuH) 93.65 93.68 93.68 93.66 93.64 93.62 93.66
SupSup (GNu G) 93.69 93.67 93.67 93.66 93.65 93.63 93.66
PSP (GG) 94.80 83.58 64.62 51.18 42.69 36.74 62.27
BatchE (GG) 88.85 88.33 88.23 88.23 88.22 88.21 88.34

Upper Bound 94.94 95.01 94.99 94.95 94.91 94.86 94.94

18

Table 4: Accuracy on PermutedMNIST with FC 1024-1024 corresponding to Figure 3 (right).
Entry 10 50 100 150 200 250 Avg

SupSup (GNuH) 96.28 96.14 96.04 95.91 95.86 95.66 95.98
SupSup (GNu G) 96.28 96.19 96.05 96.00 95.99 95.92 96.07
PSP (GG) 97.16 94.74 87.77 78.35 69.14 61.11 81.38
BatchE (GG) 92.84 92.40 92.36 92.34 92.33 92.32 92.43

Upper Bound 96.76 96.70 96.68 96.66 96.63 96.61 96.67

Table 5: Accuracy on PermutedMNIST with LeNet 300-100 corresponding to Figure 4.
Entry 500 1000 1500 2000 2500 Avg

SupSup (GNuH) 93.49 93.47 93.46 93.45 93.45 93.46
SupSup (GNu G) 93.49 93.48 93.46 93.45 93.45 93.47
SupSup (NNsH) 93.49 93.46 93.46 93.45 92.54 93.28

Upper Bound 94.71 94.71 94.71 94.71 94.71 94.71

Table 6: Accuracy with FC 1024-1024 on RotatedMNIST corresponding to Figure 5 (left).
Entry Avg

SupSup (GNu full batchH) 96.13
BatchE (GG) 92.40
PSP (GG) 95.87
Lower Bound 48.71

Upper Bound 98.01

Table 7: Accuracy with FC 1024-1024 on PermutedMNIST corresponding to Figure 5 (right).
Entry 10 50 100 150 200 250 Avg

SupSup (GNuH) 96.29 95.94 95.59 95.40 95.00 94.91 95.52
BatchE (GNu full batchH) 91.94 91.90 92.04 92.04 92.04 92.04 92.00
BatchE (GNuH) 66.08 61.89 60.93 59.33 57.37 55.74 60.22

Upper Bound 96.76 96.70 96.68 96.66 96.63 96.61 96.67

Table 8: Accuracy on PermutedMNIST with LeNet 300-100 corresponding to Figure 6 (left).
Entry 10 50 100 150 200 250 Avg

SupSup (GNu s = 200H) 93.46 93.49 93.48 93.47 93.47 93.46 93.47
SupSup (GNu s = 200 G) 93.46 93.48 93.47 93.47 93.47 93.46 93.47
SupSup (GNu s = 100H) 93.65 93.68 93.68 93.66 93.64 93.62 93.66
SupSup (GNu s = 100 G) 93.69 93.67 93.67 93.66 93.65 93.63 93.66
SupSup (GNu s = 25H) 93.71 93.51 93.28 93.10 93.06 92.94 93.27
SupSup (GNu s = 25 G) 93.83 93.66 93.60 93.48 93.43 93.36 93.56
Lower Bound 71.67 41.82 30.52 26.40 23.31 20.88 35.77

Upper Bound 94.94 95.01 94.99 94.95 94.91 94.86 94.94

19

Table 9: Accuracy on PermutedMNIST with FC 1024-1024 corresponding to Figure 6 (right).
Entry 10 50 100 150 200 250 Avg

SupSup (GNu s = 200H) 96.28 96.14 96.04 95.91 95.86 95.66 95.98
SupSup (GNu s = 200 G) 96.28 96.19 96.05 96.00 95.99 95.92 96.07
SupSup (GNu s = 100H) 95.90 94.77 94.02 93.71 93.00 92.84 94.04
SupSup (GNu s = 100 G) 96.31 95.83 95.60 95.32 95.05 94.88 95.50
SupSup (GNu s = 25H) 82.28 69.06 64.51 60.99 58.15 57.03 65.34
SupSup (GNu s = 25 G) 96.31 93.17 91.20 90.26 89.04 88.19 91.36
Lower Bound 76.89 49.40 38.93 34.53 31.30 29.36 43.40

Upper Bound 96.76 96.70 96.68 96.66 96.63 96.61 96.67

I Analysis

In this section we assume a slightly more technical perspective. The aim is not to formally prove
properties of the algorithm. Rather, we hope that a more mathematical language may prove useful in
extending intuition. Just as the empirical work of [8, 57, 39] was given a formal treatment in [29], we
hope for more theoretical work to follow.

Our grounding intuition remains from Section 3.3—the correct mask will produce the lowest entropy
output. Moreover, since entropy is differentiable, gradient based optimization can be used to recover
the correct mask. However, many questions remain: Why do superfluous neurons (Section 3.6) help?
In the case of MNISTPermuation, why is a single gradient sufficient? Although it is a simple case,
steps forward can be made by analyzing the training of a linear head on fixed features. With random
features, training a linear head on fixed features is considered in the literature of reservoir computing
[43], and more [1].

Consider k different classification problems with fixed features φ(x) ∈ Rm. Traditionally, one would
use learned weights W ∈ Rm×n to compute logits

y = W>φ(x) (16)

and output classification probabilities p = softmax(y) where

pv =
exp(yv)∑n

v′=1 exp(yv′)
. (17)

Recall that with SupSup we compute the logits for task i using fixed random weights W and a learned
binary mask M i ∈ {0, 1}m×n as

y =
(
W �M i

)>
φ(x) (18)

where � denotes an element-wise product and no bias term is allowed. Moreover, Wuv = ξuv
√

2/m
where ξuv is chosen independently to be either −1 or 1 with equal probability and the constant√

2/m follows Kaiming initialization [17].

Say we are given data x from task j. From now on we will refer to task j as the correct task. Recall
from Section 3.3 that SupSup attempts to infer the correct task by using a weighted mixture of masks

y =

(
W �

∑
i

αiM
i

)>
φ(x) (19)

where the coefficients αi sum to one, and are initially set to 1/k.

To infer the correct task we attempt to construct a function G(y;α) with the following property: For
fixed data, G is minimized when α = ej (ej denotes a k-length vector that is 1 in index j and 0
otherwise). We can then infer the correct task by solving a minimization problem.

As in One-Shot, we use a single gradient computation to infer the task via

arg max
i

(
− ∂G
∂αi

)
. (20)

20

A series of Lemmas will reveal how a single gradient step may be sufficient when tasks are unrelated
(e.g. as in PermutedMNIST). We begin with the construction of a useful function G, which will
correspond exactly to G in Section 3.6. As in Section 3.6, this construction is made possible through
superfluous neurons (s-neurons): The true labels are in {1, ..., `}, and a typical output is therefore
length `. However, we add n− ` s-neurons resulting in a vector y of length n.

Let S denote the set of s-neurons and R denote the set of real neurons where |S| = n−` and |R| = `.
Moreover, assume that a standard cross-entropy loss is used during training, which will encourage
s-neurons to have small values.

Lemma I.1. It is possible to construct a function G such that the gradient matches the gradient
from the supervised training loss L for all s-neurons. Specifically, ∂G

∂yv
= ∂L

∂yv
for all v ∈ S and 0

otherwise.

Proof. Let gv = ∂G
∂yv

. It is easy to ensure that gv = 0 for all v 6∈ S with a modern neural network
library like PyTorch [37] as detaching4 the outputs from the neurons v 6∈ S prevents gradient signal
from reaching them. In code, let y be the outputs and m be a binary vector with mv = 1 if v ∈ S and 0
otherwise, then

y = (1 - m) * y.detach() + m * y (21)

will prevent gradient signal from reaching yv for v 6∈ S.

Recall that the standard cross-entropy loss is

L(y) = − log

(
exp(yc)∑n

v′=1 exp(yv′)

)
= −yc + log

(
n∑

v′=1

exp(yv′)

)
(22)

where c ∈ {1, ..., `} is the correct label. The gradient of L to any s-neuron v is then

∂L
∂yv

=
exp(yv)∑n

v′=1 exp(yv′)
. (23)

If we define G as

G(y;α) = log

(
n∑

v′=1

exp(yv′)

)
(24)

then gv = ∂L
∂yv

as needed. Expressed in code

y = model(x); G = torch.logsumexp((1 - m) * y.detach() + m * y, dim=1) (25)

where model(...) computes Equation 19.

In the next two Lemmas we aim to show that, in expectation, − ∂G
∂αi
≤ 0 for i 6= j while − ∂G

∂αj
> 0.

Recall that j is the correct task—the task from which the data is drawn—and we will use i to refer to
a different task.

When we take expectation, it is with respect to the random variables ξ, {Mω}ω∈{1,..,k}, and x. Before
we proceed further a few assumptions are formalized, e.g. what it means for tasks to be unrelated.

Assumption 1: We assume that the mask learned on task i will be independent from the data from
task j: If the data is from task j then φ(x) and M i and independent random variables.

Assumption 2: We assume that a negative weight and positive weight are equally likely to be masked
out. As a result, E

[
ξuvM

i
uv

]
= 0. Note that when E [φ(x)] = 0, which will be the case for zero

mean random features, there should be little doubt that this assumption should hold.

Lemma I.2. If data x comes from task j and i 6= j then

E
[
− ∂G
∂αi

]
≤ 0 (26)

4https://pytorch.org/docs/stable/autograd.html

21

https://pytorch.org/docs/stable/autograd.html

Proof. We may write the gradient as

∂G
∂αi

=

n∑
v=1

∂G
∂yv

∂yv
∂αi

(27)

and use that ∂G
∂yv

= 0 for v 6∈ S. Moreover, yv may be written as

yv =

n∑
u=1

φ(x)uWuv

(
k∑
i=1

αiM
i
uv

)
(28)

with Wuv = ξuv
√

2/m and so Equation 27 becomes

∂G
∂αi

=

√
2√
m

∑
v∈S

n∑
u=1

∂G
∂yv

φ(x)uξuvM
i
uv. (29)

Taking the expectation (and using linearity) we obtain

E
[
∂G
∂αi

]
=

√
2√
m

∑
v∈S

n∑
u=1

E
[
∂G
∂yv

φ(x)uξuvM
i
uv

]
. (30)

In Lemma J.1 we formally show that each term in this sum is greater than or equal to 0, which
completes this proof. However, we can see informally now why expectation should be close to 0 if
we ignore the gradient term as

E
[
φ(x)uξuvM

i
uv

]
= E [φ(x)u]E

[
ξuvM

i
uv

]
= 0 (31)

where the first equality follows from Assumption 1 and the latter follows from Assumption 2.

We have now seen that in expectation − ∂G
∂αi
≤ 0 for i 6= j. It remains to be shown that we should

expect − ∂G
∂αj

> 0.

Lemma I.3. If data x comes from the task j then

E
[
− ∂G
∂αj

]
> 0. (32)

Proof. Following Equation 30, it suffices to show that for u ∈ {1, ...,m}, v ∈ S

E
[
− ∂G
∂yv

φ(x)uξuvM
j
uv

]
> 0. (33)

Since v ∈ S we may invoke Lemma I.1 to rewrite our objective as

E
[
− ∂L
∂yv

φ(x)uξuvM
j
uv

]
> 0 (34)

where L is the supervised loss used for training. Recall that in the mask training algorithm, real
valued scores Sjuv are associated with M j

uv [39, 30]. The update rule for Sjuv on the backward pass is
then

Sjuv ← Sjuv + η

(
− ∂L
∂yv

φ(x)uξuv

)
(35)

for some learning rate η. Following Mallya et al. [30] (with threshold 0, as used in Section 4.2), we
let M j

uv = 1 if Sjuv > 0 and otherwise assign M j
uv = 0. As a result, we expect that M j

uv is 1 when
− ∂L
∂yv

φ(x)uξuv is more consistently positive than negative. In other words, the expected product of
M j
uv and − ∂L

∂yv
φ(x)uξuv is positive, satisfying Equation 34.

22

Together, three Lemmas have demonstrated that in expectation − ∂G
∂αi
≤ 0 for i 6= j while − ∂G

∂αj
> 0.

Accordingly, we should expect that

arg max
i

(
− ∂G
∂αi

)
. (36)

returns the correct task j. While a full, formal treatment which includes the analysis of noise is
beyond the scope of this work, we hope that this section has helped to further intuition. However, we
are missing one final piece—what is the relation between G andH?

It is not difficult to imagine thatH should imitate the loss, which attempts to raise the score of one
logit while bringing all others down. Analytically we find thatH can be decomposed into two terms
as follows

H (p) = −
n∑
v=1

pv logpv (37)

= −
n∑
v=1

pv log

(
exp (yv)∑n
v′=1 exp (y′v)

)
(38)

=

(
−

n∑
v=1

pvyv

)
+ log

(
n∑

v′=1

exp (y′v)

)
(39)

where the latter term is G. With more and more neurons in the output layer, pv will become small
movingH towards G.

J Additional Technical Details

Lemma J.1. If j is the true task and i 6= j then

E
[
∂G
∂yv

φ(x)uξuvM
i
uv

]
≥ 0 (40)

Proof. Recall from Lemma I.1 that

∂G
∂yv

= pv =
exp(yv)∑n

v′=1 exp(yv′)
(41)

and so we rewrite equation 40 as

E
[
pvφ(x)uξuvM

i
uv

]
≥ 0. (42)

By the law of total expectation

E
[
pvφ(x)uξuvM

i
uv

]
= E

[
E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣ ∣∣φ(x)uξuvM
i
uv

∣∣]] (43)

and so it suffices to show that

E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣ ∣∣φ(x)uξuvM
i
uv

∣∣ = κ

]
≥ 0 (44)

for any κ ≥ 0. In the case where where κ = 0 Equation 44 becomes

E

[
0pv

∣∣∣∣∣ ∣∣φ(x)uξuvM
i
uv

∣∣ = 0

]
= 0 (45)

and so we are only left to consider κ > 0. Note that κ > 0 restricts M i
uv to be 1.

23

Again invoking the law of total expectation we rewrite Equation 45 as

E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣ ∣∣φ(x)uξuvM
i
uv

∣∣]

= E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣φ(x)uξuvM
i
uv = κ

]
P
(
φ(x)uξuvM

i
uv = κ

)
+ E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣φ(x)uξuvM
i
uv = −κ

]
P
(
φ(x)uξuvM

i
uv = −κ

)
.

(46)

Moreover, since the data is from task j 6= i, we can use Assumption 1 and 2 to show that each of the
cases above is equally likely. Formally,

P
(
φ(x)uξuvM

i
uv = κ

)
(47)

= P
((
{φ(x)u = κ} ∩

{
ξuvM

i
uv = 1

})
∪
(
{φ(x)u = −κ} ∩

{
ξuvM

i
uv = −1

}))
(48)

= P (φ(x)u = κ)P
(
ξuvM

i
uv = +1

)
+ P (φ(x)u = −κ)P

(
ξuvM

i
uv = −1

)
(49)

= P (φ(x)u = κ)P
(
ξuvM

i
uv = −1

)
+ P (φ(x)u = −κ)P

(
ξuvM

i
uv = +1

)
(50)

= P
((
{φ(x)u = κ} ∩

{
ξuvM

i
uv = −1

})
∪
(
{φ(x)u = −κ} ∩

{
ξuvM

i
uv = +1

}))
(51)

= P
(
φ(x)uξuvM

i
uv = −κ

)
(52)

and so we may factor out the probability terms in Equation 46. Accordingly, it suffices to show that

E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣φ(x)uξuvM
i
uv = κ

]
+ E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣φ(x)uξuvM
i
uv = −κ

]
≥ 0.

(53)

Before we proceed, we will introduce a function h which we use to denote

h ({yv}, κ) = κ
exp(yv + κ)

exp(yv + κ) +
∑
v′ 6=v exp(yv′)

. (54)

for κ > 0. We will make use of two interesting properties of h.

We first note that h ({yv}, κ) + h ({yv},−κ) ≥ 0, which is formally shown in J.2.

Second, we note that

P
(
pvφ(x)uξuvM

i
uv = h ({yv}, κ) |φ(x)uξuvM

i
uv = κ

)
= P

(
pvφ(x)uξuvM

i
uv = h ({yv},−κ) |φ(x)uξuvM

i
uv = −κ

) (55)

which we dissect in Lemma J.3.

Utilizing these two properties of h we may show that Equation 53 holds as

E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣φ(x)uξuvM
i
uv = κ

]
+ E

[
pvφ(x)uξuvM

i
uv

∣∣∣∣∣φ(x)uξuvM
i
uv = −κ

]
(56)

=

∫
R
h ({yv}, κ) dP

(
pvφ(x)uξuvM

i
uv = h ({yv}, κ) |φ(x)uξuvM

i
uv = κ

)
+

∫
R
h ({yv},−κ) dP

(
pvφ(x)uξuvM

i
uv = h ({yv},−κ) |φ(x)uξuvM

i
uv = −κ

) (57)

=

∫
R

(h ({yv}, κ) + h ({yv},−κ)) dP
(
pvφ(x)uξuvM

i
uv = h ({yv}, κ) |φ(x)uξuvM

i
uv = κ

)
(58)

≥ 0. (59)

Lemma J.2. h ({yv}, κ) + h ({yv},−κ) ≥ 0.

24

Proof. Recall that κ ≥ 0. Moreover,

exp(yv + κ)
∑
v′

exp(yv′) ≥ exp(yv − κ)
∑
v′

exp(yv′) (60)

⇒ exp(yv + κ)

(
exp(yv − κ) +

∑
v′

exp(yv′)

)

≥ exp(yv − κ)

(
exp(yv + κ) +

∑
v′

exp(yv′)

) (61)

⇒ κ
exp(yv + κ)

exp(yv + κ) +
∑
v′ 6=v exp(yv′)

≥ κ exp(yv − κ)

exp(yv − κ) +
∑
v′ 6=v exp(yv′)

(62)

and we may then subtract the term on the right from both sides.

Lemma J.3. Consider take i 6= j where j is the correct task. Then

P
(
pvφ(x)uξuvM

i
uv = h ({yv}, κ) |φ(x)uξuvM

i
uv = κ

)
= P

(
pvφ(x)uξuvM

i
uv = h ({yv},−κ) |φ(x)uξuvM

i
uv = −κ

)
.

(63)

Proof. Note that this equation is satisfied when κ = 0 (since −0 = 0). For the remainder of this
proof we will instead consider the case where κ > 0 (and so M i

uv = 1).

If we define ρ as ρ = (P (φ(x)u = κ) + P (φ(x)u = −κ))
−1 then may decompose Equation 63 into

four terms. Namely,

P
(
pvφ(x)uξuvM

i
uv = h ({yv}, κ) |φ(x)u = κ

)
P (φ(x)u = κ) ρ

+ P
(
pvφ(x)uξuvM

i
uv = h ({yv}, κ) |φ(x)u = −κ

)
P (φ(x)u = −κ) ρ

= P
(
pvφ(x)uξuvM

i
uv = h ({yv},−κ) |φ(x)u = κ

)
P (φ(x)u = κ) ρ

+ P
(
pvφ(x)uξuvM

i
uv = h ({yv},−κ) |φ(x)u = −κ

)
P (φ(x)u = −κ) ρ.

(64)

Equality follows from the fact that term 1 and 3 are equal, as are terms 2 and 4. We will consider
terms 1 and 3, as the other case is nearly identical.

Let H be the event where φ(x)u = κ,M i
uv = 1 and all other random variables (except for ξuv) take

values such that, if ξuv = +1 then pvφ(x)uξuvM
i
uv = h ({yv}, κ). On the other hand, if ξuv = −1

then pvφ(x)uξuvM
i
uv = h ({yv},−κ). Then, subtracting term 3 from term 1 (and factoring out the

shared term) we find

P
(
pvφ(x)uξuvM

i
uv = h ({yv}, κ) |φ(x)u = κ

)
− P

(
pvφ(x)uξuvM

i
uv = h ({yv},−κ) |φ(x)u = κ

) (65)

= P (ξuv = +1|H)− P (ξuv = −1|H) = 0 (66)

since ξuv is independent of H , and ξuv = −1 and +1 with equal probability.

25

