Appendices

Table 1: Explanation of the notations

Vi {@i the value (()-) function at the beginning of the k-th episode;
{Vref k} the reference value function at the beginning of the k-th episode;
{N[(s,a)} the number of visits to (s, a, h) before the beginning of the k-th episode;
{ N (s,a)} the number of visits to (s, a, k) in the current stage (at the beginning of the
k-th episode) with respect to the same triple;
mf 1oy, 1Lk | the accumulator for the mean (variance) of the reference value function;
& the accumulator for the mean (variance) of the advantage (i.e., the difference
{a h}({ h} between the value and the reference value function) in the current stage;
{v h} the accumulator for the mean of the value function in the current stage;
{oF } {b } the exploration bonuses for the two types of updates;
{V,REF} the final reference value function;
{V;;k 1{QED the optimal value (Q-) function
nk the number of visits to (s, ay, h) before the current stage with respect to the
h same triple;
ke the number of visits to (sﬁ, aﬁ, h) in the stage immediately before the current
h stage with respect to the same triple;

Ik the index (time step) of the i-th episode among the nh episodes of that
hot visited (s¥, af, h) before the current stage with respect to the same triple;
i the index (time step) of the i-th episode among the 7F 1 episodes in the stage
hyi immediately before the current stage with respect to (SZ, a,]?t, h).

A Basic Lemmas

Lemma 8 (Azuma-Hoeffding Inequality). Suppose {Xj}r=01,2..
Xp—1| < c¢g almost surely.

that

... is a martingale and | X}, —
Then for all positive integers N and all positive reals ¢, it holds

e )
— |-
231 Cﬁ

P[| Xy — Xo| = €] < 2exp<

Lemma 9 (Freedman’s Inequality, Theorem 1.6 of [Freedman et al., [1975]). Let (M,,)n>0 be a

martingale such that My = 0 and | M,
Sforn = 0, where Fy, = o(My, My, Ms, ...,

Lemma 10. Let (M,,),>0 be a martingale such that My = 0 and |M,, —
¢ > 0and anyn > 1. Let Var,

O’(Ml,MQ, Mk;

e

2
P[In : M,, > x and Var,, < y] < exp <_2(ygl:&-cx)) .

— M,_1| < c Let Var,, =y, E[(M}, — My_1)?|Fr_1]

My,). Then, for any positive x and for any positive y,
(20)

M,,_1| < c for some
= ZZ:I E[(My — My_1)?|Fx_1] for n = 0, where F}, =

). Then for any positive integer n, and any €,p > 0, we have that

2n

2
2\/\m+2\/$+2clog ] ( ne? +2>p

Proof. For any fixed n, we apply Lemmaﬁwith y =1ieand x = £(2, /ylog(%) + QClog(%)). For

each? = 1,2,...,[”c ], we get that
1
IP’[M”|>2 (i —1)elog(— +24/elog +2010g ), Var, <1 ]
p
) 1
<P [|Mn| > 24 [ielog(—) + 2010g( ), Var,, < ze]
p p
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< 2p. (22)
Then via a union bound, we have that

P [|Mn| > 2\/Varn log(l) + 2\/elog(1) + QClog(l)]
b p p

|"!LC2'|
- 1 1 1
< P[|M,| =24+/(i—1)elo +2\/elo —) + 2clog(-), (1 — 1)e < Var <ie]
> [I | \/( ) g(p) g(p) g(p) (i—1) n

i=1
nc?

[=&1
< Z P [|Mn| > 2\/(2 - 1)elog(1) + 2\/elog(1) + QClog( ) Var,, < ]
i=1 p

2
< (2“ +2) P 23)

€
O

Lemma 11. For any non-negative weights {wn (s, a)}ses,aeane[r] and a € (0,1), it holds that

2Q
Z Z wh Sh’a” 3w (s, ) (NEH (s, 0)) 0, (24)
1 -«
k=1h=1 s,a,h
and
K H k: 200 I
sh,ah 2 H K1 a
< ,a)(N, , .
21 ; l-a sza)hwh(s AN (s e)
In the case o = 1, it holds that
K H k k
wp (87, a
7(,;2 L <5 3 wn(s.a) log(NE (s, ), (25)
k=1h=1 h s,a,h

and

K H k ok

’LUh(S , @ )
Z Z 77{2 hl <4l Z wy(s,a) log(NF (s, a)).
k=1h=1 h s,a,h

Proof. By the definition of £, for any h, k such that nl,?t > 0, there exists j such that h’fb = e;j and

ny = z 1 €;. Therefore, Q}Jnh <nr < 3 nfl So it suffices to prove 1j and 1} By basic
calculus, for two positive numbers x, y such that y/2 < x < yand any « € (0, 1), we have that

y =Tt > (- ey -y = (- a)(y - w)2 e, (26)
and

y—x _ Y-z
] 1 > .
og(y) — log(x) " -

By applying and (27) withy = ﬁ% e;and x = Zg=1 e; for j = 1,2, ... and taking sum, we
have

K H . K+1 j
Z Z wh Shaah < Z wy (s, a) Z mln{€j+17N i (s,a) _Zg=1 ei}

27)

k=1h=1 s,a,h j27 161<NK+1(S,0,) ( ‘zj 163)
2% K+1 11—«
= 1 Z U}h(S,a)(Nh (S,CL))
—«
s,ah
and
K H ] .
wh(sh, ap) _ minfe; 1, Np 7' (s,0) = 20 e}
2 < ), wn(sa) 2 ;
k=1h=1  '"n s,ah FYI e eNEH (s,0) (Xiz1€5)
<2 Z wy (s, a) log(NE* (s, a)).
s,a,h
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B Missing Proofs in the Regret Analysis

B.1 Proof of Proposition[d]

We prove Qf (s,a) < Q%(s,a) for all k, h, s, a, by induction on k. Firstly, the conclusion holds
when k = 1. For k > 2, assume Q}(s,a) < Qj(s,a) forany h,s,aand 1 < u < k. Let (s, a, h)
be fixed. If we do not update Q) (s, a) in the k-th episode, then Qk“( a) = QF(s,a) = Q} (s, a).

Otherwise, we have
ref

*1(s,a) = min { ri(s,a) + =t

S [17=¢

+ba T}L(S,G)—F%—Fb, QZ(‘%G)}a
(i (5)
where p*°f, i, 0%, & , n, 11, b and b are given by respectively the values of p™*f, ji, o™

and b to compute QkJrl (s,a) in (). We use [; to denote the episode index of the i-th sample and L
to denote the eplsode index of the i-th sample of the last stage with respect to the triple (s, a, h).

(28)

ref G om,n,b

Besides the last Qi(s, a) term, there are two non-trivial cases to discuss (corresponding to (¢) and
(42)).

For the first case, we have that

ref

_|_

=
IS¢ ll=e

ZH(S, a) =rp(s,a) + +

s “

ref, l

ref,l [
Vh+1>+Péah<v Vi1 = Vg ! )>+X1+X2+b
i=1

\: —
P

=rp(s,a) + Psgp (

IS 1=
= TP

> (s, a) +P5ah< ZVh;1>+X1+X2+b (29)
—i=1
> rp(s,a) + PoanVier + X1 +Xx2+0 (30
=Qr(s,a) +x1+x2+b
where
1 & vef,l, , L, ref 1,
X1 = n Z <Vh+1 ($hs1) = PsanViyr ) ) (31)
— =1
Wi = Vi —Vish, Wi=1 (32)
N (g (L L
xei= = 3 (Wi (i) = PanWitsa ) (33)
— =1

Here, Inequality (29) holds because V}fj_flu is non-increasing in u, Inequality (30) is by the induction
V¥ = V*forany 1 < u < k.

Define V(z,y) := x'(y?) — (z"y)? for two vectors z,y of the same dimension, where y? is
obtained by squaring each entry of y. By Lemma m with € = T2 , we have that with probability
(1 —2(H?T3 + 1)p) it holds that

ref,l,
(Zz V( eahave H))L L 2H.
hal < 2\/ 1S Thet 0y pdt 2 (34)
I
(Zl V( sahaWﬁl ))L L 2H.
Ixa| <2 L - htl +2%§L —. (35)

We now bound '™ | V(Ps 4., V,fj_ff’) in order to upper bound |x]|. Define

2
f ref
o' 1
Zref = = I )
n n
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We claim that,
Lemma 12. With probability (1 — 2p), it holds that

V(P Vaott) < m- v + 3H/mi. (36)

=

1=1

Proof. We have that

n

ref,l; = ref,l; ref,l;
ZV(Psah;Vthl ) = Z <Psah(vh+1 ) _( 5ath+1 ) )
=1 1=1
n 2
N ref,l;, , I, ref,l; 4
= Z(Vh-H ($h41))" — (Z Vet (841 ) + X3+ Xa+ X5
1=1
=0V + x5+ x4+ X, (37)
where
n
ref,l; ref,l, , 1,
X3 = Z (Ps’aﬁh(VhH )2 = (Vs (Sh+1))2) ; (38)
i=1
1< P ?
N refl li N ref,l;
X4 = ( Vit (8544 > T (Z PsanVii1 ) ) (39)
1 . ? z 7
r f,0; N ref,l;
X5 ::n<2psah hj—l ) _Z( sathil ) . 40)
- i=1

By Azuma’s inequality, we have |y3| < H?+/2n with probability at least (1 —p). We apply Azuma’s
inequality again to obtain that with probability at least (1 — p), it holds that

2 n 2
refl 77. N ref,l;
(Z h+1 ) - (Z PsanVhir >
i=1

refl Li refl
h+1 Z Ps.anV)

H% / QQL. 41)
On the other hand, we have that x5 < 0 by Cauchy-Schwartz inequality. The proof then is completed

by (7).

\X4| =

IS |+

O

Combing (34) with (36) we have

ref,  5H,3 2 2l
hal <24/ 54 ¢ 228 L2V, 28 (42)
n (n)a  Tn n

We now bound Z?:l V(Ps,a,hs W,%_H) for |x2|. Define

U=

S l1Qc

Similarly to Lemma[I2] we have that
Lemma 13. With probability (1 — 2p), it holds that

V(P Wiy ) < it 0+ 3H?\/fe. 43)

=

i=1
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Therefore, given (33)), it holds with probability (1 — 2p) that

. B5HME 24 2H.

< 24— .
|X2| 7 + (ﬁ)% Th 7

I«

(44)

Finally, combining @2)), @4), and the definition of b with [c1, c2,c3] = [2,2,5], and collecting
probabilities, we have that with probability at least (1 — 2(H*T® + 3))p, it holds that

b=l + [xal, (45)
which means that Q¥+ (s, a) > Qi (s, a).

For the second case, by Hoeffding’s inequality, with probability (1 — p) it holds that

B (soa) = 7a(s,a) +

2 H?
> m(s,a) + = O Vit (s 2 [—
Th(s, a) R L h+1(5;i,h+1) + % L

> r(s,0) + PanVii

= Qj(s,a). (46)

Combining the two cases, and via a union bound over all time steps, we prove the proposition.

IS

+

Sl

—_

B.2 Proof of Lemma[3
First, by Hoeffding’s inequality, for every k and h, we have that

TL h

1 —k
ok Z Vi 5h+1) Py ar nViia| < by | > 1-p. (47)
h i=1

Now the whole proof will be conditioned on that (@7) holds for every k and h, which happens with
probability at least (1 — T'p). For every k and h, we let 87 := V¥ (sF) — V;*(sF) (which aligns with
the definition for &7 ¥ in the proof of Theorem || '

For any weight sequence {w*}X_| such that w* > 0, let |w| s = maxX_; w* and |w]; = Zszl wk.

We will prove that

K
D wksk < 24083 \/[w]o - SAJw]1e + 3SAH?w]|op. (48)
k=1

Once we have established (@8], we let w* = I[6F > €] and we have

K K
Z < 240HF | |w]oe - SAL Y I[5f = €] + 3SAH?w]|oo.
h—1 k=1

Note that |w|« is either 0 or 1. In either cases, we are able to derive that

Z O(SAH®./e?),

and concludes the proof of the lemma. Therefore, we only need to prove @8], and the rest of the
proof is devoted to establishing @8).

By the update rule (@) and (T0), that V* always upper bounds V* (conditioned on the successful
event of Proposition ), and that we have conditioned on (@7), we have that

0 = Vi (sh) = Vi (sh)
< Qﬁ(sz’ aﬁ) - Qz(sfzv aﬁ)
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—k i
<I[nf = 0]H + (b, + 2 fo+1 ﬂ+1) Pgr qn WVika)

;“k‘
@
._.

—k 1o i
<I[nj;, = 0]H + (20, + E(V}f-&-l(slh-&-l) Vh*+1(sif+1)))

— I[nk = O)H + (25, + 7 3k ). (49)

k
h =1

Using the similar trick we do for (T3) and (T6)), we have

iy w’ i}, i
Zﬁ Zh+1 Z j26h+1
k=1 i=1 j=1""h i=1
ijKk 7l 3 Kk ijﬁi ~
= Z 3 Z Oht1 Ik = lim] = Z Oh+1 Z Y Ik = li,i]’ (50)
=1 "h k=1 i=1 k=1 =1 i=1
where if we let
K w.] ﬁ{L .
@t = ), =5 DUk =), (51)
=1 "h i=1
we have that
1 -
|@0]loo = mkaxw <A+ g)lwle,  and ] =Y i = wh = |wl. (52)

Therefore, combining @9), (50), and (1), and plugging them into Y., w*&¥, we have that
Zwkéz < 2Zwk5: + Zﬁ}kéfﬂ + HZwkH [nk =
k ¥ 3 k
<23 kb, + D@6k, + SAH?|w).e, (53)
k %
We now bound the first term of (53). Define w(s, a,j) := S, w I[aF = ej, (sk,ak) = (s,a)]

and (s, a) 1= 2]21 w(s,a,j). We have to(s, a,7) < |wle(1+ + )eJ and Zs’a (s,a) =Y, wk
‘We then have

Z wkE: = Z 2V H2 "
k

_2\/72 210 = e, (s, ak) = (sa)—QFEZ sa]\/eTj.

s,a,j szl s,a j=1

¢
R R

We fix (s,a) and consider the sum };_, (s, a, j), /L. Notice that 4/1/e; is monotonically

decreasing in j. Given that },;_, (s, a, j) = w(s, a) is fixed, by rearrangement inequality we have
that

> (s, a.) \/7 RN S (4 P 1+ lZ Jwloo (1 + *) (s, a)]

7=1 7j=1
HwHOO Z\/ﬁ I [Z HwHOOel = S, )1
1
<1001+ )V [wloo H - w(s, a).
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Therefore, by Cauchy-Schwartz we have that
Zwkbh <2WVH 210 (1+ = \/HmeH\/m (s,a) < 20VH?u(1 + — \/kuoO SAH |w];.

(54)

Combining (33) and (54), we have that
D wksE < 80HA/|wlo - SAH[wre + SAH? w4+ Y ;. (55)
o %

With (33) and (32)) in hand, applying induction on i with the base case that h = H, one may deduce
that

N whsk < (L+ 1/H)T - H- (SOH\/HwHOO “SAH[w]re + SAH2|\w|\w)
k

< 240H*7/|w] oo - SAH w1t + 3SAH? |w] oo .

B.3 Proof of Lemmal(7|

The entire proof is conditioned on the successful events of Proposmon [ and Lemma [5] which
happen with probability at least (1 — 27°(H>T + 5)p). For convenience, we define A} as A\ (s) =

I[nf(s) < No| for all state s and all k and h.
By the definition of A}, |, we have that 31, 3% | (1 4 )" 'A¥, | by the definition that

H K

H K
1., 1,
Z Z 1** PIAR L = Z Z(1+E)h Y + Z Z(1+E)h e
h=1k=1 —1k=1 h=1k=1
H K 1 H K 1
+ Y3+ E)h—lqbﬁﬂ +2> ) (1+ E)’Hbﬁ. (56)
h=1k=1 h=1k=1
We will bound the four terms separately.
B.3.1 The ¢}, Term
Lemma 14. With probability at least (1 — p), it holds that
Z 2 etk L < Olog(T)) - (H2SNy + HVT).

Proof. Because ¢Z 41 is always non-negative, we have that with probability (1 — p) it holds that

1
0+ ﬁ)h "
k=1h=1
K H
<3) Y W
k=1h=1
ref,l; REF
=3 Z Z ”Ti P ar n(Visi = Vast )
k=1h=1 i=1
K H 1 nk
l;
<3H Z Z ok Psi;. B4
k=1h=1 ""h i=1
H K K |
k
<3H Z Z Z P 7ah7h/\h+1 nk Z H[lh,z =Jl
h=1j=1k=1 h j=1
H K K ny
<3H Z Z Psh,ah,h)‘h+1 Z — D M = 4] (57)
h=1j=1 k=1 ""h iz1



H K
<6(log(T) +1) - H >> > Po or pAiis (58)

st.ag,

=1
K H K H
= 6(10g(T) + 1) -H Z Z )‘Z-&-l(slfi-&-l) + Z Z (Paﬁ,a,l,h 1 Hl))‘ﬁ-s-l)

K H
< 6(log(T) + 1) - H(HSNO + 3 N (P — 1Sﬁ+1)xgﬂ)

k
< 6(log(T) + 1) - H(HSNo + 2VT0). (59)

k . .
Here, Inequality (57) is because -4 377" I[IF . = j] # O only if (s¥, af) = (s}, a7 ). Inequality (58)
nh ’
is because

. ez
ik, =dl< D) == <2(og(T) +1).
zj<YiI) eisT Xi-y €

i Mfy

K

1
2E
k=1 Ny 5

Inequality (59) holds with probability (1 — p) due to Azuma’s inequality.

O
B.3.2 The §;f+1 Term
Lemma 15. With probability at least (1 — (T + 1)p), it holds that
K H 1
MY+ E)h—lg’g+1 < O(HVSATv).
k=1h=1
Proof. We have that
K H K H 1 1 Ak
DIPICEESGRIED ) WERES Ul 3 )T PABI IR 7).
k=1h=1 k=1h=1 h i=1
K H K 1 ak
yh=1 ik -
aPIPIDNCES (77 2P = L, JVar = Vite) 10 = 1),
Note that in the expression above [} ; = j if and only if (s}, aff) = (s, s,). Therefore, we have
K H 1
1+ =) "¢
k=1h=1 H
K H K 1 1 a,
= Y N+ 2 (o D Py~ L) Vi = Vi) - ik = 1)
k=1h=1j=1 h =1
H K K Ay i}
= Z Z(l + H)hfl(Ps{L,a;L,h IS{LH)(V}LH Vi) Z 7k H[lﬁ,i =7l
h=1j=1 k=1""h i=1
K H
= Z Z GZ-&-I(Paﬁ,a’]fb,h - lslfb+1)(vff+1 - Vh*+1)a (60)

L
Il
—
>
Il
—

. ~k -
where we define 67 | := (1 + )" Zszl (niﬁ > H[l,’i’i =J).
For (j,h) € [K] x [H], let xh be the number of elements in current stage with respect to (sfl, afl, h)
and 67, = (1 + L)~ 1M < 3. Define K = {(k,h) : 05, = 0%, ,}. Note that if k

is before the second last stage (before the final episode K) of the triple (s¥ b afl, h), then we have
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0F ., = 0%, and (k,h) € K. Given that (k,h) € K, s¥_ , still follows the transition distribution
s’fb,a’}j h*

Let Ki-(s,a) = {k : (sF,al) = (s,a),k is in the second last stage of (s, a, h)}. Note that for two

dlfferent episodes j, k, if (sh,a’g) = (sh,ah) and j, k are in the same stage of (sh,ah, h), then

0F =0, and 0 | =0 . LetO1(s,a)and 0441 (s, a) to denote 0, ; and 05, | respectively

for some k € Ki (s, a).

We rewrite as

= Z eh-&-l(Ps’;L ah,h 1 ’;L 1)(th+1 - Vh*Jrl) + Z (05-&-1 - efli-&-l)(Ps;‘L,ah, 13£+1)(th+1 -

(k,h) (k,h)eK
(61)

Eelc(;lus}el: 9;’3 +1 1s independent from sfl +1> by Azuma’s inequality, we have with probability (1 — p), it
olds that

D Ona (P ok — L )(Viliy = Viy) < 6VTH (62)
(k,h)

For the second term in (61), we have that

2 (QZH - élliJrl)(Psﬁ,aﬁ,h - lsﬁﬂ)(vhkﬂ - V;Z“H)
(k,h)eC

= Z Z I[(s7;, ak) = (saa)](oﬁ-&-l 9h+1)(Ps akh T 15’;+1)(th+1 —Vit)
8,01 k: (k,h)eK

= Z (9h+1(57a) - éh+1(57a)) Z (Ps’fb,ah,h 1 ’fL 1)(Vh],€+1 - Vh*Jrl)
s,a,h keKi (s,a)

< Z O(H)A/|Kik (s, a)|e (63)
s,a,h

= > OH) /N (s, a)
(s,a,h)

< O(H)- \/SAHL Z NE+(s,a) (64)
(s,a,h)
<O(H)-+/SAH.- (T/H). (65)

Here, (63) happens with probability (1 — T'p) because of Azuma’s inequality and a union bound over

all times steps in . (64) is due to Cauchy-Schwartz, and (63) is because the length of the last two
stages for each (s, a, h) triple is only O(1/H) fraction of the total number of visits.

Combining (61), (62), (63)), and collecting probabilities, we prove the desired result.

B.3.3 The ¢}, Term
Lemma 16. With probability (1 — p), it holds that

K H K H
1., ‘n' /
Z Z(lJrﬁ)h Y1 = Z Z 1+ ) 1(Psha — 1k 1)(Vh+1 Vi) < O(VH?Tu).
h=1 k=1h=1
Proof. The lemma follows easily from Azuma’s inequality. O
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B.3.4 The b Term
Lemma 17. With probability (1 — 9p), it holds that

K H
1
) < O(\/SAHQTL + \/SAH2BT. + SAH?\/SNyilog(T)

k=1h=1

)2. Since b} is non-negative, we have

e

+/SAH3BT, + (SA)THET

ref,k _ gref:k M;Cf’k 2 kO
Proof. Define v,” " = — (=) and 7y =

that

=

=
Pk N

— (&

k
’I’Lh nh n

>

h=1k=1
H K ref k oy H " H 3 H 3
SGZZ(Clﬂyhk L+ co %L+cg(f;+f;+%+%)) (66)
he1ke1 np, np, npo My (o)t (y)E
H K ref,k K ]
<O( 3 D[y [ 2] + O(SAH og(T)e + (SANTHETE).  (67)
h=1k=1 Ty ny,

Inequality (67) is due to Lemmawith o= % and o = 1. Now we only need to analyze the first
term in (67).

We first present an upper bound for V;Lef’k. Recall that V(z,y) = 2 (y?) — (2 Ty)2.

Lemma 18. With probability (1 — 4p), it holds that

re 6H2SN,
Yh o V(Psﬁ’aﬁ,mvh*-ﬁ-l) <4HpB + TO + 14H2‘ /n—Lk.
h h

k
Proof. We prove by first bounding ;""" — P I V(P ok o Vrehl) Recall that by ,
h ) h?

+1
k
n
ref,k 1 h V(P Vref,li _ 1
Vpy  — % ( sk.ak hs Vht1 ) = —7(X6+X7+X8)7
nh i=1 nh
where
np;
e ref,l;\2 ref,l; / 1; 2
X6 = 2 (Poan (Vi = (Vs s0)?) (68)
i=1
y 2 2
1 o £, 0 1 1 o £,
rer,l; i rel,l;
X7 = “k Z Vh+1 (5h+1) - Tk Z Ps,a,hvh+1 ) (69)
Ty iz o \io
2
L[ nz .
ref,l; ref,l;
X8 ‘= % Z Ps,a,th+1 - (Ps,a,hvh+1 ) . (70)
e \iz1 i=1

By Azuma’s inequality, with probability (1 — 2p) it holds that

|X6| < H2 \/ Qnﬁbv

ref,li 0 L ref,l; 2 k
Izl < 2H| Y. Vil (shisy) = D) Por ar n VUl < 2H?4 /200
=1 i=1
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It left us to handle —yg. By Azuma’s inequality and the fact that V%% > VREF for any k, with

probability (1 — p) it holds that

. 2
o £\2 1 & £.0;
,X8=Z(Pskak Vh+1 > 7TL7 Z s¥ak h+1
i=1 h
TLE fl 1 ’Vlh REF 2
‘ 1<Psﬁahhvh+1 > _% Z‘Psﬁaﬁ h+1
ny
ref,l;
- ((Psz,ah,h‘/hil ) — (Pagat VhﬁElF)z)
i=1
’I’Lk
h
2
<2H? Y Py ok 1N
i=1
nh
2 l;
=2H Z >‘h+1 sh+1 Z Ps;i,a;‘ h h§+1)>\h+1
< 2H?SNg + 3H?y/nke. (71)
Then we obtain that
ref k: ref,l; 2 L 2-EIQS]VO
— ZV Py ap o Vitd) < 8H?, [ =+ =———. (72)
h i=1 h h
When (72) holds, we have that with probability (1 — p),
ref,k
vy, _V(Psﬁ,a, ,h7Vh+1)
nk nk
1 ; ref,l; ref,k 1 : ref,l;
= ;I;L ~ (V(Psﬁ,aﬁ,h7v}r‘rl ) 7V(Psﬁ,aﬁ,h7vh*+l)) + ( Vy, n};L Z;V(Psﬁ,aﬁ,h7vh+1 ))
k
1 & vef ; L 2H?SNy
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k
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where Inequality holds with probability (1 — p)

by Azuma’s inequality and holds by

Corollary [6] (and note that the whole proof is conditioned on the successful events of Proposition[d]

and Lemmal3).
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We will also prove the following bound of the total variance.

Lemma 19. With probability (1 — 2p), it holds that

Z N}f(+1(5, (I)V(Ps,a,ha Vh*+1) < 2TH + 3\/% (75)

s,a,h
Proof. By direct calculation, with probability (1 — 2p), it holds that
Z Nifﬂ—l(su a)V(Psa,n V;Zil)

s,ah

I
M=
N

V(Psﬁ,aﬁ,ha Vh*+1)

b
Il
—
>
Il
—

[
D=
D=

(Re’;,a’ﬁ,h(vh*+1)2 - (Psi,a’;,lLVh*+1)2)

k=1h=1
K H K H
< Z Z (Ps;z,a;‘t (Vv};k-ﬁ-l) (Vh Z Z Sh,ah th+1|
k=1 h=1 k=1h=1
K H
< VRTH' +2H 3 Y ViF(sh) = Pug o n Vi (76)
k=1h=1
K H
=+V2TH* +2H Z (V )+ Z ViE(shon) Psﬁ,ah,hvh-f-l))) 77
k=1 h=1
< VT H* + 2TH + 2H?*V2T. (78)
< 2TH + 3H?*V?2T\,

where Inequality (76) holds with probability (1 — p) by Azuma’s inequality, Equation (77) holds
with the fact that V;*(s) — Py o,n V5, = V;¥(s) — Qi (s,a) = 0 for any s, a, h and Inequality (78)
holds with probability (1 — p) by Azuma’s inequality. O

Combining Lemma [T1} LemmalI8] and Lemma|[I9] we have that with probability (1 — 7p),

H K vef,k H K [y(p , 3
M/ < \/ ( choehh V1) L+Z Z (4Hﬂ SH*SNo | 1 yppo )L
1

eV m h=1k= n; h=1k=1 (nj)? (nf)2
<O 3 \/NE s,V (P Vi)
s,a,h
+ Z «/NKJr1 (s,a)HpBL + SAH?*\/SNyilog(T SAL)%H%T%
s,a,h
< O(\/SAHQTL + \/SAH2BT: + SAH?\/SNotlog(T) + (SA)THIT ) (79)

We now bound Vh By Corollary |§| (and that the whole proof is conditioned on the successful events
of Proposition[d and Lemma 5], we have that

-k
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By Lemmam], we obtain that

Z Z vkL < VHSNo SNOL O(«/SAH?’B?TL+SAH3«/SNOL10g(T)).

h=1k=1
(81)

The proof is completed by combining (67)), (79), and (BT).
O

B.3.5 Putting Everything Together

Recall that # = —, and Ny = %Z)HS‘ = O(SAHS.). Combining (56), Lemma , Lemma .
Lemma |16|and Lemma we conclude that with probability at least (1 — O(H?T"p)),

2 AL

1h=

0( g(T)) - (H?SNy + HVTw) + O(H?*VSAT.) + O(VH2T)
O(\/SAH2TL + \/SAH2BT: + SAH3\/SNot log(T)

SAH3B2T, + (SAL)%H%T%).
(\/SAHQTL + HVTuog(T) + \/SAH2 BT + SAH?\/S Nt log(T
SAH3E2T. + (SA)TH3T + H2SN, log(T))

(VSAHzTL + HVTulog(T) + SAH?/SNotlog(T) + (SA)THETT + H2SN, 1og(T))

0
@) (\/SAHQTL + HVTulog(T) + S2A3 HS log(T) + (SA)TH3T% + S2AH®, 1og(T))
O(\/SAH2TL + HV/Tulog(T) + SQA%H%Ti). (82)

C Other Results

C.1 Local Switching Cost Analysis

The notion of local switching cost for RL is introduced in [Bai et al.|[2019] to quantify the adaptivity
of the learning algorithms. With a slight abuse of notations, we use 7, j, to denote the policy at the
h-th step of the k-th episode. We first recall formal definition of the local switching cost.

Definition 1. The local switching cost at (s, h) is defined as

K-
nsw1tch S, h Z ’ﬂ'k h 7'& 7Tk+1,h(s)] .
k=1

The total local switching cost is then defined as

H
Nwitch : Z Z anltCh S, h
se8 h=1

Now we prove Theorem 2]

Proof of Theorem[2] By the definition of e;, it is easy to verify that e; ;1 > (1 + 55 )e; forany i > 1.
Then the number of stages of (s, a, h) is at most

10g(w +1)
log(1 + 57)

Because 7y, ;(s) = arg max, Q% (s, a), we have that

L[7g,n(s) # Trs1,n(s)] = 1[3a, Qk+1(s, a) # QF (s, a)] .

NET (s, a)

< 4H log( 5H +1).
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Now, by definition, we have that

K-1
Nswiteh (5,1) = . T[mkn(s) # Ter1n(s)]
k=1

K-1
Z I[3a, Qi (s a) # Qﬁ(s,a)]
k=1

NK+1
7@’&) +1).

Finally, by the concavity of log(z) in z, the total local switching cost of UCB-ADVANTAGE is
bounded by

H
Nswitch = Z Z nswitch(37 h)
seS h=1
NE+L(s,a)
4H log(——2"2 + 1
< D AHlog(—t ==+ 1)

s,a,h

T
< 2 YIRS
4H SAlog(ngH2 +1)

K
= O(HQSAlog(SAH))

C.2 Application to Concurrent RL

In concurrent RL, multiple agents act in parallel and shares the experience in a limited way to
accelerate the learning process. In this subsection, we follow the setting in [Bai et al., |2019] to
introduce the problem.

Suppose there are M parallel agents, where each agent interacts with the environments independently.
In the concurrent RL problem, each agent finishes an episode simultaneously, so that there are M
episodes done per concurrent round. The agents can only exchange experience and update their
policies at the end of each round. The goal is to find an e-optimal policy using the minimum number
of rounds, which we also refer to as the number of concurrent episodes.

In Algorithm 2] we present the details of the concurrent UCB-ADVANTAGE algorithm. The idea
is to simulate the single-agent UCB-ADVANTAGE by treating the M episodes finished in a single
round as M consecutive episodes (without policy change) in the single-agent setting. We collect the
trajectories and feed them to the single-agent UCB-ADVANTAGE. When an update is triggered in the
single-agent UCB-ADVANTAGE during an episode, we update the ()-function (as well as the value
function) and discard the trajectories left in the round.

We now prove Corollary [3] that shows the performance of the concurrent UCB-ADVANTAGE.

Proof of Corollary|3| The proof follows the similar lines in the proof of Theorem 5 in [Bai et al.}
2019]. By Theorem |2} the switching cost is at most O( H2S A log( <5<~ <477))» S0 there are at most
K. K. ~ H3SA
H?SAlog —) = O(H*SA
O(H*S O(SAH)+M) O(H*SA + 62M)
concurrent episodes. On the other hand, the regret incurred in the episodes corresponding to K is at

most O(\/ SAH3K.) < K¢, so by randomly choosing an episode index k and selecting m = 5, we
achieve a policy with expected performance at most € below the optimum. [

C.3 Lower Bound of the Sample Complexity

Theorem 20. For any H, S, and A greater than a universal constant, and all € € (0, %] for any
algorithm with input parameter ¢, there exists an episodic MDP with S states, A actions, horizon H
such that, with probability at least 1/2, among the execution history of the algorithm, there are at least
Q(SAH?/e?) episodes in which the corresponding policy m, satisfies that V/*(s¥) — V™ (s¥) > e.
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Algorithm 2 Concurrent UCB-ADVANTAGE

3 SAH
Initialize: Qp(s,a) — H—h+1, k< 1, K, « % (c5 is a large enough universal
constant).
for concurrent episodes k = 1,2,3,... do

All agents follow the same policy 7 where 7y, 5,(s) = argmax, Q (s, a).
fori=1,2,3,...,M do
Collect the trajectory of the i-th agent and feed it to UCB-ADVANTAGE
if an update is triggered then
Update ()-value function following UCB-ADVANTAGE;
break
end if
end for
if The number of trajectories use is greater than or equal to K, then
break
end if
end for

Proof Sketch. Instead of presenting a concrete proof of Theorem [20, we provide the high-level
intuition in the construction and analysis.

Like the regret lower bound analysis in [Jin et al.l [2018]], we consider the special case where
S = A = 2. It does not require too much difficulty to generalize to arbitrary .S and A. Also, we will
use almost the same hard instance as constructed in the proof of Theorem 3 in [Jin et al., 2018]].

We recall the structure of “JAO MDP” in [Jaksch et al., 2010]]. There are two states in the MDP,
named s and s;. The rewards are defined as r(sg,a) = 0 and r(s1,a) = 1 for any a and the
transition probabilities are defined as P(:|s1,a) = [6,1—48]T,Va, P(:|sg,a) = [1—6,8]T,Va # a*
and P(-|sg,a*) = [l — 6 —€,6 + €] . Clearly the optimal action for state s is a*. Let § < 3 be
fixed. By the lower bound of [Jaksch et al.,[2010], there exists a constant c5 > 0, such that for any
e € (0, g) it costs at least c5 - E% observations to identify a* with non-trivial probability.

By connecting H JAO MDPs with different optimal actions layer by layer, we get an episodic MDP

with horizon H. We choose § = % to ensure that the MDP is well-mixed for h > L. For any

2
€ < % = g and h > % the agent reaches s( in the h-th layer with at least constant probability.
If there are at least % layers in which the agent can not identify a*, then the agent makes Q(H)
mistakes in the range h € [£, 2], Because each mistake for h € [Z, 32 ] leads to Q(¢H) regret

, the expected regret incurred during one episode is (e H?). As a result, if the total number of
observations is less than 658H . e% (i.e., number of episodes less than ¢ - e%), the expected regret
per episode is (e H?). Replacing € by eH?, we have that for the first ©(§H*/e?) = O(H?3/e?)
episodes, the expected regret per episode is 2(€). The proof is then completed by applying Markov’s
inequality.

O
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