
Reviewer 1. We appreciate R1’s recognition of the novelty of our contribution to MARL and the potential impact on a1

range of problems. We address R1’s two concerns below. Regarding our chosen baselines, we note that baselines2

we include represent three major existing categories: 1) policy gradient and actor-critic with discrete or continuous3

“give-reward” actions are direct applications of conventional RL (which have been applied to multi-agent incentivization4

in recent work (Lupu et al. 2020)); 2) LOLA is an archetype of second-order approaches; 3) Inequity Aversion (IA)5

draws domain knowledge from models in evolutionary biology and sociology to alter individual rewards. Hence we6

believe the existing baselines allow for fair benchmarking of our new approach. While Social Influence (Jaques et7

al. 2019) does not have open-source code, we can make an indirect comparison by noting that IA reaches a score8

around 250 by 1.6 × 108 steps (Figure 3a in IA (Hughes et al. 2018)), outperforming Social Influence that reaches9

score of 200 by 3 × 108 steps (Figure 1a in Jaques et al. 2019) in the original Cleanup map with 5 agents. Hence,10

the fact that LIO outperforms IA in our experiments implies that LIO compares favorably with Social Influence.11

Figure 1: Escape Room
(N = 5,M = 3)

We clarify that LIO technically does not involve a second-order gradient, as the gradients12

are w.r.t. separate parameters θ (policy) and η (incentive function). Regarding scalability,13

we clarify that the bi-level optimization does not necessarily imply difficulty in scaling14

up, because the learning of incentives is conducted in a pairwise manner: in equation15

(7) for a fixed reward-giver agent i, each term of the summation corresponds to the pair16

(i, j) for recipient j 6= i. Figure 1 shows that LIO attains the global optimum collective17

reward of 17 (= 2× 10− 3) in the Escape Room game with N = 5 agents, out of which18

M = 3 agents are incentivized to cooperate despite penalties of −1 each. Scaling up to19

large populations poses new questions regarding population-level phenomenon (such as20

social norms) that modulate the impact of incentives; we leave this to future work.21

Reviewer 2. We appreciate R2’s positive feedback on our quantitative results and we are glad that our behavioral22

analysis of the learned incentive functions provided insight. We believe this work is a suitable contribution to the23

NeurIPS community, in addition to the broad area of multi-agent learning, as we tackle the open question of emergent24

cooperation from decentralized learning charted out in Hughes et al. (NeurIPS 2018) by building on general meta-25

gradient methods (Xu et al., NeurIPS 2018). In our revision, we will elaborate on the wide range of new research26

questions generated by our work, including theoretical analysis of dynamically-changing incentive functions, new27

population-level effects in a scaled up context, and adaptive ways to account for the currency of incentives. Regarding28

Figure 6b where the agent gives nonzero reward for “fire cleaning beam but miss” after 40k steps, one reason is that the29

agent’s actual partner in training already converged to the behavior of consistently cleaning waste successfully (LIO in30

Figure 6a), so it may have “forgotten” the difference between successful and unsuccessful usage of the cleaning beam.31

As demonstrated more clearly in the Escape Room results (e.g. Figures 5b and 5d), this can be avoided by choosing a32

sufficiently large lower bound on the exploration rate by all agents, so that all agents pose the risk of deviating from33

cooperative behavior, which forces LIO to maintain correct incentivization.34

Reviewer 3. We thank R3 for recognizing our contribution to the general class of opponent-shaping algorithms. We35

address each concern as follows. 1) Our definition of “decentralized” focuses solely on the inability to optimize social36

welfare directly, which is the crux of social dilemmas, and which holds regardless of access to the global state (e.g.,37

Prisoner’s Dilemma is fully observable). Hence our definition does not mention the degree of observability. 2) We38

explain in Appendix A that the coefficient α in the cost for incentivization is indeed an important hyperparameter39

and provide intuition for how to choose it in practice. We agree that a sweep over α can provide more insight. More40

broadly, we believe there is room to develop an adaptive scheme to trade off between small α, which allows time to41

learn the effect of incentives, and large α, which penalizes redundant incentivization. 3) In Figure 5d, by episode 50k,42

the cooperator still receives nonzero incentives between 0.5 and 1, but the winner’s received incentives has noticeably43

converged to zero. 4) We became aware of Hostallero et al. (AAMAS 2020) after submission, and we believe there is a44

crucial methodological difference from our work. They use the temporal difference error of agent k’s Q-function to45

modify the rewards of k’s peers, so that those peer agents have incentive to take actions that lead to more favorable46

reward than average for agent k. This is a passive approach from agent k’s viewpoint, and is closer to the method in47

Hughes et al. (2018), since each agent’s original reward is modified by a hand-designed function based on other agents’48

performance. In contrast, a LIO agent actively differentiates through the recipient’s learning step to update the learned49

incentive function, which it uses to change the recipient’s total reward. We will include this in the revision.50
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