
A Further discussion

A.1 Cost for incentivization

We justify the way in which LIO accounts for the cost of incentivization as follows. Recall that
this cost is incurred in the objective for LIO’s incentive function (see (5) and (6)), instead of being
accounted in the total reward (1) that is maximized by LIO’s policy. Fundamentally, the reason is that
the cost should be incurred only by the part of the agent that is directly responsible for incentivization.
In LIO, the policy and incentive function are separate modules: while the former takes regular actions
to maximize external rewards, only the latter produces incentives that directly and actively shape the
behavior of other agents. The policy is decoupled from incentivization, and it would be incorrect to
penalize it for the behavior of the incentive function. Instead, we need to attribute the cost directly to
the incentive function parameters via (6). From a more intuitive perspective, LIO is constructed with
the knowledge that it can perform two fundamentally different behaviors—1) take regular actions
that affect the Markov game transition, and 2) give incentives to shape other agents’ learning—and it
knows not to penalize the former behavior with the latter behavior. In contrast, if one were to augment
conventional RL with reward-giving actions (as we do for baselines in Section 4.2), then the cost for
incentivization should indeed be accounted by the policy. One may consider other mechanisms for
cost, such as budget constraints [27].

In our experiments, we find the coefficient α in the cost for incentivization is a sensitive parameter.
At the beginning of training, (6) immediately drives the magnitude of incentives to zero. However,
both the reward-giver and recipients require sufficient time to learn the effect of incentives, which
means that too large an α would lead to the degenerate result of rηi = 0. On the other extreme,
α = 0 means there is no penalty and may result in profligate incentivization that serves no useful
purpose. While we found that values of 10−3 and 10−4 worked well in our experiments, one may
consider adaptive and dynamic computation of α for more efficient training.

B Analysis in Iterated Prisoner’s Dilemma

Proposition 1. Two LIO agents converge to mutual cooperation in the Iterated Prisoner’s Dilemma.

Proof. We prove this by deriving closed-form expressions for the updates to parameters of policies
and incentive functions. These updates are also used to compute the vector fields shown in Figure 2.
Let θi for i ∈ {1, 2} denote each agent’s probability of taking the cooperative action. Let η1 :=
[η1C , η

1
D] ∈ R2 denote Agent 1’s incentive function, where the values are given to Agent 2 when it

takes action a2 = C or a2 = D. Similarly, let η2 denote Agent 2’s incentive function. The value
function for each agent is defined by

V i(θ1, θ2) =

∞∑
t=0

γtpT ri =
1

1− γ
pT ri ,

where p =
[
θ1θ2, θ1(1− θ2), (1− θ1)θ2, (1− θ1)(1− θ2)

]
.

(11)

The total reward received by each agent is
r1 =

[
−1 + η2C ,−3 + η2C , 0 + η2D,−2 + η2D

]
, (12)

r2 =
[
−1 + η1C , 0 + η1D,−3 + η1C ,−2 + η1D

]
. (13)

Agent 2 updates its policy via the update

θ̂2 = θ2 + α∇θ2V 2(θ1, θ2)

= θ2 +
α

1− γ
∇θ2

(
θ1θ2(−1 + η1C) + θ1(1− θ2)η1D

+ (1− θ1)θ2(−3 + η1C) + (1− θ1)(1− θ2)(−2 + η1D)
)

= θ2 +
α

1− γ
(
η1C − η1D − 1

)
,

(14)

and likewise for Agent 1:

θ̂1 = θ1 +
α

1− γ
(
η2C − η2D − 1

)
. (15)

13

Figure 7: Vector fields showing the probability of recipient cooperation versus incentive value given
for cooperation (top row) and defection (lower row). Each plot has a fixed value for the incentive
given for the other action.

Let p̂ denote the joint action probability under updated policies θ̂1 and θ̂2, and let ∆2 := (η1C − η1D −
1)α/(1− γ) denote Agent 2’s policy update. Agent 1 updates its incentive function parameters via

η1 ← η1 + β∇η1
1

1− γ
p̂T r1

= η1 +
β

1− γ
∇η1

[
θ̂1(θ2 + ∆2)(−1 + η2C) + θ̂1(1− θ2 −∆2)(−3 + η2C)

+(1− θ̂1)(θ2 + ∆2)η2D + (1− θ̂1)(1− θ2 −∆2)(−2 + η2D)
]

= η1 +
βα

(1− γ)2
B2

[
1
−1

]
,

(16)

where the scalar B2 is

B2 = θ̂1(−1 + η2C)− θ̂1(−3 + η2C) + (1− θ̂1)η2D − (1− θ̂1)(−2 + η2D) = 2 . (17)

By symmetry, with B1 = 2, Agent 2 updates its incentive function via

η2 ← η2 +
βα

(1− γ)2
B1

[
1
−1

]
. (18)

Note that each ηi is updated so that ηiC increases while ηiD decreases. Referring to (14) and (15),
one sees that the updates to incentive parameters lead to updates to policy parameters that increase
the probability of mutual cooperation. This is consistent with the viewpoint of modifying the Nash
Equilibrium of the payoff matrices. With incentives, the players have payoff matrices in Table 2. For
CC to be the global Nash Equilibrium, such that cooperation is preferred by an agent i regardless of
the other agent’s action, incentives must satisfy ηiC − ηiD − 1 > 0. This is guaranteed to occur by
incentive updates (16) and (18).

Table 2: Payoff matrices for row player (left) and column player (right) with incentives.
A1 C D
C -1 + η2C -3 + η2C
D 0 + η2D -2 + η2D

A2 C D
C -1 + η1C 0 + η1D
D -3 + η1C -2 + η1D

C Derivations

The factor∇θ̂jJ
i(τ̂ i, θ̂) (9) in the incentive function’s gradient (7) is derived as follows. For brevity,

we will drop the “hat” notation—recall that it indicates a quantity belongs to a new trajectory after a
regular policy update—as all quantities here have “hats”. Let ∇j denote ∇θ̂j and π denote π(at|st).
Let V i,π(s) and Qi,π(s,a) denote the global value and action-value function for agent i’s reward

14

under joint policy π. Then the gradient of agent i’s expected extrinsic return with respect to agent j’s
policy parameter can be derived in a similar manner as standard policy gradients [38]:

∇jJ i(τ,θ) = ∇jV i,π(s0) = ∇j
∑
a

π(a|s0)Qi,π(s0,a)

=
∑
a

π−j
(
(∇jπj)Qi,π(s0,a) + πj∇jQi,π(s0,a)

)
=
∑
a

π−j

(
(∇jπj)Qi,π + πj∇j

(
ri + γ

∑
s′

P (s′|s0,a)V i,π(s′)

))

=
∑
a

π−j

(
(∇jπj)Qi,π + γπj

∑
s′

P (s′|s0,a)∇jV i,π(s′)

)

=
∑
x

∞∑
k=0

P (s0 → x, k,π)γk
∑
a

π−j∇jπjQi,π(x,a)

=
∑
s

dπ(s)
∑
a

π−j∇jπjQi,π(s,a)

=
∑
s

dπ(s)
∑
a

π−jπj∇j log πjQi,π(s,a)

= Eπ

[
∇j log πj(aj |s)Qi,π(s,a)

]
Alternatively, one may rely on automatic differentiation in modern machine learning frameworks [1]
to compute the chain rule (7) via direct minimization of the loss (10). This is derived as follows. Let
the notation 6= j, i denote all indices except j and i. Note that agent i’s updated policy π̂i is not a
function of ηi, as it does not receive incentives from itself. Recall that a recipient j’s updated policy
π̂j has explicit dependence on a reward-giver i’s incentive parameters ηi. Also note that

∇ηi π̂−i =
∑
j 6=i

(∇ηi π̂j)π̂ 6=j,i

by the product rule. Then we have:

∇ηiJ i(τ̂ i, θ̂) = ∇ηiV i,π̂(ŝ0) = ∇ηi
∑
â

π̂i(âi|ŝ0)π̂−i(â−i|ŝ0)Qi,π̂(ŝ0, â)

=
∑
â

π̂i

∑
j 6=i

(∇ηi π̂j)π̂ 6=j,iQi,π̂ + π̂−i∇ηiQi,π̂
 (by the remarks above)

=
∑
â

π̂i

∑
j 6=i

(∇ηi π̂j)π̂ 6=j,iQi,π̂ + γπ̂−i
∑
s′

P (s′|ŝ0, â)∇ηiV i,π̂(s′)


=
∑
x

∞∑
k=0

P (s0 → x, k, π̂)γk
∑
â

π̂i
∑
j 6=i

(∇ηi π̂j)π̂ 6=j,iQi,π̂

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂i
∑
j 6=i

π̂j(∇ηi log π̂j)π̂ 6=j,iQi,π̂

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂i
∑
j 6=i

(∇ηi log π̂j)π̂−iQi,π̂

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂
∑
j 6=i

(∇ηi log π̂j)Qi,π̂ = Eπ̂

∑
j 6=i

(∇ηi log π̂j)Qi,π̂


Hence descending a stochastic estimate of this gradient is equivalent to minimizing the loss in (10).

15

D Experiments

D.1 Environment details

This section provides more details on each experimental setup.

IPD. We used the same definition of observation, action, and rewards as Foerster et al. [12]. Each
environment step is one round of the matrix game. Each agent observes the joint action taken by both
agents at the previous step, along with an indicator for the first round of each episode. We trained for
60k episodes, each with 5 environments steps, which gives the same total number of environment
steps used by LOLA [12].

Escape Room. Each agent observes all agents’ positions and can move among the three available
states: lever, start, and door. At every time step, all agents commit to and disclose their chosen
actions, compute the incentives based on their observations of state and others’ actions (only for LIO
and augmented baselines that allow incentivization), and receive the sum of extrinsic rewards and
incentives (if any). LIO and augmented baselines also observe the cumulative incentives given to
the other agents within the current episode. An agent’s individual reward is zero for staying at the
current state, -1 for movement away from its current state if fewer than M agents move to (or are
currently at) the lever, and +10 for moving to (or staying at) the door if ≥M agents pull the lever.
Each episode terminates when an agent successfully exits the door, or when 5 time steps elapse.

Cleanup. We built on a version of an open-source implementation [40]. The environment settings
for 7x7 and 10x10 maps are given in Table 3. To focus on the core aspects of the common-pool
resource problem, we removed rotation actions, set the orientation of all agents to face “up”, and
disabled their “tagging beam” (which, if used, would remove a tagged agent from the environment
for a number of steps). These changes mean that an agent must move to the river side of the map to
clear waste successfully, as it cannot simply stay in the apple patch and fire its cleaning beam toward
the river. Acting cooperatively as such would allow other agents to collect apples, and hence our
setup increases the difficulty of the social dilemma. Each agent receives an egocentric normalized
RGB image observation that spans a sufficiently large area such that the entire map is observable
by that agent regardless of its position. The cleaning beam has length 5 and width 3. For LIO and
the AC-c baseline, which have a separate module that observes other agents’ actions and outputs
real-valued incentives, we let that module observe a multi-hot vector that indicates which agent(s)
used their cleaning beam.

Table 3: Environment settings in Cleanup
Parameter 7x7 10x10

appleRespawnProbability 0.5 0.3
thresholdDepletion 0.6 0.4
thresholdRestoration 0.0 0.0
wasteSpawnProbability 0.5 0.5
view_size 4 7
max_steps 50 50

D.2 Implementation

This subsection provides more details on implementation of all algorithms used in experiments. We
use fully-connected neural networks for function approximation in the IPD and ER, and convolutional
networks to process image observations in Cleanup. The policy network has a softmax output for
discrete actions in all environments. Within each environment, all algorithms use the same neural
architecture unless stated otherwise. We applied the open-source implementation of LOLA [12]
to ER. We use an exploration lower bound ε that maps the learned policy π to a behavioral policy
π̃(a|s) = (1− ε)π(a|s) + ε/|A|, with ε decaying linearly from εstart to εend by εdiv episodes. We use
discount factor γ = 0.99. We use gradient descent for policy optimization, the Adam optimizer [22]
for training value functions (in Cleanup), and Adam optimizer for LIO’s incentive function.

The augmented policy gradient and actor-critic baselines, labeled as PG-c and AC-c, which have
continuous “give-reward” actions in addition to regular discrete actions, are trained as follows. These

16

baselines have an augmented action space A× RN−1 and learns a factorized policy π(ad, ar|o) :=
π(ad|o)π(ar|o), where ad ∈ A is a regular discrete action and ar ∈ RN−1 is the reward given to
the other N − 1 agents. The factor π(ad|o) is a standard categorical distribution conditioned on
observation. The factor π(ar|o) is defined via an element-wise sigmoid σ(·) applied to samples from
a multivariate diagonal Gaussian, so that π(ar|o) is bounded. Specifically, we let u ∼ N (fη(o),1),
where fη(o) : O 7→ RN−1 is a neural network with parameters η, and let ar = Rmaxσ(u). By
the change of variables formula, π(ar|o) has density π(ar|o) = N (µη,1)

∏N−1
i=1 (dar[i]/du[i])−1,

which can be used to compute the log-likelihood of π(ad, ar|o) in the policy gradient.

Let β denote the coefficient for entropy of the policy, αθ the policy learning rate, αη the incentive
learning rate, αφ the critic learning rate, and Ra the value of the discrete “give-reward” action.

IPD. The policy network and the incentive function in LIO have two hidden layers of size 16 and 8.

Table 4: Hyperparameters in IPD.
Parameter Value Parameter Value

β 0.1 αθ 1e-3
εstart 1.0 αη 1e-3
εend 0.01 α 0
εdiv 5000 Rmax 3.0

ER. The policy network has two hidden layers of size 64 and 32. LIO’s incentive function has two
hidden layers of size 64 and 16. We use a separate Adam optimizer for the cost part of the incentive
function’s objective (5), with learning rate 1e-4, with αη = 1e-3, and set α = 1.0. Exploration and
learning rate hyperparameters were tuned for each algorithm via coordinate ascent, searching through
εstart in [0.5, 1.0], εend in [0.05, 0.1, 0.3], εdiv in [100, 1000], β in [0.01, 0.1], αθ, αη, and αcost in
[1e-3, 1e-4]. LOLA performed best with learning rate 0.1 and Ra = 2.0, but it did not benefit from
additional exploration. LIO and PG-c have Rmax = 2.0. PG-d used Ra = 2.0.

Table 5: Hyperparameters in Escape Room.
N = 2 N = 3

Parameter LIO PG PG-d PG-c LIO PG PG-d PG-c

β 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.1
εstart 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0
εend 0.1 0.05 0.05 0.1 0.3 0.05 0.05 0.1
εdiv 1e3 1e2 1e2 1e3 1e3 1e2 1e2 1e3
αθ 1e-4 1e-4 1e-4 1e-3 1e-4 1e-4 1e-4 1e-3

Cleanup. All algorithms are based on actor-critic for policy optimization, whereby each agent j’s
policy parameter θj is updated via

θ̂j ← θj + Eπ

[
∇θj log πθj (aj |oj)

(
rj + γVφj (s′)− Vφ̃j (s)

)]
, (19)

and the critic parameter φj is updated by minimizing the temporal difference loss

L(φj) = Es,s′∼π
[(
rj + γVφ̃j (s′)− Vφj (s)

)2]
(20)

The target network [28] parameters φ̃j are updated via φ̃j ← τφj + (1− τ)φ̃j with τ = 0.01.

The policy and value networks have an input convolutional layer with 6 filters of size [3, 3], stride
[1, 1], and ReLU activation. The output of convolution is flattened and passed through two fully-
connected (FC) hidden layers both of size 64. The policy output is a softmax over discrete actions; the
value network has a linear scalar output. LIO’s incentive function uses the same input convolutional
layer, except that its output is passed through the first FC layer, concatenated with its observation of
other agents’ actions, then passed through the second FC layer and finally to a linear output layer.
Inequity Aversion agents [18] have an additional 1D vector observation of all agents’ temporally

17

start lever0 0

-1

-1

(a) Agent A2 incurs an extrinsic
penalty for any change of state.

start door-1 -1

-1

-1

(b) Agent A1 is penalized at every
step if A2 does not pull the lever.

start door-1 +10

+10

-1

(c) A1 get +10 at the door if A2
pulls the lever.

Figure 8: Asymmetric Escape Room game involving two agents, A1 and A2. (a) In the absence
of incentives, A2’s optimal policy is to stay at the start state and not pull the lever. (b) Hence A1
cannot exit the door and is penalized at every step. (c) A1 can receive positive reward if it learns to
incentivize A2 to pull the lever. Giving incentives is not an action depicted here.

smoothed rewards—this is concatenated with the output of the first FC hidden layer and sent to the
second FC layer. Entropy coefficient was held at 0.1 for all methods.

LIO and AC-c haveRmax = 2.0. AC-d usedRa = 2.0. Inequity aversion agents have disadvantageous
aversion coefficient value 0, advantageous aversion coefficient value 0.05, and temporal smoothing
parameter λ = 0.95. We use critic learning rate αφ = 10−3 for all methods. LIO used αη =1e-3
and cost coefficient α = 10−4. Exploration and learning rate hyperparameters were tuned for each
algorithm via coordinate ascent, searching through εstart in [0.5, 1.0], εend in [0.05, 0.1], εdiv in [100,
1000, 5000], αθ, αη , and αcost in [1e-3, 1e-4].

Table 6: Hyperparameters in Cleanup.
7x7 10x10

Parameter LIO AC AC-d AC-c IA LIO AC AC-d AC-c IA

εstart 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
εend 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
εdiv 100 100 100 100 1000 1000 5000 1000 1000 5000
αθ 1e-4 1e-3 1e-4 1e-4 1e-3 1e-4 1e-3 1e-3 1e-3 1e-3

E Additional results

E.1 Asymmetric Escape Room

We conducted additional experiments on an asymmetric version of the Escape Room game between
two learning agents (A1 and A2) as shown in Figure 8. A1 gets +10 extrinsic reward for exiting
a door and ending the game (Figure 8c), but the door can only be opened when A2 pulls a lever;
otherwise, A1 is penalized at every time step (Figure 8b). The extrinsic penalty for A2 discourages it
from taking the cooperative action (Figure 8a). The global optimum combined reward is +9, and it is
impossible for A2 to get positive extrinsic reward. Due to the asymmetry, A1 is the reward-giver and
A2 is the reward recipient for methods that allow incentivization. Each agent observes both agents’
positions, and can move between the two states available to itself. We allow A1 to observe A2’s
current action before choosing its own action, which is necessary for methods that learn to reward
A2’s cooperative actions. We use a standard policy gradient for A2 unless otherwise specified.

In addition to the baselines described for the symmetric case—namely, policy gradient (PG-rewards)
and LOLA with discrete “give-reward” actions—we also compare with a two-timescale method,
labeled 2-TS. A 2-TS agent has the same augmented action space as the PG-rewards baseline, except
that it learns over a longer time horizon than the reward recipient. Each “epoch” for the 2-TS agent
spans multiple regular episodes of the recipient, during which the 2-TS agent executes a fixed policy.
The 2-TS agent only caries out a learning update using a final terminal reward, which is the average
extrinsic rewards it gets during test episodes that are conducted at the end of the epoch. Performance
on test episodes serve as a measure of whether correct reward-giving actions were taken to influence
the recipient’s learning during the epoch. To our knowledge, 2-TS is a novel baseline but has key
limitations: the use of two timescales only applies to the asymmetric 2-player game, and requires fast
learning by the reward-recipient, chosen to be a tabular Q-learning, to avoid intractably long epochs.

18

0 1 2 3 4 5
Episode 1e4

4
2
0
2
4
6
8

Co
m

bi
ne

d
re

tu
rn

PG
PG-rewards
2-TS
LOLA
LIO

(a) Sum of agent rewards

0 1 2 3 4 5
Episode 1e4

0.4
0.2
0.0
0.2
0.4
0.6
0.8

No
rm

al
ize

d
re

tu
rn Agent 1

Agent 2

(b) Two PG agents

0 1 2 3 4 5
Episode 1e4

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
re

tu
rn

Agent 1
Agent 2

(c) LIO (A1) and PG agent
(A2)

0 1 2 3 4 5
Episode 1e4

0.45

0.50

0.55

0.60

0.65

No
rm

al
ize

d
re

tu
rn

Agent 1
Agent 2

(d) 1-episode LIO and PG
agent

Figure 9: Results in asymmetric 2-player Escape Room. (a) LIO (paired with PG) converges rapidly
to the global optimum, 2-TS (paired with tabular Q-learner) converges slower, while policy gradient
baselines could not cooperate. (b) Two PG agents cannot cooperate, as A2 converges to “do-nothing”.
(c) A LIO agent (A1) attains near-optimum reward by incentivizing a PG agent (A2). (d) 1-episode
LIO has larger variance and lower performance. Normalization factors are 1/10 (A1) and 1/2 (A2).

Figure 9 shows the sum of both agents’ rewards for all methods on the asymmetric 2-player game,
as well as agent-specific performance for policy gradient and LIO, across training episodes. A LIO
reward-giver agent paired with a policy gradient recipient converges rapidly to a combined return
near 9.0 (Figure 9a), which is the global maximum, while both PG and PG-rewards could not escape
the global minimum for A1. LOLA paired with a PG recipient found the cooperative solution in
two out of 20 runs; this suggests the difficulty of using a fixed incentive value to conduct opponent
shaping via discrete actions. The 2-TS method is able to improve combined return but does so much
more gradually than LIO, because an epoch consists of many base episodes and it depends on a
highly delayed terminal reward. Figure 9b for two PG agents shows that A2 converges to the policy
of not moving (reward of 0), which results in A1 incurring penalties at every time step. In contrast,
Figure 9c verifies that A1 (LIO) receives the large extrinsic reward (scaled by 1/10) for exiting the
door, while A2 (PG) has average normalized reward above -0.5 (scaled by 1/2), indicating that it is
receiving incentives from A1. Average reward of A2 (PG) is below 0 because incentives given by A1
need not exceed 1 continually during training—once A2’s policy is biased toward the cooperative
action in early episodes, its decaying exploration rate means that it may not revert to staying put even
when incentives do not overcome the penalty for moving. Figure 9d shows results on a one-episode
version of LIO where the same episode is used for both policy update and incentive function updates,
with importance sampling corrections. This version performs significantly lower for A1 and gives
more incentives than is necessary to encourage A2 to move. It demonstrates the benefit of learning
the reward function using a separate episode from that in which it is applied.

E.2 Symmetric Escape Room

Figure 10 shows total reward (extrinsic + received - given incentives), counts of “lever” and “door”
actions, and received incentives in one training run each for ER(2,1) and ER(3,2). In Figure 10a, A1
becomes the winner and A2 the cooperator. It is not always necessary for A1 to give rewards. The
fact that LIO models the learning updates of recipients may allow it to find that reward-giving is un-
necessary during some episodes when the recipient’s policy is sufficiently biased toward cooperation.
In Figure 10b, A3 converges to going to the door, as it incentives A1 and A2 to pull the lever.

0.0

5.0

10.0

Re
wa

rd

0.0

1.0

Le
ve

r

0 2 4
1e4

0.0

2.0

Do
or

0 2 4
1e4

0.0

2.0

Re
ce

iv
ed

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Agent 1 Agent 2

Episode

(a) ER(2,1)

0.0

10.0

Re
wa

rd

0.0

1.0

2.0

Le
ve

r

0.0 0.5
1e5

0.0

2.0

4.0

Do
or

0.0 0.5
1e5

0.0

5.0

Re
ce

iv
ed

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Agent 1 Agent 2 Agent 3

Episode

(b) ER(3,2) (c) ER(5,3)

Figure 10: (a,b) Individual actions and incentives in ER(2,1) and ER(3,2). (c) LIO converges to the
global optimum in ER(5,3).

19

(a) Division of labor (b) AC agents compete

0.0

50.0

Cleaner

0 1 2 3 4 5
1e4

0.0

50.0

Harvester
River
Beam
Cleared

Re
ce

iv
ed

 in
ce

nt
iv

es

Episode

(c) Cleaner’s incentives

0

50

100 0k 20k 40k 60k

R C M0

50

100 80k

R C M

100k

R C M

120k

R C M

140k

Re
ce

iv
ed

 in
ce

nt
iv

es

(d) 10x10 map

Figure 11: (a) In 7x7 Cleanup, one LIO agent learns to focus on cleaning waste, as it receives
incentives from the other who only collects apple. (b) In contrast, AC agents compete for apples after
cleaning. (c) Incentives received during training on 7x7 Cleanup. (d) Behavior of incentive function
against scripted opponent policies on 10x10 map.

E.3 Cleanup

Figure 11a is a snapshot of the division of labor found by two LIO agents, whereby the blue agent
picks apples while the purple agent stays on the river side to clean waste. The latter does so because
of incentives from the former. In contrast, Figure 11b shows a time step where two AC agents
compete for apples, which is jointly suboptimal. Figure 11c shows the received incentives during
training in the 7x7 map, for each of two LIO agents that were classified after training as a “Cleaner”
or “Harvester”. Figure 11d shows the incentives given by a “Harvester” agent to three scripted agents
during each training checkpoint.

Agents with hand-designed intrinsic rewards based on social influence [21] also outperform standard
RL agents on Cleanup. We can make an indirect comparison to [21] by noting that IA reaches a score
around 250 by 1.6× 108 steps [18, Figure 3a], which outperforms the score of 200 attained by Social
Influence at 3 × 108 steps [21, Figure 1a] in the original Cleanup map with 5 agents. Hence, the
fact that LIO outperforms IA in our experiments suggests that LIO compares favorably with Social
Influence, provided that LIO uses the same RL algorithm as the latter for policy optimization.

20

