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Abstract

Conditional estimation given specific covariate values (i.e., local conditional estima-
tion or functional estimation) is ubiquitously useful with applications in engineer-
ing, social and natural sciences. Existing data-driven non-parametric estimators
mostly focus on structured homogeneous data (e.g., weakly independent and sta-
tionary data), thus they are sensitive to adversarial noise and may perform poorly
under a low sample size. To alleviate these issues, we propose a new distribution-
ally robust estimator that generates non-parametric local estimates by minimizing
the worst-case conditional expected loss over all adversarial distributions in a
Wasserstein ambiguity set. We show that despite being generally intractable, the
local estimator can be efficiently found via convex optimization under broadly
applicable settings, and it is robust to the corruption and heterogeneity of the data.
Experiments with synthetic and MNIST datasets show the competitive performance
of this new class of estimators.

1 Introduction

We consider the estimation of conditional statistics of a response variable, Y € R™, given the value
of a predictor or covariate X € R™. The single most important instance of these types of problems
involves estimating the conditional mean, or also known as the regression function. Under finite
variance assumptions, the conditional mean Ep[Y| X = x] is technically defined as 1)* () for some
measurable function ©* that solves the minimum mean square error problem

min e[| — v (X)|3]

where the minimization is taken over the space of all measurable functions from R" to R". While
the optimal solution t* is unique up to sets of P-measure zero, unfortunately, solving for ¢* is
challenging because it is an infinite-dimensional optimization problem. The regression function ¢*
can be efficiently found only under specific settings, for example, if one assumes that (X, Y") follows
a jointly Gaussian distribution. However, these specific situations are overly restrictive in practice.

In order to bypass the infinite-dimensional challenge involved in directly computing 1*, we may
instead consider a family of optimization problems that are parametrized by xy. More specifically,
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in the presence of a regular conditional distribution, the conditional mean Ep[Y |X = z¢] can be
estimated pointwise by J defined as

B € argmin Ep[[Y - BIBIX = a0

for any covariate value zo of interest. This presents the challenge of effectively accessing the
conditional distribution, which is particularly difficult if the event X = x¢ has P-probability zero.

Using an analogous argument, if we are interested in the conditional (7 x 100%)-quantile of Y given
X, then this conditional statistics can be estimated pointwise at any location x( of interest by

B € arg mﬁin Epmax{—7(Y = 3),(1 —7)(Y — )} X = x¢].

The previous examples illustrate that the estimation of a wide range of conditional statistics can be
recast into solving a family of finite-dimensional optimization problems parametrically in x

mﬁin EPM(Y, ﬁ)|X = LC()] (1)

with an appropriately chosen statistical loss function ¢.

Problem poses several challenges, some of which were alluded to earlier. First, it requires the
integration with respect to a difficult to compute conditional probability distribution. Second, the
probability measure P is generally unknown, hence we lack a fundamental input to solve (I). Finally,
in a data-driven setting, there may be few, or even no, observations with value covariate X = x.

To alleviate these difficulties, our formulation, as we shall explain, involves two features. First, we
consider a relaxation of problem in which the event X = z is replaced by a neighborhood
Nw(xo) of a suitable radius v > 0 around z(. Second, we introduce a data-driven distributionally
robust optimization (DRO) formulation (e.g. [8, 15 121]]) in order to mitigate the problem that P is
unknown. In turn, the DRO formulation involves a novel class of conditional ambiguity set which
copes with the underlying conditional distribution being unknown.

In particular, we propose the following distributionally robust local conditional estimation problem

min sup Eq [€(Y7 BX € ./\/:,(xo)], )
B QeBz,Q(XEN, (20))>0

where the maximization is taken over all probability measures Q that are within p distance in the
oo-Wasserstein sense of a benchmark nominal model, which often corresponds to the empirical
distribution of available data. The probability measures Q are constrained so that Q(X € N, (z)) >
0 to eliminate the complication of conditioning on a set of measure zero.

Contributions. Resting on formulation , our main contributions are summarized as follows.

1. We introduce a novel paradigm of non-parametric local conditional estimation based on distribu-
tionally robust optimization. In contrast to classical non-parametric conditional estimators, our
new class of estimators are endowed by design with robustness features. They are structurally
built to mitigate the impact of model contamination and therefore they may be reasonably applied
to heterogeneous data (e.g., non i.i.d. input).

2. We demonstrate that when the ambiguity set is a type-oco Wasserstein ball around the empirical
measure, the proposed min-max estimation problem can be efficiently solved in many applicable
settings, including notably the local conditional mean and quantile estimation.

3. We show that this class of type-oo Wasserstein local conditional estimators can be considered as a
systematic robustification of the k-nearest neighbor estimator. We also provide further insights on
the statistical properties of our approach and empirical evidence, with both a synthetic and real
data sets, that our approach can provide more accurate estimations in practically relevant settings.

Related work. One can argue that every single prediction task in machine learning ultimately
relates to conditional estimation. So, attempting to provide a full literature survey on non-parametric
conditional estimation is an impossible task. Since our contribution is primarily on introducing a
novel conceptual paradigm powered by DRO, we focus on discussing well-understood estimators
that encompass most of the conceptual ideas used to mitigate the challenges exposed earlier.



The challenges of conditioning on zero probability events and the fact that zy may not be a part of the
sample are addressed based on the idea of averaging around a neighborhood of the point of interest
and smoothing. This gives rise to estimators such as k-NN (see, for example, [9]), and kernel density
estimators, including, for instance the Nadaraya-Watson estimator ([28l [38]) and the Epanechnikov
estimator [[10], among others. Additional averaging methods include, for example, random forests [6]]
and Classification and Regression Trees (CARTS, [[7]), see also [16]] for other techniques.

These averaging and smoothing ideas are well understood, leading to the optimal selection (in a
suitable sense) of the kernel along with the associated tuning parameters such as the bandwidth size.
These choices are then used to deal with the ignorance of the true data generating distribution by
assuming a certain degree of homogeneity in the data, such as stationarity and weak dependence, in
order to guarantee consistency and recovery of the underlying generating model. However, none of
these estimators are directly designed to cope with the problem of general (potentially adversarial)
data contamination.

The later issue revolving around the evaluation of an unknown conditional probability model is
connected with robustness, another classical topic in statistics [17]. Much of the classical literature
on robustness focuses on the impact of outliers. The work of [41] studies robust-against-outliers
kernel regression which enjoys asymptotic consistency and normality under i.i.d. assumptions in a
setting where the data contamination becomes negligible. In contrast to this type of contamination,
our estimators are designed to be min-max optimal in the DRO sense by supplying the best response
against a large (non-parametric) class of adversarial contamination.

Our results can also be seen as connected to adversarial training, which has received a significant
amount of attention in recent years [[15} 22} 2535} 33| 131]]. Existing robustification of the nearest
neighbors and of the nonparametric classifiers in general can be streamlined into two main strategies:
i) global approaches that modify the whole training dataset, e.g., adversarial pruning [37, 40, 4],
and ii) local approaches that study well-crafted attack and seek appropriate defense for specific
classifiers such as 1-NN [20), 136, 24]. Following this line of ideas, one can interpret our approach
as a novel method to train conditional estimators against adversarial attacks. The difference, in the
k-NN estimation setting for example, is that our attacks are optimal in a distributional sense. Our
proposed estimator is thus provably the best for a uniform class of distributional attacks. Compared
to the current literature, we believe that our approach is also more general in two significant ways:
first, we start from a generic min-max estimation problem, and our ideas and methodology are easily
applicable to other non-parametric settings, and second, we allow for perturbations on Y to hedge
against label contamination.

DRO-based estimators have generated a great deal of interest because they possess various desir-
able properties in connection to various forms of regularization (e.g., variance [29]]; norm [32];
shrinkage [30]). The tools that we employ are related to those currently being investigated. Our
formulation considers adversarial perturbations based on the Wasserstein distance [26} |5} 13} 21]]. In
particular, the type-oco Wasserstein distance [14] is recently applied in DRO formulations [[1} 3} 39].
In particular, the work of [2]] considers adversarial conditional estimation, taking as input various
classical estimators (e.g., k-NNs, kernel methods, etc.) and proposes a robustification approach
considering only perturbation in the response variable. Our method whereas allows perturbations
both to the covariate and response variables, which is technically more subtle because of the local
conditioning problem. Within the £-NN DRO conditional robustification, our numerical experiments
in Section 4] show substantial benefits of our local conditioning approach, especially in dealing with
non-homogeneity and sharp variations in the underlying density. Our proposed framework is also
relevant to the emerging stream of decision making with side information, where recent approaches
rely on sample average approximation [[19]], decision forests [18] and probability trimmings [[11].

Notations. For any integer M € N, we denote by [M] the set {1, ..., M }. For any set S, M(S) is
the space of all probability measures supported on S.

2 Local Conditional Estimate using Type-oo Wasserstein Ambiguity Set

We start by delineating the building blocks of our distributionally robust estimation problem (2). The
nominal measure is set to the empirical distribution of the available data, P = N ! Zie[ N] 0(Z:,5:)



where 6z ) represents the Dirac distribution at (7, y). The ambiguity set BJ° is a Wasserstein ball
around [P that contains the true distribution P with high confidence.

Definition 2.1 (Wasserstein distance). Let D be a metric on Z. The type-p (1 < p < +00)
Wasserstein distance between Q; and Qs is defined as

W, (Q1, Q@) 2 inf { (Ex[D(&,6)7]) " : 7 € T(Q1, Qa) }

where TI(Q1,Q2) is the set of all probability measures on = x = with marginals Q; and Q-,
respectively. The type-oo Wasserstein distance is defined as the limit of W, as p tends to co and
amounts to

Weo (Q1,Q2) £ inf {GSSSUP {D(&1,8) : (&1,6) €EXE}ime H(@h@2)} .

We assume that (X, Y') admits values in X x ) C R™ x R™, and the distance D on X x Y is

D((z,y), (z',y)) = Da(z,2') + Dy(y,y')  Y(x,y),(z",¢) € X x Y,

where D x and Dy, are continuous metric on X" and ), respectively. The joint ambiguity set B7° is
now formally defined as a type-oo Wasserstein ball in the space of joint probability measures

Bfé{@emmxxw;ww@jhg@.

We assume further that the compact neighborhood N, () around x is prescribed using the distance
D as N, (z0) £ {z € X : Da(x,70) < v}, and the loss function £ is jointly continuous in y and 3.

To solve the estimation problem (2), we study the worst-case conditional expected loss function

1(8) £ sup Eg[((Y, B)|X € Ny(x0)],
Q€B,,Q(XEN,(z0))>0

which corresponds to the inner maximization problem of (2). To ensure that the value f(3) is
well-defined, we first investigate the conditions under which the above supremum problem has a
non-empty feasible set. Towards this end, for any set \, (x¢) C X, define the quantities x; -, as

0< ki 2 in Dy(z,7;) + inf Dy(y, v Vi € [N]. 3
S kiy = min Dr( @)+ inf Dy(y,gs) Vi€ [N] 3)
The value &; - signifies the unit cost of moving a point mass from an observation (Z;, y;) to the fiber
set NV, (zg) x Y. We also define Z¥ as the projection of Z; onto the neighborhood A, (), which
coincides with the optimal solution in the variable = of the minimization problem in (3). The next
proposition asserts that f () is well-defined if the radius p is sufficiently large.

Proposition 2.2 (Minimum radius). For any o € X and v € R4, there exists a distribution Q € B,
that satisfies Q(X € N, (xo)) > 0 if and only if p > min;c(n) Ki -

We now proceed to the reformulation of f(/3). Let Z be the index set defined as
T2 {i€[N]:Dx(xo,%i) < p+1}, (4a)
and 7 is decomposed further into two disjoint subsets

Ty ={i €T :Dx(xo, %) +p <~} and T, = T\T,. (4b)

Intuitively speaking, Z contains the indices of data points whose covariate Z; is sufficiently close to
xo measured by Dy, and are thus relevant to the local estimation problem. The index set Z; indicates
the data points that lie strictly inside the neighborhood, while the set Z contains those points that are
on the boundary ring of width p around the neighborhood N, (z(). The value f(/3) can be efficiently
computed in a quasi-closed form thanks to the following result.

Theorem 2.3 (Worst-case conditional expected loss computation). For any v € R, suppose that
p > min;e(n) Ki. Forany g € Y, let vy () be defined as

07 (B) £ sup {L(yi, B) s yi € Y, Dy(yi, 4s) < p— D (T}, %)} Viel (3)

Yi



The worst-case conditional expected loss is equal to f(8) = (>, .7 i) - Y ez Qivi(B), where o
admits the value

1 ifie Il or (Il = @ and v; (5) maxiez, v 7 (5))’
ZzEIl vy (B )+Z7612 i (B)>v;(B) J(fB)

T+ i € Lo : 0j(B) > vi (B}

Viel: oa;=1<1 ifvf(B)>
0 otherwise.

If we possess an oracle that evaluates (3) at a com-

plexity O, then by Theorem 2.3] quantifying f(8) is T

reduced to calculating |Z| values of v} () and then sort- Y ——————
ing these values in order to determine the value of «. e .
Thus, computing f(3) takes an amount of time of order T

O(|Z|(log |Z| + O)). Moreover, () depends solely : * + .
on the observations in the locality of 2y whose indices

belong to the index set Z, the cardinality of which can ' . + *

be substantially smaller than the total number of training * .
samples N. * . '

If ¢ is a convex function in 3, then a standard result ML PLr
from convex analysis implies that f, being a pointwise o = ~ P iy >
supremum of convex functions, is also convex. If ),

and hence f, is unidimensional, a golden section search N, (o)

algorithm can be utilized to identify the local condi-

tional estimate 3* that solves (2) in an amount of time ~Figure 1: Illustration around the neighbor-
of order O (log(1/€)|Z|(log(|Z]) + ©)), where € > 0is hood of zo with p <. Black crosses are
an arbitrary accuracy level. Fortunately, in the case of ~samples in the set Z.

conditional mean and quantile estimation, we also have

access to the closed form expressions of v} () as long

as Dy, is an absolute distance.

Corollary 2.4 (Value of v}(3)). Suppose that Y = [a, b] C [—o0, +0o0] and Dy (y;, ¥i) = |vi — Uil-

(i) Conditional mean estimation: if £(y, 3) = (y — )%, then Vi € 7
vf (8) = max { (max{y; + p — Dx (37, %), a} — B)%, (min{y; + p — D (3}, 7:),0} - 6)*}.

(ii) Conditional quantile estimation: if £(y, 8) = max{—7(y — 8), (1 —7)(y — )}, then Vi € T
v; (B)=max {7 (max{F;+p—Dx (T}, 7;), a}—B), (1-7) (min{F;+p—Dx (T}, Ts), b} — ) }.

If Y is multidimensional, the structure of £(y, ) and Dy, might be exploited to identify tractable
optimization reformulations. The next result focuses on the local conditional mean estimation.

Proposition 2.5 (Multivariate conditional mean estimation). Let ) = R™ and £(y, 3) = ||y — B|3.

(i) Suppose that Dy is a 2-norm on Y, that is, Dy (y,y) = ||y — ¥||2- The distributionally robust
local conditional estimation problem (2)) is equivalent to the second-order cone program
min A
s.t. BER™ ANeR, u; eRViely, u, e Ry Viel,, t;e Ry VieT
Diezi <0, i >|yi =Bl Viel
It: +p—Dx(@,2;); (1/2) (1 =X —u)]ll2 < (1/2)Q1+ X+ w;) Viel.

(ii) Suppose that Dy is a co-norm on Y, that is, Dy (y, §) = ||y — ¥||eo- The distributionally robust
local conditional estimation problem (2)) is equivalent to the second-order cone program

min A
s.t. BER™ AR, TeRI™ u eRVieT, uzeRJFVZeIQ
Zlezuz<07 ) ”[ i1 Tios o005 Tim s 2(1_)‘ ul)]HQ (1+)‘+u’t) Viel

T <9, Yij — Bj — PJFDX@?’@) < T
Tij <Uij — Bj +p—Da(Z7,2;) < Tj;

where ¥;; and (3; are the j-th component of y; and 3, respectively.

betii) € 7 x i,



Both optimization problems presented in Proposition [2.5]can be solved in large scale by commercial
optimization solvers such as MOSEK [27]]. For other multivariate conditional estimation problems,
there is also a possibility of employing subgradient methods by leveraging on the next proposition.

Proposition 2.6 (Subgradient of f). Suppose that Dy is coercive and ¢(y, -) is convex. Under
the conditions of Theorem for any S € R™, a subgradient of the function f at 3 is given by
Af(B) = ez i)' X ez @i0pl(yf, B), where the value of o is as defined in Theoremand

y; satisfies yF € {y; € YV : Dy(yi,5:) < p— Da (@0, 71), L(yF, B) = v (B)} foralli € Z.

Just as an adversarial example provides a description on how to optimally perturb a data point from
the adversary’s viewpoint [20, 36], the worst-case distribution provides full information on how
to adversarially perturb the empirical distribution P. For our distributionally robust estimator, the
worst-case distribution can be obtained from the result of Theorem [2.3]

Lemma 2.7 (Worst-case distribution). Fix an estimate 5 € ). Suppose that p > min;c[n] K4
and let v* () and « be determined as in Theorem Moreover, let y satisfy y7 € {y; € ) :
Dy (yi,¥i) < p—Dx (2%, %;), L(yF,8) = v;(B)} forall i € Z. Then the distribution

1
=5 Yo Sarant Y. Saant Y SGea

1€L:0=1 1€L:0;=0 1€[N\T
satisfies f(8) = Eq- [((Y, B)|X € Ny (wo)].

The values of « calculated in Theorem [2.3]are of indicative nature: ; = 1 if it is optimal to perturb
the sample point ¢ to compute the worst-case conditional expected loss. The construction of the
worst-case distribution is hence intuitive: it involves computing and sorting the values v} (), and
then performing a greedy assignment in order to maximize the objective value.

3 Probabilistic Theoretical Properties

We now study the some statistical properties of our proposed estimator. Under some regularity
conditions, the type-oo Wasserstein ball can be viewed as a confidence set that contains the true
distribution P with high probability, provided that the radius p is chosen judiciously. The value f(5*)
thus constitutes a generalization bound on the out-of-sample performance of the optimal conditional
estimate 5*. This idea can be formalized as follows.

Proposition 3.1 (Finite sample guarantee). Suppose that X' x ) is bounded, open, connected with a
Lipschitz boundary. Suppose that the true probability measure P of (X, Y") admits a density function
v satisfying =1 < v(z,y) <  for some constant # > 1. For any y > 0, if
S CN~zlog(N)i whenn +m = 2,
= CN ™ wm log(N)ﬁ otherwise,
where C' is a constant dependent on X' x ) and 7, then for a probability of at least 1 — O(N ~¢),

where ¢>1 is a constant dependent on C, we have Ep[((Y, *)| X € N, (z0)] < f(B*), where 5* is
the optimal conditional estimate that solves problem (2)).

We now switch gear to study the properties of our estimator in the asymptotic regime, in particular,
we focus on the consistency of our estimator. The interplay between the neighborhood radius v and
the ambiguity size p often produces tangling effects on the asymptotic convergence of the estimate.
We thus showcase two exemplary setups with either  or p is zero, which interestingly produce two
opposite outcomes on the consistency of the estimator. This underlines the intricacy of the problem.

Example 3.2 (Non-consistency when v = 0). Suppose that v = 0, p € R, be a fixed constant,
Y =R, {(y,B) = (y — B)? and Dy is the absolute distance. Let 3% be the optimal estimate that
solves (2) dependent on {(Z;, ¥;) }i=1,... n. If under the true distribution P, X is independent of Y,
P(Dx(X,z0) < p) > 0,P(Y >0)=1and P(Y >y) >0 Vy >0, then with probability 1, we have
BN — +oo while Ep[Y| X =] < co.

Example 3.3 (Consistency when p = 0). Suppose that p =0, =R, {(y, 3) = (y — 8)?, Dy and
Dy are the Euclidean distance, ky is a sequence of integer. Let y be the kx-th smallest value of



D (20, Z;), then 8% that solves @) recovers the ky-nearest neighbor regression estimator. If kp
satisfies lim 00 kv = 00 and limy o0 by /N = 0, and Ep[Y'| X = 2] is a continuous function of
x, then im0 B = Ep[Y|X = 0] by [34] Corollary 3].

Example [3.3] suggests that if the radius ~ of the neighborhood is chosen adaptively based on the
available training data, then our proposed estimator coincides with the k-nearest neighbor estimator,
and hence consistency is inherited in a straightforward manner. The robust estimator with an ambiguity
size p > 0 and an adaptive neighborhood radius «y can thus be considered as a robustification of the
k-nearest neighbor, which is obtained in a systematic way using the DRO framework.

It is desirable to provide a descriptive connection between the distributionally robust estimator vis-a-
vis some popular statistical quantities. For the local conditional mean estimation, our estimate [3*
coincides with the conditional mean of the distribution with the highest conditional variance. This
insight culminates in the next proposition and bolsters the explainability of this class of estimators.

Proposition 3.4 (Conditional mean estimate). Suppose that Y = R, £(y, 3) = (y — 3)? and Dy(-, 7))
is convex, coercive for any 3. For any p > minie[ N] Kiys define Q* as

Q* = arg Varianceg (Y| X € N, (zo)),

max
QeBr,Q(X N, (20))>0

then 8* = Eq-« [Y|X € N, (z0)] is the optimal estimate that solves problem (2)).

4 Numerical Experiment

In this section we compare the quality of our proposed Distributionally Robust Conditional Mean
Estimator (DRCME) to k-nearest neighbour (k-NN), Nadaraya-Watson (N-W), and Nadaraya-
Epanechnikov (N-E) estimators, together with the robust £-NN approach in [2] (BertEtAl) using a syn-
thetic and the MNIST datasets. Codes are available at https://github.com/nvietanh/DRCME.
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Figure 2: Comparison of the mean absolute er- Figure 3: Comparison of the distributions of
rors of conditional mean estimators for synthetic ~ absolute estimation errors of conditional mean
data. The gray shade shows the density of X. estimators for synthetic data.

4.1 Conditional Mean Estimation With Synthetic Data

In this section, we conducted 500 independent experiments where the training set contains N = 100
i.i.d. samples of (X,Y) in each experiment. The marginal distribution of X has piecewise constant
density function p(x), which is chosen as p(z) = 100/72if z € [0,0.3]U[0.7, 1] and p(z) = 30/72 if
x € (0.3,0.7). Given X, the distribution of Y is determined by Y = f(X)+¢, where f = sin(10-x)
and ¢ is i.i.d. Gaussian noise independent of X with mean 0 and variance 0.01. The conditional
mean estimation problem is challenging when z is close to the jump points of the density function
p(z), thatis at xg = 0.3 or ¢y = 0.7, because the data are gathered unequally in the neighborhoods.
Thus, to test the robustness of all the estimators, we employ all the five estimators to estimate the
conditional mean Ep[Y'|X = x(], for 2o = 0.2,0.21, ..., 0.4 around the jump point zy = 0.3. We
select Dy (x,2') = |z — 2’| and Dy (y,y’') = |y — y’|. The hyperparameters of all the estimators,
whose range and selection are given in Appendix[A] are chosen by leave-one-out cross validation.

Figure [2] displays the average of the mean estimation errors taken over 500 independent runs for
different values xq € [0.2,0.4]. One can observe from the figure that DRCME uniformly outperforms


https://github.com/nvietanh/DRCME

Method | HP. | N=50 | N=100 | N=500 Method N=350 | N=100 T N=500
k-NN k 3 4 4 — — -
N-W h 0.022 0.019 0.015 113_13\1,\1 gé i g gg i g gg i }
N-E h 0.087 0.078 0.068 NE % E1 1 32E1 | 50E1
BertEtAl | & 0 731 5 | ;‘1 3 | 3513 BertEtAl | 20£2 | 41£2 | 67 £1
e OO i DRCME |36 £2 [ 461 | 71 +1
DRCME v 01133 01133 01636 Table 2: Comparison of expected out-
Z 0' OOX 0' 00; 0.00Y of-sample classification accuracy (in %
: . . with 90% confidence intervals) from

Table 1: Median of hyper-parameters (H.P.) ob-
tained with cross-validation.

k-NN, BertEtAl for all g of interest. When compared with N-W and N-E, we remark that DRCME
is the most accurate estimator around the jump point of p(x). As xy moves away from the location
0.3, the performance of DRCME decays and becomes slightly worse than N-W as x( goes far
from the jump point. Figure [3| presents the cumulative distribution of the estimation errors when
xo € [0.28,0.32]. The empirical error distribution of DRCME is stochastically smaller than that of
other estimators, which reinforces that DRCME outperforms around the jump point in a strong sense.

rounded estimates.

4.2 Digit Estimation With MNIST Database

In this section, we compare the quality of the estimators on a digit estimation problem using the
MNIST database [23]]. While to this date most studies have focused on out-of-sample classification
performances for this dataset, here we shift our attention to the task of estimation of digits as cardinal
quantities and are especially interested in performance at a low-data regime. Treating the labels as
cardinal quantities allows us to assess the distinctive features of DRCME in its most simplistic form
(i.e. univariate conditional mean estimation of a real random variable). Mean estimation might in
fact be more relevant than classification when trying to recognize handwritten measurements where
confusing a 0 with a 6 is more damaging than with a 3.

We executed 100 experiments where training and test sets were randomly drawn without replacement
from the 60,000 training examples of this dataset. Training set sizes were N = 50, 100, or 500 while

test sets’ size remained at 100. Each (z, y) pair is composed of the normalized vector, in R28” of
grayscale intensities normalized so that ||z||; = 1. For simplicity, we let Dy (z, Z) = ||z — Z||2 and
Dy(y,y) = Oly — y|. In each experiment, the hyper-parameters of all four methods were chosen
based on a leave-one-out cross validation process. In the case of DRCME, we adapt the radius of the
neighborhood 7 and p locally at z( to account for the non-uniform density of X |'| Table presents
the median choice of hyper parameters for each estimator.
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3 604 60
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[
o 404 10 1 104 kNN
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(a) N=50 (b) N=100 (c) N=500

Figure 4: Comparison of the distributions of out-of-sample absolute estimation errors of conditional
mean estimators for the MNIST database under different training set sizes.

Figure [4] presents the out-of-sample estimation error distribution of all four conditional estimators.
One can quickly remark that the DRCME outperforms BertEtAl, £-NN, and N-E estimators, especially

'Specifically, we let v = h] (z0) := Kyij,0 + (¢ — [i])(K[ri13,0 — K[L5)7,0)> Where [5] refers to the j-th
smallest element while |- | and [-] refer to the floor and ceiling operations, i.e., the radius is set to the linear
interpolation between the distance of the |4 |-th and || + 1-th closest members of the training set to zo. We
further let p be proportional to +y. This lets DRCME reduce to k-NN when v = k] (zo), p = 0, and 6 = 1.
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Figure 5: Comparison of estimations from N-W and DRCME on entropic regularized Wasserstein
barycenters of pairs of images from the training set. Estimations are presented above each image in
the format “(N-W, DRCME)”.

for low-data regime. In particular, for all three training set sizes, the distribution of error for DRCME
stochastically dominates the three other distributions. In particular, one even notices in (c) that
DRCME has the largest chance of reaching an exact estimation: 66% compared to 60%, 55%, 30%,
and 8% for the other estimators. This explains why DRCME is also the most accurate estimator
when rounding it to the nearest integer as reported in Table[2} with a margin greater than 4% from
all estimators across all N’s. It is worth noting that while N-W does not produce high accuracy
estimate, it however has less chances of producing estimation with large errors. This is also apparent
when comparing the expected type-p deviation of the estimation error, i.e. (E[|y — ¢|?])'/?, for each
estimator. Specifically, N-W slightly outperforms DRCME for deviation metrics of type p > 1, e.g.
with a root mean square error of 1.32 compared to 1.41 when N = 500. On the other hand, DRCME
significantly outperforms N-W when p < 1 where high precision estimators are encouraged. We
refer the reader to Appendix [A]for further details.

Finally, we report on an experiment that challenges the capacity of both N-W and DRCME estimators
to be resilient to adversarial corruption of the test images. This is done by exposing the two estimators
to images from the training set (N = 100) that have been corrupted in a way that makes them
resemble the closest differently-labeled image in the setE] Figure presents several visual examples
of the progressively corrupted images and the resulting N-W and DRCME estimations. Overall, one
quickly notices how the estimation produced by DRCME is less sensitive to such attacks, “sticking” to
the original label until there is substantial evidence of a new label. More examples are in Appendix [A]

Broader Impact

Our paper contributes theoretical insights at the intersection of statistics and optimization, with
potential applications in diverse areas of machine learning. In particular, our proposed estimator can be
used in almost all applications in which the non-parametric conditional estimators (including k-nearest
neighbors and kernel estimators) are currently utilized, including regression and classification tasks
with potential impact in health sciences, economics, business, finance, climate, various engineering
areas, logistics, risk analysis, etc. Using ideas from the distributionally robust optimization framework,
we propose a principled and systematic way to obtain a robustification of the popular k-nearest

*Implementation wise, we exploit the Python Optimal Transport toolbox [12]] to compute different entropic
regularized Wasserstein barycenters of the two normalized images treated as distributions.



neighbors. At a methodological level, we contribute a novel paradigm that can be used to enhance
robustness of conditional statistical estimation against model misspecification and adversarial attacks.

Because our paper provides novel techniques for conditional estimation in the context structured and
contaminated data, we believe that we have the potential of enabling more applications in which data
sets are pulled together from different sources (e.g., for prediction of health care policy evaluations
in which information from different environments needs to be put together to mitigate the lack of
data given the need for quick decision making under time constraints; for online advertisement
recommendation system in which the behaviors of many customers are employed to predict the
behavior of incoming customers conditional on their profile). In addition, the results in this paper are
a part of the thesis work of a Ph.D. student, thus promoting the training for highly qualified personnel.
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