
We thank the reviewers for the valuable comments, which require simple changes to the manuscript.1

R1: 1) We can easily address the comments on the writing, while pushing some unnecessary technical details to the2

supplementary material. We remark that we had a typo in line 86 and should instead have σ∗
ij =σ∗−1

ji . 2) We will include3

the mentioned references. 3a) Condition (12) in our model can be interpreted as follows: in a 3-cycle, corrupting two4

edges induces on average more cycle-inconsistency than corrupting a single edge. This is currently explained in line 5035

of the supp. material (also note our correction in line 614). Corruption with a uniform (Haar) distribution also satisfies6

this condition (with equality), however, it has a very strong and unrealistic assumption on the distribution. For simplicity7

we have a star-shaped topology of our graph, though with more work (and rather complicated descriptions) one may8

generalize the topology of our graph. We emphasize departure from the uniformity assumption on the distribution of9

corruption and not the "uniform topology" of the graph. 3b) Although our theory and experiments assume a complete10

graph, for simplicity of demonstration, they can be easily generalized to the incomplete Erdős-Rényi graphs. We will11

add this to the supp. material. 4) We remark that IRGCL outperforms CEMP+weighted least squres (WLS), which reports12

P(1), in highly corrupted scenarios. For example, under the uniform corruption model with n=100 and 90% corrupted13

edges, the error of IRGCL is<0.1, while P(1) gives estimation error>0.5 (like other methods reported in Figure 3). That14

is, given poor initialization, IRGCL can still converge to a reasonable solution. We believe that IRGCL uses additional15

cycle consistency information to adjust the edge weights (see also reply to R3). However, under mild corruption, the16

CEMP initialization is accurate and helpful in accelerating the convergence and this is what the theory verifies (previous17

theory of [17] for high uniform corruption requires very large n). 5) We will report the result of CEMP+WLS (that is,18

using P(1)) in the updated version. 6) The original real data used in our work is the most challenging one for permutation19

synchronization. However, it contains many nodes whose neighboring edges are completely corrupted. In such a case,20

none of the permutation synchronization algorithms work well and additional information, such as coordinates of key21

points, is needed. Thus, in order to make a valid evaluation of different algorithms, we have to preprocess this data so that22

permutation synchronization is well-posed. We remark that in many SfM data (e.g. the initial matching used in [20]) such23

a malicious scenario does not occur (thus no such preprocessing is needed); however, currently our algorithm and other24

direct algorithms for permutation synchronization cannot be easily applied to SfM data since they deal with permutations25

and not partial ones. The nontrivial extension to partial permutations is left for future work.26

R2: 1). We will demonstrate this in practice. In theory, for 3-cycles and uniform corruption, a necessary condition for27

CEMP and IRGCL is p=Ω(1/
√
n). According to [17], up to a log factor this condition is sufficient for CEMP. As the28

length of the cycle increases the lower bound on p decreases and approaches p= Ω(logn/n) as the size of the cycle29

approaches infinity. The complexity of our reformulation of CEMP is at most n3 times the length of the cycle, so in30

practice we cannot achieve the logn/n threshold of disconnectivity, but get close to it. 2) We will report runtimes in31

the new version. We remark that IRGCL is often slightly slower than IRLS, but they are comparable to each other. Our32

experiments indicate the following order of runtimes: Spectral<PPM<IRLS<IRGCL�MatchALS<MatchLift.33

R3: The challenge of permutation synchronization is not just its nonconvexity, but more importantly, its discrete and34

combinatorial nature. IRLS has been carefully studied and tested in some continuous settings, but in discrete settings35

IRLS is neither commonly applied nor studied. Indeed, in lines 152-160, we explain the drawback of IRLS in our discrete36

setting. IRGCL handles the limitations of IRLS in the following ways. 1) Recall that IRLS first locally estimates a37

residual based on a single measurement of the corresponding edge. However, IRGCL estimates the residual using more38

global information of other edges (reflected in the powers of the GCW matrix). Thus its WLS is much less dependent39

on the initialization than standard IRLS. Point 4) in our reply to R1 confirms that in practice IRGCL can handle cases40

where CEMP provides a bad initialization. 2) The solution of the IRLS problem uses convex relaxation of the nonconvex41

WLS problem. While IRGCL also follows such a scheme, it also uses 3-cycle consistency information which helps42

more faithfully recover the underlying corruption and thus provide more accurate weights and consequently a better43

approximation by the convex relaxation. 3) Our edge weights are computed as a weighted average (ideally, expectation) of44

the 3-cycle consistency (encoded in the square of the GCW matrix). This expectation lies in a continuous space (as oppose45

to the weights in IRLS that lie in a discrete space). Thus our reweighting scheme smooths the space of edge weights,46

making the algorithm less likely to get stuck. We remark that CEMP does not explicitly minimize an objective function,47

but it aims to find the underlying maximal cycle-consistent subgraph (see page 10 of [17]). It can also be interpreted as48

an iterative procedure that aims to estimate the expectation of the corruption level of edges (latent variables) given their49

posterior distribution, which is similar to EM. However, its iterations do not rely on MLE and are more efficient and thus50

have some nice guarantees of convergence (see [17]). Similarly, IRGCL aims to solve a WLS problem whose weights51

focus on the underlying globally cycle-consistent subgraph. In order to do this, it estimates both permutations (using52

WLS) and the cycle-consistent subgraph (using CEMP-like reweighting) in an alternating manner.53

R4: This review is an outlier in terms of short length, tone, clarity and score. As explained to R3, our work has some nonstan-54

dard ideas and we strived to make it accessible, while avoiding some of the complicated ideas of [17] (and it is nice that we55

have a direct formulation by the connection graph). We will follow all the constructive suggestions and easily improve the56

clarity, but we disagree that we did not organize our thoughts. The answer to all your points are above, except for the follow-57

ing: 1) The graph is not "a singly connected cycle graph" (and we never stated this). 2) Most previous works on permutation58

synchronization use real datasets whose images have similar views and share the same set of keypoints (so that keypoint59

matches are permutations) and their graphs are thus complete. Applying permutation synchronization algorithms to a set of60

images with distinct views is unrealistic and is not a common practice (the reviewer may be confused with rotation synchro-61

nization). Future work will try to generalize our ideas to partial permutations so that we may explore more general SfM data.62


