
Supplementary Material
In §A we provide proofs of Propositions 4.2 and 4.1 and Theorem 5.2. In §B we provide an illustration
that explains IRGCL and results of additional experiments on synthetic data generated by both uniform
and nonuniform corruption models. We follow the equation and figure numbers of the main manuscript.
We thus start with equation number (16) and Figure 2.

A Proofs

In this section we provide the proofs to all theoretical statements in the main manuscript. We find it more
convenient to first establish Proposition 4.1 and then use the simple idea of the proof when establishing
Proposition 4.2. At last, we prove Theorem 5.2.

A.1 Proof of Proposition 4.1

We first note that (Sl�(W l⊗1m))[i,j]= 1
W l(i,j)

Sl[i,j]. where

W l(i,j)=
�

k1∈[n]

�

k2∈[n]
···

�

kl−1∈[n]
wik1

wk1k2
···wkl−1j (16)

Sl[i,j]=
�

k1∈[n]

�

k2∈[n]
···

�

kl−1∈[n]
wik1

wk1k2
···wkl−1jX̃ik1

X̃k1k2
···X̃kl−1j. (17)

We note that for any pair of nodes i,j∈ [n],wijX̃ij=wijX
∗
ij. Indeed, if ij /∈E, thenwij=0; if ij∈Eg, then

X̃ij=X∗
ij; and if ij∈Eb, thenW (i,j)=0 by the assumption of the proposition. Combining this observation

with (16) and (17) and then applying the cycle-consistency of {X∗
ij}ij∈E, we obtain that for ij∈E,

(Sl�(W l⊗1m))[i,j]=

�
k1∈[n]···

�
kl−1∈[n]wik1

···wkl−1jX
∗
ik1

X∗
k1k2

···X∗
kl−1j�

k1∈[n]···
�

kl−1∈[n]wik1
···wkl−1j

=

�
k1∈[n]···

�
kl−1∈[n]wik1

···wkl−1jX
∗
ij�

k1∈[n]···
�

kl−1∈[n]wik1
···wkl−1j

=X∗
ij.

A.2 Proof of Proposition 4.2

We first introduce the following definitions and notation for describing the original version of CEMP
[17]. Let Nij be the set of all (l+1)-cycles that contain ij. Any cycle in Nij can be represented as
L :={ik1,k1k2,...,kl−1j,ji}. Using the metric stated in the proposition, the cycle inconsistency (proposed
in [17]) for each L∈Nij is defined as

dL :=�X̃ik1
X̃k1k2

X̃k2k3
...X̃kl−1jX̃ji−Im�2F/2m. (18)

The original version of CEMP with (l+1)-cycles is iterated over t≥0 using the following message passing
procedure (see (10) and (35) of [17]):

sij,(0)=
�

L∈Nij

dL/|Nij| (19)

and

sij,(t+1)=

�
L∈Nij

�
ab∈L\{ij}exp(−βtsab,(t))dL�

L∈Nij

�
ab∈L\{ij}exp(−βtsab,(t))

for ij∈E. (20)

We use here a generalized version of Algorithm 1 with power l ≥ 2. That is, we replace the step
Ainit,(t)=

1
m�S2

init,(t)�(W 2
init,(t)⊗1m),X̃�block in Algorithm 1 with

Ainit,(t)=
1

m
�Sl

init,(t)�(W l
init,(t)⊗1m),X̃�block for l≥2. (21)

To prove the equivalence between Algorithm 1 with l≥2 and CEMP with the chosen metric, we show that at
each iteration t≥0, Ainit,(t)(i,j)=1−sij,(t), whereAinit,(t)(i,j) is obtained by Algorithm 1 and sij,(t) by the
original CEMP. We verify this by induction. For simplicity, we denote Winit,(t)(i,j) by qij,(t). For t=0, we
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first apply (21), we then combine (16) and (17) and at last apply basic algebraic manipulations to obtain that

Ainit,(0)(i,j)=
1

m

��
Sl

init,(0)�(W l
init,(0)⊗1m)

�
[i,j],X̃ij

�

=
1

m

��
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)X̃ik1

X̃k1k2
···X̃kl−1j�

k1∈[n]···
�

kl−1∈[n]qik1,(0)···qkl−1j,(0)
,X̃ij

�

=
1

m

�
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)

�
X̃ik1X̃k1k2···X̃kl−1j,X̃ij

�

�
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)

=1− 1

m

�
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)

�
m−

�
X̃ik1

···X̃kl−1j,X̃ij

��

�
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)

.

We further simplify this equation as follows. We first use the fact that
m−�X,Y �=�X−Y �2F/2 for X,Y ∈Om. (22)

We then use the facts that for X, Y , Z ∈Om, �X−Y �F =�XZ−Y Z�F and X̃ijX̃ji=Im. Next,
we apply (18) and the fact that due to the initialization of Winit,(0) by Algorithm 1, qij,(0)=1 for ij∈E.
At last, we apply (19) and result in the desired relationship when t=0:

Ainit,(0)(i,j)

=1− 1

2m

�
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)

���X̃ik1
X̃k1k2

···X̃kl−1j−X̃ij

���
2

F�
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)

=1− 1

2m

�
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)

���X̃ik1
X̃k1k2

···X̃kl−1jX̃ji−Im

���
2

F�
k1∈[n]···

�
kl−1∈[n]qik1,(0)···qkl−1j,(0)

=1−
�

L∈Nij
dL

|Nij|
=1−sij,(0). (23)

Next, assuming that for all ij ∈ E Ainit,(t)(i, j) = 1 − sij,(t), we show that all ij ∈ E
Ainit,(t+1)(i, j) = 1 − sij,(t+1). We first derive an identity for Ainit,(t+1)(i, j) which is similar to
the second equality of (23) by following the same arguments. We then apply (18) with compact notation
for the multiplication of the different weights. Next, we use the weights assigned by Algorithm 1 for t+1,
that is, Winit,(t+1)=exp(βtAinit,(t)). Next, we use the induction assumption Ainit,(t)(i,j)=1−sij,(t). We
then apply basic algebraic manipulations and, at last, use (20) to conclude the induction argument as follows:

Ainit,(t+1)(i,j)

=1− 1

2m

�
k1∈[n]···

�
kl−1∈[n]qik1,(t+1)···qkl−1j,(t+1)

���X̃ik1
X̃k1k2

···X̃kl−1jX̃ji−Im

���
2

F�
k1∈[n]···

�
kl−1∈[n]qik1,(t+1)···qkl−1j,(t+1)

=1−
�

L∈Nij

�
ab∈L\{ij}qab,(t+1)dL�

L∈Nij

�
ab∈L\{ij}qab,(t+1)

=1−
�

L∈Nij

�
ab∈L\{ij}exp

�
βtAinit,(t)(a,b)

�
dL�

L∈Nij

�
ab∈L\{ij}exp

�
βtAinit,(t)(a,b)

�

=1−
�

L∈Nij

�
ab∈L\{ij}exp

�
βt(1−sab,(t))

�
dL�

L∈Nij

�
ab∈L\{ij}exp

�
βt(1−sab,(t))

� .

=1−
�

L∈Nij
exp((l−1)βt)

�
ab∈L\{ij}exp

�
−βtsab,(t)

�
dL�

L∈Nij
exp((l−1)βt)

�
ab∈L\{ij}exp

�
−βtsab,(t)

�

=1−
�

L∈Nij

�
ab∈L\{ij}exp

�
−βtsab,(t)

�
dL�

L∈Nij

�
ab∈L\{ij}exp

�
−βtsab,(t)

� =1−sij,(t+1).

Consequently, for all ij∈E and t≥0, Ainit,(t)(i,j)=1−sij,(t), and thus Algorithm 1 is equivalent to the
original CEMP.
Remark A.1. The equivalence between CEMP and Algorithm 1 is not restricted to permutations. Indeed, our
arguments apply to any group that can be represented as a subgroup of the orthogonal group O(m), where
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we assign to any the representations of the elements X and Y the semimetric d(X,Y )=�X−Y �2F/2m.
For permutation synchronization, this is a metric and thus the theory of CEMP directly extends. For other
groups, this semimetric satisfies a relaxed triangle inequality (with constant 2). Thus one may still extend
the theory of CEMP, but with weaker estimates.

A.3 Proof of Theorem 5.2

We describe the proof in two different sections. In §A.3.1 we prove the first part of the theorem that
guarantees sufficiently near recovery by CEMP under the superspreader model. In §A.3.2 we verify that
other least squares methods generally do not succeed with recovery under our nonuniform setting.

A.3.1 A theoretical guarantee for CEMP in the nonuniform case.

For each i ∈ N and ij ∈ E, we recall the definitions: N(i) = {j ∈ [n] : ij ∈ E}
and N(ij) = {k ∈ [n] : ik, jk ∈ E}. Similarly, for any ij ∈ E, we recall that
Ng(ij)={k∈N(ij) :k �= i,j and ik,jk∈Eg} and we also define Nb(ij)=N(ij)\Ng(ij). We will use
the following Chernoff bound. For i.i.d. Bernoulli random variables {Xi}Mi=1 with means µ and any 0<η<1,

Pr

������
M�

i=1

Xi−Mµ

�����>ηMµ

�
<2e−

η2

3 µM . (24)

We first show that the following deterministic conditions hold with high probability under the assumptions
of our model:

1

2
np≤N(i)≤2np for any i∈ [n], (25)

1

2
np2≤N(ij)≤2np2 for any ij∈E, (26)

1

2
|N(i0j)|ε≤Ng(i0j)≤2|N(i0j)|ε for any j∈N(i0). (27)

Indeed, since 1{j∈N(i)}, 1{k∈N(ij)}, 1{k∈Ng(i0j)} are all Bernoulli random variables with mean p,p2,ε,
respectively, by first applying the Chernoff bound (24) to the above Bernoulli random variables with
M =n,n,|N(i0j)| and then the union bound over i∈ [n], ij∈E and j∈N(i0) we obtain that (25)-(27)
hold with probability at least

1−2nexp(Ω(np))−2|E|exp(Ω(np2))−2|N(i0)|exp(Ω(np2ε)) (28)

=1−2nexp(Ω(np))−4np2exp(Ω(np2))−4npexp(Ω(np2ε)). (29)
Indeed, the probability in (29) is high given our assumption n=Ω(1/(p2µ2ε2)). We next show that the
theorem holds with high probability given (25)-(27).

We recall that Ainit,(0)=
1
m�S2

init,(0)�(W 2
init,(0)⊗1m),X̃�block, where Sinit,(t)=(Winit,(t)⊗1m)�X̃. We

note that for ij∈E

Ainit,(0)(i,j)=�X̃ij,
�

k∈N(ij)

X̃ikX̃kj�/(m|N(ij)|). (30)

We further note that for i0j∈Eb and i0k∈Eb

abbi0jk :=�X̃i0j,X̃i0kX̃kj�/m=�X̃i0j,X̃i0kP
∗
kP

∗�
j �/m; (31)

for i0j∈Eb, and i0k∈Eg

abgi0jk :=�X̃i0j,X̃i0kX̃kj�/m=�X̃i0j,P
∗
i0P

∗�
k P ∗

kP
∗�
j �/m=�X̃i0j,P̃

∗
i0P

∗�
j �/m; (32)

for i0j∈Eg, and i0k∈Eb

agbi0jk :=�X̃i0j,X̃i0kX̃kj�/m=�P ∗
i0P

∗�
j ,X̃i0kP

∗
kP

∗�
j �/m=�X̃i0k,P̃

∗
i0P

∗�
k �/m; (33)

and for i0j∈Eg, and i0k∈Eg

aggi0jk=1. (34)

We denote the expectations of abbi0jk, abgi0jk, agbi0jk by µbb, µbg and µgb, respectively. We use this notation and
the above equations to estimate E

�
Ainit,(0)(i0,j)|i0j∈Eb

�
and E

�
Ainit,(0)(i0,j)|i0j∈Eg

�
. For this purpose,

we note that for i0j ∈Eb and k �= j,i0, there are (1−ε)|N(i0)|−1 edges i0k ∈Eb and ε|N(i0)| edges
i0k∈Eg. Similarly, for i0j ∈Eg and k �= j,i0, there are (1−ε)|N(i0)| edges i0k∈Eb and ε|N(i0)|−1
edges i0k∈Eg. Combining (31)-(34) with these observations, we conclude that
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E
�
Ainit,(0)(i0,j)|i0j∈Eg

�
=E


 1

|N(i0j)|


 �

k∈Nb(i0j)

agbi0jk+
�

k∈Ng(i0j)

aggi0jk



���i0j∈Eg




=(1−ε)µgb+ε (35)
and

E
�
Ainit,(0)(i0,j)|i0j∈Eb

�
=E


 1

|N(i0j)|


 �

k∈Nb(i0j)

abbi0jk+
�

k∈Ng(i0j)

abgi0jk



���i0j∈Eb




=(1−ε)µbb+εµbg. (36)

Next we prove that
µbb≤µgb=µbg=1−µ. (37)

Note that (13) and (22) imply that
µ=E(m−�X̃i0j,X

∗
i0j� |j∈Nb(i0))/m≤E(m−�X̃ki0X̃i0j,X

∗
kj� |j,k∈Nb(i0))/m.

Applying this equation, we conclude (37) as follows:
µgb=E(�X̃i0j,X

∗
i0j� |j∈Nb(i0))/m≥E(�X̃ki0X̃i0j,X

∗
kj� |j,k∈Nb(i0))/m

=E(�X̃i0j,X̃i0kX
∗
kj� |j,k∈Nb(i0))/m=E(�X̃i0j,X̃i0kP

∗
kP

∗�
j � |j,k∈Nb(i0))/m=µbb.

Note that the combination of (35), (36) and (37) yields
E
�
Ainit,(0)(i0,j)|i0j∈Eg

�
−E

�
Ainit,(0)(i0,k)|i0k∈Eb

�
≥(1−µbg)ε=µε. (38)

We also note that for any jk∈E, where i0∈N(jk), the cycle jki0 is the only cycle that contain jk whose
edges may belong to Eb. We thus use (30), then the fact that for X, Y ∈Pm, �X,Y �≥0 together with
the latter observation. At last, we use the fact that �X∗

jk,X
∗
jiX

∗
ik�=�X∗

jk,X
∗
jk�=m to conclude that for

any jk∈E

Ainit,(0)(j,k)=
1

m|N(jk)|


�X̃jk,X̃ji0X̃i0k�+

�

i∈N(jk)\i0
�X̃jk,X̃jiX̃ik�




≥ 1

m|N(jk)|
�

i∈N(jk)\i0
�X∗

jk,X
∗
jiX

∗
ik�=

1

m|N(jk)|(|N(jk)|−1)m=1− 1

|N(jk)|≥1− 2

np2
,

and consequently

max
jk,j�k�∈E

|Ainit,(0)(j,k)−Ainit,(0)(j
�,k�)|≤ 2

np2
. (39)

We note that for the given i0∈ [n], j∈N(i0) and k∈N(i0j): abbi0jk, abgi0jk, agbi0jk are all independent random
variables ∈ [0,1]. Therefore, application of Hoeffding’s inequality and the assumption that n=Ω(1/(p2µ2ε2))
yields for j∈Ng(i0)

Pr

�
Ainit,(0)(i0,j)≤EAinit,(0)(i0,j)−

µε

4
+

1

np2

�

<exp

�
−Ω

�
np2

�
µε

4
− 1

np2

�2
��

=exp
�
−Ω

�
np2µ2ε2

��
(40)

and for k∈Nb(i0)

Pr

�
Ainit,(0)(i0,k)≥EAinit,(0)(i0,k)+

µε

4
− 1

np2

�

<exp

�
−Ω

�
np2

�
µε

4
− 1

np2

�2
��

=exp
�
−Ω

�
np2µ2ε2

��
. (41)

Taking a union bound over j∈Ng(i0), while using (40), and another union bound over k∈Nb(i0), while
using (41), result in

Pr

�
min

j∈Ng(i0)
Ainit,(0)(i0,j)≥E(Ainit,(0)(i0,j)|i0j∈Eg)−

µε

4
+

1

np2

�
>1−2npexp

�
−Ω

�
np2µ2ε2

��

and

Pr

�
max

k∈Nb(i0)
Ainit,(0)(i0,k)≤E(Ainit,(0)(i0,k)|i0k∈Eb)+

µε

4
− 1

np2

�
>1−2npexp

�
−Ω

�
np2µ2ε2

��
.
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Combining the above two equations and then applying (38) we obtain that

Pr

�
min

j∈Ng(i0)
Ainit,(0)(i0,j)> max

k∈Nb(i0)
Ainit,(0)(i0,k)+

E(Ainit,(0)(i0,j)|i0j∈Eg)−E(Ainit,(0)(i0,k)|i0k∈Eb)−
µε

2
+

2

np2

�
(42)

≥Pr

�
min

j∈Ng(i0)
Ainit,(0)(i0,j)> max

k∈Nb(i0)
Ainit,(0)(i0,k)+

µε

2
+

2

np2

�

>1−4npexp
�
−Ω

�
np2µ2ε2

��
.

The combination of (39) and (42) yields for any j �=i0

Pr

�
min

k∈Ng(i0j)
(Ainit,(0)(i0,k)+Ainit,(0)(k,j))> max

k∈Nb(i0j)
(Ainit,(0)(i0,k)+Ainit,(0)(k,j))+

µ

2
ε

�

>1−4npexp
�
−Ω

�
np2µ2ε2

��
.

Recall that for ij∈E, Winit,(1)(i,j)=exp(β0Ainit,(0)(i,j)). In view of this equality and the above equation,
we conclude that for any j �=i0

min
k∈Ng(i0j)

Winit,(1)(i0,k)Winit,(1)(k,j)≥ max
k∈Nb(i0j)

Winit,(1)(i0,k)Winit,(1)(k,j)e
β0µε/2

with probability at least 1−4npexp
�
−Ω

�
np2µ2ε2

��
. (43)

Using this inequality, we establish the desired upper bound of �Ainit,(1)−A∗�∞ in the following three
complementary cases.
Case 1: Edge ij∈E is incident to node i0. That is, without loss of generality, the edge ij is of the form
i0j for j∈ [n]\{i0}. In this case, by assumption (27),

|Ng(i0j)|
|Nb(i0j)|

≥ |N(i0j)|ε/2
|N(i0j)|(1−ε/2)

=
ε

2−ε
. (44)

Combining the definition of Ainit,(1), the fact that |�X̃i0j,X̃i0kX̃kj�/m−A∗(i0,j)|≤1 (as it is an absolute
value of a difference of two numbers in [0,1]) as well as (43) and (44), we obtain that with the probability
indicated in (43)

|Ainit,(1)(i0,j)−A∗(i0,j)|

=

������

�
k∈N(i0j)

Winit,(1)(i0,k)Winit,(1)(k,j)
�
�X̃i0j,X̃i0kX̃kj�/m

�

�
k∈N(i0j)

Winit,(1)(i0,k)Winit,(1)(k,j)
−A∗(i0,j)

������

≤
�

k∈N(i0j)
Winit,(1)(i0,k)Winit,(1)(k,j)|�X̃i0j,X̃i0kX̃kj�/m−A∗(i0,j)|�

k∈N(i0j)
Winit,(1)(i0,k)Winit,(1)(k,j)

(45)

≤
�

k∈Nb(i0j)
Winit,(1)(i0,k)Winit,(1)(k,j)�

k∈Nb(i0j)
Winit,(1)(i0,k)Winit,(1)(k,j)+

�
k∈Ng(i0j)

Winit,(1)(i0,k)Winit,(1)(k,j)

=
1

1+

�
k∈Ng(i0j)

Winit,(1)(i0,k)Winit,(1)(k,j)�
k∈Nb(i0j)

Winit,(1)(i0,k)Winit,(1)(k,j)

≤ 1

1+
|Ng(i0j)|
|Nb(i0j)|e

β0µε/2
≤ 1

1+ ε
2−εe

β0µε/2
.

Case 2: Edge jk is not incident to i0 and i0 ∈Nb(jk). That is, we assume that j and k are in [n]\{i0}
and at least one of them is in Nb(i0). In this case,

Nb(jk)={i0} and Ng(jk)=N(jk)\{i0}
and consequently

|Nb(jk)|=1 and |Ng(jk)|= |N(jk)|−1.
Following the same arguments deriving (45), but using the above two equations (instead of (44)), we obtain
that with the probability indicated in (43)

|Ainit,(1)(j,k)−A∗(j,k)|≤ Winit,(1)(j,i0)Winit,(1)(i0,k)

Winit,(1)(j,i0)Winit,(1)(i0,k)+
�

l∈N(jk)\{i0}Winit,(1)(j,l)Winit,(1)(l,k)

=
1

1+
�

l∈N(jk)\{i0}Winit,(1)(j,l)Winit,(1)(l,k)

Winit,(1)(j,i0)Winit,(1)(i0,k)

≤ 1

1+(|N(jk)|−1)eβ0µε/2
.

Case 3: Edge jk is not incident to i0 and i0∈Ng(jk). That is, we assume that both j and k are in Ng(i0).
Note that in this case, all 3-cycles containing jk are uncorrupted. That is

Nb(jk)=∅ and Ng(jk)=N(jk).
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Consequently, Ainit,(1)(j,k)=A∗(j,k)=1 and thus
|Ainit,(1)(j,k)−A∗(j,k)|=0.

Combining all the above three cases, for all jk∈E

|Ainit,(1)(j,k)−A∗(j,k)|≤ 1

1+ ε
2−εe

β0µε/2
.

with probability at least 1− 4np exp
�
−Ω

�
np2µ2ε2

��
. Since n = Ω(1/(p2µ2ε2)) this probability is

sufficiently large. Note that the only free parameter in the right hand side of the above inequality is β0. Thus
one can apply an aggressive reweighting with very large β0 and guarantee in this special case near exact
recovery for CEMP. The only restriction of Theorem (5.2) on {X̃ij}ij∈E and {P ∗

i }i∈[n] is the condition:
E(||X̃i0j−X∗

i0j||2F |j∈Nb(i0))≤E(||X̃ki0X̃i0j−X∗
kj||2F |j,k∈Nb(i0)).

We note that since
||X̃i0j−X∗

i0j||2F =�X∗
ki0X̃i0jX

∗
jk−Im�2F and �X̃ki0X̃i0j−X∗

kj�2F =�X̃ki0X̃i0jX
∗
jk−Im�2F

this condition is equivalent to
E
�
�X∗

ki0X̃i0jX
∗
jk−Im�2F |j∈Nb(i0)

�
≤E

�
�X̃ki0X̃i0jX

∗
jk−Im�2F |j,k∈Nb(i0)

�
.

Both sides of the inequality contain conditional expectations of the cycle inconsistency of the 3 cycle i0jk.
In the LHS it is condition on the edge i0j being corrupted, where in the RHS it is conditioned on both edges
i0j and i0k being corrupted. That is, the above condition means that when the number of corrupted edges
in a 3-cycle is enlarged from 1 to 2, then the cycle inconsistency increases on average.

A.3.2 Failure cases of least squares methods

We demonstrate some failure cases of least squares methods for permutation synchronization under the
superspreader model. In view of (27), we assume that (1−2ε)-fraction of i0j∈E is corrupted.

We start with considering PPM. In view of (4), the PPM iteration at node i0 is

Pi0,(t+1)=argmax
Pi0∈Pm

�
Pi0,

1

|N(i0)|+1

�

j∈[n]
X̃i0jPj,(t)

�
.

The following proposition demonstrates failure cases of PPM. It uses the notation Q =�
j∈Nb(i0)

X̃i0jP
∗
j /|Nb(i0)|.

Proposition A.2. If there exist Pcrpt �=P ∗
i0

and ε0<1 such that 2ε
√
2m+(1−2ε)ε0<1 and

�Q−Pcrpt�F <ε0, (46)
then

Pcrpt=argmax
Pi0∈Pm

�
Pi0,

1

|N(i0)|+1

�

j∈[n]
X̃i0jP

∗
j

�
(47)

and thus PPM cannot recover P ∗
i0

.

Before we prove this proposition, we clarify it. It states that if the average of X̃i0jP
∗
j over j ∈Nb(i0)

concentrates around a certain permutation matrix, which is different than P ∗
i0

, and ε is sufficiently
small, then PPM fails to recover the ground-truth permutations. By law of large numbers, the condition
�Q−Pcrpt�F <ε0 is satisfied when ���E(X̃i0jP

∗
j )−Pcrpt

���
F
<ε0/2 (48)

and |N(i0)| is sufficiently large. The LAC model described in §6.1 represents this setting. Indeed, in this
case Pcrpt is the identity matrix Im and X̃i0jP

∗
j randomly permutes 3 columns of the identity. In this case,

E(X̃i0jP
∗
j )(i,i)= (m−3)/m for i∈ [m] and E(X̃i0jP

∗
j )(i,j)= 3/(m(m−1)) for i, j ∈ [m], where

i �=j. We have tested this case with m=10, where we have violated the condition 2ε
√
2m+(1−2ε)ε0<1.

Nevertheless, we have still seen a clear advantage of IRGCL, which uses CEMP, over PPM.

We believe that condition (13) for CEMP is less restrictive than (48). Nevertheless, we point out that in
the deterministic case when X̃i0jP

∗
j =Pcrpt for all j∈Nb(i0), then both CEMP and PPM fail. We first

note that the RHS of (13) is 0, so the proposition does not hold for CEMP. We also note that in this scenario
the problem of exact recovery is ill-posed as no algorithm can recover P ∗

i0
. Indeed, setting X̃i0jP

∗
j =Pcrpt

is equivalent to corrupting X∗
ij=P ∗

i P
∗�
j as follows: X̃ij :=PcrptP

∗�
j and thus replacing the underlying

ground-truth permutation P ∗
i by Pcrpt. Anyway, Proposition A.2 assumes a much broader scenario than

this special deterministic example.
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Proof. We note that for any Pi0 ∈Pm

�
Pi0,

1

|N(i0)|+1

�

j∈[n]
X̃i0jP

∗
j

�
=

�
Pi0,

1

|N(i0)|+1


P ∗

i0+
�

j∈Ng(i0)

X∗
i0jP

∗
j +

�

j∈Nb(i0)

X̃i0jP
∗
j



�

=

�
Pi0,

(|Ng(i0)|+1)P ∗
i0
+|Nb(i0)|Q

|N(i0)|+1

�
.

Therefore, it is sufficient to prove that

Pcrpt=argmax
Pi0

∈Pm

�
Pi0,

1

|N(i0)|+1

�

j∈[n]
X̃i0jP

∗
j

�
=argmax

Pi0
∈Pm

�
Pi0,P̂i0

�
, (49)

where Pcrpt �= P ∗
i0

and P̂i0 = ((|Ng(i0)|+1)P ∗
i0
+ |Nb(i0)|Q)/(|N(i0)|+1). Using basic algebraic

relationships and at last applying together the conditions 2ε
√
2m+(1−2ε)ε0<1 and ε0<1, the fact that

�X−Y �2F/2m∈ [0,1] for any X,Y ∈Pm and (46), we obtain that for |N(i0)| sufficiently large

�P̂i0−Pcrpt�F =

����
(|Ng(i0)|+1)P ∗

i0
+|Nb(i0)|Q

|N(i0)|+1
−Pcrpt

����
F

=

����
|Ng(i0)|+1

|N(i0)|+1

�
P ∗
i0−Pcrpt

�
+

|Nb(i0)|
|N(i0)|+1

(Q−Pcrpt)

����
F

≤
����
|Ng(i0)|+1

|N(i0)|+1

�
P ∗
i0−Pcrpt

�����
F

+

����
|Nb(i0)|

|N(i0)|+1
(Q−Pcrpt)

����
F

≤2ε
√
2m+(1−2ε)ε0<1. (50)

By combining (50) and the fact that �X−Y �F ≥2 for X �=Y ∈Pm, we obtain that

�P̂i0−Pcrpt�F <
1

2
min

P �∈Pm,P � �=Pcrpt

�P �−Pcrpt�F .

Consequently, we conclude (49) and thus the auxiliary proposition as follows

Pcrpt= argmin
Pi0

∈Pm

�Pi0−P̂i0�F =argmax
Pi0

∈Pm

�
Pi0,P̂i0

�
.

The argument for failure of general least squares methods is more delicate. Using the above rigorous argument
for PPM, we provide some intuition why least methods can fail. We note that such methods aim to solve

max
{Pi}i∈[n]⊂Pm

�

j∈[n]

�

k∈[n]

�
PjP

�
k ,X̃jk

�
. (51)

We rewrite the objective function of (51) as follows
�

j∈[n]

�

k∈[n]

�
PjP

�
k ,X̃jk

�

=
�
Pi0P

�
i0
,Im

�
+
�

j �=i0

�
PjP

�
i0
,X̃ji0

�
+
�

k�=i0

�
Pi0P

�
k ,X̃i0k

�
+
�

j �=i0

�

k�=i0

�
PjP

�
k ,X

∗
jk

�
.

Since X̃ij=X̃�
ji and

�

j �=i0

�
PjP

�
i0
,X̃ji0

�
=
�

j �=i0

��
PjP

�
i0

��
,X̃�

ji0

�
=
�

j �=i0

�
Pi0P

�
j ,X̃i0j

�
,
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�

j∈[n]

�

k∈[n]

�
PjP

�
k ,X̃jk

�
=
�
Pi0P

�
i0
,Im

�
+2

�

j �=i0

�
Pi0P

�
j ,X̃i0j

�
+
�

j �=i0

�

k�=i0

�
PjP

�
k ,X

∗
jk

�

=−
�
Pi0P

�
i0
,Im

�
+2

�

j∈[n]

�
Pi0P

�
j ,X̃i0j

�
+
�

j �=i0

�

k�=i0

�
PjP

�
k ,X

∗
jk

�
(52)

=−m+2



�
Pi0,

�

j∈[n]
X̃i0jPj

�
+
1

2

�

j �=i0

�

k�=i0

�
PjP

�
k ,X

∗
jk

�



=−m+2



�
Pi0,

�

j∈[n]
X̃i0jPj

�
+
1

2

�

j �=i0

�

k�=i0

�
m− 1

2

��PjP
�
k −X∗

jk

��2
F

�


=C+2



�
Pi0,

�

j∈[n]
X̃i0jPj

�
− 1

4

�

j �=i0

�

k�=i0

��PjP
�
k −X∗

jk

��2
F




for some constant C. We note that the last term in the right hand side of (52) is a double sum of (n−1)2

terms, which are independent of i0. The minimization of this double sum over the variables {Pj}j∈[n]\{i0}
results in the ground-truth solution {P ∗

j }[n]\{i0} (since jk∈Eg for j,k∈ [n]\{i0}) with minimal value
0. Thus the right hand side of (52) can be viewed as a Langrangian with multiplier λ=1/4 of the constrained
optimization problem

max
{Pi}i∈[n]⊂Pm

�
Pi0,

�

j∈[n]
X̃i0jPj

�
(53)

subject to
�

j �=i0

�

k�=i0

��PjP
�
k −X∗

jk

��2
F
=0, (54)

which is equivalent to

max
Pi0

∈Pm

�
Pi0,

�

j∈[n]
X̃i0jPj

�
(55)

subject to Pj=P ∗
j for j �=i0. (56)

We reformulate the above maximization problem by plugging its constraint into its objective function as follows:

max
Pi0∈Pm


�Pi0,Pi0�+

�
Pi0,

�

j �=i0

X̃i0jP
∗
j

�
= max

Pi0
∈Pm


m+

�
Pi0,

�

j �=i0

X̃i0jP
∗
j

�
. (57)

The above problem is almost similar to the one in the RHS of (47). They only differ in the term of the sum
that correspond to j=i0. Therefore, under the superspreader model, the least squares method is a regularized
version of a similar energy function maximized on the RHS of (47). In a similar way to establishing (47),
which results in wrongly estimating P ∗

i as Pcrpt by PPM, one can prove that under similar conditions to
the ones of Proposition A.2 a least squares solver may produce Pcrpt instead of P ∗

i0
.

B Additional Demonstration and Numerical Results

In §B.1 we provide a simple demonstration of the new idea in comparison to CEMP and IRLS. In §B.2
we briefly comment on the computational complexity of our methods. In §B.3 we present the experiments
on a uniform corruption model. In §B.4 we provide additional results on the nonuniform corruption models.

B.1 A Figure Demonstrating the IRGCL Algorithm

The following figure tries to convey the basic idea of IRGCL in comparison to IRLS and CEMP. In this figure,
the notation X→Y means that Y is generated from X. We recall that A, W , P and S2 respectively
represent the estimated matrices of (correlation) affinity, weight, permutation and squared GCW. We also
recall that A1 and A2 respectively denote the first and second order affinities. The two merged lines on
the top of the diagram for IRGCL (one is dashed and the other is full) designate the fact that A is a weighted
average of the first and second order affinities. We use a dashed line to remind the reader that the weights
of A1 diminish as the number of iterations increases. We note that the two merged components represent
two different algorithms, IRLS and CEMP.
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Figure 2: Illustration of IRGCL and its relationship with CEMP and IRLS. The basic idea is that IRGCL
is an iterative convex combination of CEMP and IRLS.

B.2 On the Computational Complexity

We remark that the complexity of Algorithm 1 (which uses only 3-cycles) is O(m3×n3). The complexity of
the projected power iteration is O(m3×n2). The spectral decomposition of the graph connection Laplacian
has complexity O(m3×n3). Thus, IRGCL-S&P, Spectral and PPM have the same complexity O(m3×n3),
which is typically lower than that of the SDP method MatchLift.

We remark that Algorithm 1 can be easily generalized to exploit higher order cycles with length l by using the l-
th power of the GCW matrix. In this case, its complexity is O(m3×n3×l). On the other hand, the complexity
of the original CEMP with general l-cycles is O(m3×nl). Therefore, our idea significantly reduces the
complexity of CEMP when using higher-order cycles and the specific metric discussed in this paper.

B.3 Experiments on Uniform Corruption Model

We test the different methods using data generated from a uniform corruption model. In this model, we
independently sample corrupted edges with probability q, and for each ij∈Eb, X̃ij∼Haar(Pm).

We plot the estimation error �

i�=j

�X̂ij−X∗
ij�2F/

�

i�=j

�X∗
ij�2F

for each corruption probability q=0.7,0.8,0.88,0.9 and 0.92. We compare IRGCL-P and IRGCL-S with
all methods described in §6. Since IRLS-Cauchy-S and IRLS-Cauchy-P performed similarly we report
only one of them. We also tested the standard IRLS described in (5) and (6), which we refer to as IRLS-L1-S.
The implementation of IRLS-L1-S approximately solves (6) using the spectral formulation of (12) at each
iteration. It also initializes by the solution of (12) using the adjacency matrix for the weight matrix. For
each method we run 100 trials and report the means and standard deviations of the estimation errors in Figure
3, where standard deviations are denoted by error bars. We note that IRGCL-S and IRGCL-P consistently

0.7 0.8 0.88 0.9 0.92

q

0

0.2

0.4

0.6

0.8

1

e
rr

o
r

MatchALS

MatchLift

Spectral

PPM

IRLS-Cauchy-S

IRLS-L1-S

IRGCL-P

IRGCL-S

Figure 3: Average matching error under a uniform corruption model.

achieve the lowest errors, and IRGCL-S seems to work slightly better (with lower mean errors and standard
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deviations) under the highest corruption ratio, q=0.92. The spectral method and MatchLift perform the worst.
They are unable to recover the ground-truth permutations when q=0.8. We also remark that PPM works
better than the other least squares methods. However, it is not competitive with IRGCL-S and IRGCL-P
in the high corruption range of 0.88−0.92. In this range, IRLS-L1-S and IRLS-Cauchy-S have lower means
than PPM, but they have large standard deviations, which indicate that they are unstable.

B.4 Additional Experiments on Nonuniform Corruption Models

We report additional results for the LBC and LAC models in §B.4.1 and §B.4.2 respectively. Numerical
results for an Erdős-Rényi graph are included in §B.4.3.

B.4.1 Additional synthetic experiments using the LBC model

Figure 4 reports the estimation errors�

ij∈Eb

�X̂ij−X∗
ij�2F/

�

ij∈Eb

�X∗
ij�2F

of different methods under the LBC model with parameters mc=90 and nc=10,20,30,40. For each method
and each fixed value of nc we run 20 trials and present the mean and standard deviations of the estimation
errors. We note that both IRGCL-S and IRGCL-P are able to achieve near exact recovery when nc≤30. PPM
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c
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1.5

e
rr

o
r

IRGCL-P

IRGCL-S

Spectral

PPM

IRLS-Cauchy-S

IRLS-Cauchy-P

MatchLift

MatchALS

Figure 4: Average matching errors under the local biased corruption model.

performs the worst among the tested methods for all values of nc. We note that in terms of the averaged errors,
IRLS-Cachy-S performs better than the other least squares methods. However, it has high standard deviations,
so that it is unstable, and its averaged values are still not competitive when compared with IRGCL-S and
IRGCL-P. We also note that the standard deviations of the latter two methods are nearly 0 when nc≤30.

B.4.2 Additional synthetic experiments using the LAC Model

Figure 5 reports the estimation errors�

ij∈Eb

�X̂ij−X∗
ij�2F/

�

ij∈Eb

�X∗
ij�2F

of different methods under the LAC model with mc=60 and nc=10, 20, 30, 40. For each method and
each value of nc we run 20 trials and report the mean and standard deviations of the errors. We note that
both IRGCL-P and IRGCL-S are able to recover the ground-truth solution under the LAC model when
nc≤40, whereas other methods cannot.

B.4.3 Additional synthetic experiments with an Erdős-Rényi graph

We repeat the experiments in the main text with G([n],E) as an Erdos-Renyi graph with probability 0.5
instead of a complete graph. Figure 6 reports the estimation errors�

ij∈Eb

�X̂ij−X∗
ij�2F/

�

ij∈Eb

�X∗
ij�2F
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Figure 5: Average matching errors under the local adversarial corruption Model.

of different methods under the LAC model with mc =30 and LBC model with mc =45. Both models
have nc=1, 2, 3, 4, 5, 6. For each method and each value of nc we run 20 trials and report the mean and
standard deviations of the errors. We also report the final error of IRGCL-S and IRGCL-P compared with
P(1) in Algorithm 2 (we call it IRGCL-init) in figure 7.

We note that both IRGCL-P and IRGCL-S are able to give exact recovery on LAC and almost exact recovery
on LBC, while other methods cannot. Also, we find that on LBC both IRGCL iterations effectively decrease
error compared to its initialized permutation, though the initialization is already quite good in this synthetic
setting; On LAC the initialization of IRGCL already achieves exact recovery.
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Figure 6: Average matching errors under the local biased corruption model (left) and local adversarial
corruption model (right) with an Erdős-Rényi graph with p=0.5.
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Figure 7: Average matching errors of IRGCL-S and IRGCL-P compared with IRGCL initialization under
the local biased corruption model (left) and local adversarial corruption model (right) with an Erdős-Rényi
graph with p=0.5.
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