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Abstract

We consider online learning for episodic stochastically constrained Markov de-
cision processes (CMDP), which plays a central role in ensuring the safety of
reinforcement learning. Here the loss function can vary arbitrarily across the
episodes, and both the loss received and the budget consumption are revealed at
the end of each episode. Previous works solve this problem under the restrictive
assumption that the transition model of the MDP is known a priori and establish
regret bounds that depend polynomially on the cardinalities of the state space S and
the action space A. In this work, we propose a new upper confidence primal-dual
algorithm, which only requires the trajectories sampled from the transition model.
In particular, we prove that the proposed algorithm achieves Õ(L|S|

√
|A|T ) upper

bounds of both the regret and the constraint violation, where L is the length of
each episode. Our analysis incorporates a new high-probability drift analysis of La-
grange multiplier processes into the celebrated regret analysis of upper confidence
reinforcement learning, which demonstrates the power of “optimism in the face of
uncertainty” in constrained online learning.

1 Introduction

Constrained Markov decision processes (CMDPs) play an important role in control and planning.
It aims at maximizing a reward or minimizing a penalty metric over the set of all available policies
subject to constraints on other relevant metrics. The constraints aim at enforcing the fairness or safety
of the policies so that overtime the behaviors of the chosen policy is under control. For example, in an
edge cloud serving network [Urgaonkar et al., 2015, Wang et al., 2015], one would like to minimize
the average cost of serving the moving targets subject to a constraint on the average serving delay. In
an autonomous vehicle control problem [Le et al., 2019], one might be interested in minimizing the
driving time subject to certain fuel efficiency or driving safety constraints.

Classical treatment of CMDPs dates back to Fox [1966], Altman [1999] reformulating the problem
into a linear program (LP) via stationary state-action occupancy measures. However, to formulate
such an LP, one requires the full knowledge of the transition model, reward, and constraint functions,
and also assumes them to be fixed. Leveraging the episodic structure of a class of MDPs, Neely
[2012] develops online renewal optimization which potentially allows the loss and constraint functions
to be stochastically varying and unknown, while still relying on the transition model to solve the
subproblem within the episode.

More recently, policy-search type algorithms have received much attention, attaining state-of-art
performance in various control tasks without knowledge of the transition model, e.g., Williams
[1992], Baxter and Bartlett [2000], Konda and Tsitsiklis [2000], Kakade [2002], Schulman et al.
[2015], Lillicrap et al. [2015], Schulman et al. [2017], Sutton and Barto [2018], Fazel et al. [2018],
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Abbasi-Yadkori et al. [2019a,b], Bhandari and Russo [2019], Cai et al. [2019], Wang et al. [2019],
Liu et al. [2019], Agarwal et al. [2019]. While most of the algorithms focus on unconstrained
policy optimization, there are efforts to develop policy-based methods in constrained MDPs where
constraints are known with limited theoretical guarantees. The work Chow et al. [2017] develops a
primal-dual type algorithm which is shown to converge to some constraint satisfying policy. The work
Achiam et al. [2017] develops a trust-region type algorithm which requires solving an optimization
problem with both trust region and safety constraints during each update. Generalizing ideas from
the fitted-Q iteration, Le et al. [2019] develops a batch offline primal-dual type algorithm which
guarantees only the time average primal-dual gap converges.

The goal of this paper is to solve constrained episodic MDPs with more generality in that not only are
transition models unknown, but also the loss and constraint functions can change online. In particular,
the losses can be arbitrarily time-varying and adversarial. When assuming the transition model is
known, Even-Dar et al. [2009] achieves Õ(%2

√
T log |A|) regret with % being the mixing time of the

MDP, and the work Yu et al. [2009] achieves Õ(T 2/3) regret. These two papers consider a continuous
setting that is a little different to the episodic setting that we consider in this paper. The work Zimin
and Neu [2013] further studies the episodic MDP and achieves Õ(L

√
T log(|S||A|)) regret. For the

constrained case with known transitions, the work Wei et al. [2018] achieves Õ(poly(|S||A|)
√
T )

regret and constraint violations, and the work Zheng and Ratliff [2020] attains Õ(|S||A|T 3/4).

After we finished the first version of this work, there are several concurrent works appearing which
also focus on CMDPs with unknown transitions and rewards. The work Efroni et al. [2020] studies
episodic tabular MDPs with unknown but fixed reward and constraint functions. Leveraging upper
confidence bound (UCB) on the reward, constraints and transitions, they obtain an O(

√
T ) regret and

constraint violation via linear program as well as primal-dual optimization. In another work, Ding
et al. [2020] studies the constrained episodic MDPs with a linear structure and adversarial losses via
a primal-dual-type policy optimization algorithm, achieving Õ(

√
T ) regret and constraint violation.

While their scenario is more general than ours, their dependencies on |S|, |A|, L is considerably
worse when applied to the tabular case. Both of these two works rely on Slater condition which is
also more restrictive than that of this work.

On the other hand, for unconstrained online MDPs, the idea of UCB has shown to be effective and
helped achieving tight regret bounds without knowing the transition model, e.g., Jaksch et al. [2010],
Azar et al. [2017], Rosenberg and Mansour [2019a,b], Jin et al. [2019]. The main idea there is to
sequentially refine a confidence set of the transition model and choose a model in the interval which
performs the best in optimizing the current value.

The main contribution of this paper is to show that UCB is also effective when incorporating with
primal-dual type approaches to achieve Õ(L|S|

√
|A|T ) regret and constraint violation simultane-

ously in online MDPs with no knowledge on the transition models, the loss is adversarial and the
constraints are stochastic. This almost matches the lower bound Ω(

√
L|S||A|T ) for the regret Jaksch

et al. [2010] up to an O(
√
L|S|) factor. Under the hood is a new Lagrange multiplier condition

together with a new drift analysis on the Lagrange multipliers leading to low constraint violation.
Our setup is challenging compared to classical constrained optimization in particular due to (1) the
unknown loss and constraint functions from the online setup; (2) the time varying decision sets
resulting from moving confidence interval estimation of UCB. The decision sets can potentially be
much larger than or even inconsistent with the true decision set knowing the model, resulting in
potentially large constraint violation. The main idea is to utilize a Lagrange multiplier condition
as well as a confidence bound of the model to construct a probabilistic bound on an online dual
multiplier. We then explicitly take into account the laziness nature of the UCB estimation in our
algorithm to argue that the bound on the dual multiplier gives the bound on constraint violation.

2 Problem Formulation

Consider an episodic loop-free MDP with a finite state space S and a finite action space A at each
state over a finite horizon of T episodes. Each episode starts with a fixed initial state s0 and ends
with a terminal state sL. The transition probability is P : S × S × A 7→ [0, 1], where P (s′|s, a)
gives the probability of transition from s to s′ under an action a. This underlying transition model
P is assumed to be unknown. The state space is divided into layers with a loop-free structure, i.e.,
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S := S0 ∪ S1 ∪ · · · ∪ SL with a singleton initial layer S0 = {s0} and terminal layer SL = {sL}.
Furthermore, we have Sk ∩ S` = ∅ for k 6= `, and transitions are only allowed between consecutive
layers, which is P (s′|s, a) > 0 only if s′ ∈ Sk+1, s ∈ Sk, and a ∈ A, ∀k ∈ {0, 1, . . . , L− 1}. Such
an assumption enforces that each path from the initial state to the terminal state takes a fixed length
L. This is not an excessively restrictive assumption as any loop-free MDP with bounded varying path
lengths can be transformed into one with a fixed path length (see György et al. [2007] for details).

The loss function for each episode is f t : S × A × S 7→ R, where f t(s, a, s′) denotes the loss
received at episode t for any s ∈ Sk, s′ ∈ Sk+1, and a ∈ A, ∀k ∈ {0, 1, 2, . . . , L− 1}. We assume
ft can be arbitrarily varying with potentially no fixed probability distribution. There are I stochastic
constraint (or budget consumption) functions: gti : S × A × S 7→ R, ∀i ∈ {1, 2, . . . , I}, where
gti(s, a, s

′) denotes the price to pay at episode t for any (s, a, s′). Each stochastic function gti at
episode t is sampled according to a random variable ξti ∼ Di, namely gti(s, a, s

′) = gi(s, a, s
′; ξti).

Then, we define gi(s, a, s′) := E[gti(s, a, s
′)] = E[gi(s, a, s

′; ξti)] where the expectation is taken over
the randomness of ξti ∼ Di. For abbreviation, we denote gi = E[gti ]. In addition, the functions f t
and gti , ∀i ∈ {1, . . . , I}, are mutually independent and independent of the Markov transition. Both
the loss functions and the budget consumption functions are revealed at the end of each episode.

Remark 2.1. It might be tempting to consider the more general scenario that both losses and
constraints are arbitrarily time varying. For such a setting, however, there exist counterexamples
[Mannor et al., 2009] in the arguably simpler constrained online learning scenario that no algorithm
can achieve sublinear regret and constraint violation simultaneously. Therefore, we seek to put extra
assumptions on the problem so that obtaining sublinear regret and constraint violation is feasible,
one of which is to assert constraints to be stochastic instead of arbitrarily varying.

For any episode t, a policy πt is the conditional probability πt(a|s) of choosing an action a ∈ A
at any given state s ∈ S. Let (sk, ak, sk+1) ∈ Sk × A × Sk+1 denotes a random tuple gener-
ated according to the transition model P and the policy πt. The corresponding expected loss is
E[
∑L−1
k=0 f

t(sk, ak, sk+1)|πt, P ], while the budget costs are E[
∑L−1
k=0 g

t
i(sk, ak, sk+1)|πt, P ], i ∈

{1, · · · , I}, where the expectations are taken w.r.t. the randomness of the tuples (sk, ak, sk+1).

In this paper, we adopt the occupancy measure θ(s, a, s′) for our analysis. In general, the occupancy
measure θ(s, a, s′) is a joint probability of the tuple (s, a, s′) ∈ S ×A×S under some certain policy
and transition model. Particularly, with the true transition P , we define the set as

∆ = {θ : θ satisfies the conditions (a), (b), and (c)},

where the conditions (a) (b) (c) [Altman, 1999] are

(a)
∑
s∈Sk

∑
a∈A

∑
s′∈Sk+1

θ(s, a, s′) = 1,∀k ∈ {0, . . . , L− 1}, and θ(s, a, s′) ≥ 0.
(b)

∑
s∈Sk

∑
a∈A θ(s, a, s

′) =
∑
a∈A

∑
s′′∈Sk+2

θ(s′, a, s′′),∀k ∈ {0, . . . , L− 2}, s′ ∈ Sk+1.

(c) θ(s,a,s′)∑
s′′∈Sk+1

θ(s,a,s′′) = P (s′|s, a),∀k ∈ {0, . . . , L− 1}, s ∈ Sk, a ∈ A, s′ ∈ Sk+1.

We can further recover a policy π from θ via π(a|s) =

∑
s′∈Sk+1

θ(s,a,s′)∑
s′∈Sk+1,a∈A

θ(s,a,s′) for any (s, a) ∈ Sk×A.

We define θ
t
(s, a, s′) to be the occupancy measure at episode t w.r.t. the true transition P ,

resulting from a policy πt at episode t. Given the definition of occupancy measure, we can
rewrite the expected loss and the budget cost as E[

∑L−1
k=0 f

t(sk, ak, sk+1)|πt, P ] = 〈f t, θt〉
where 〈f t, θt〉 =

∑
s,a,s′ f

t(s, a, s′)θ
t
(s, a, s′) and E[

∑L−1
k=0 g

t
i(sk, ak, sk+1)|πt, P ] = 〈gti , θ

t〉with

〈gti , θ
t〉 =

∑
s,a,s′ f

t(s, a, s′)θ
t
(s, a, s′). We aim to solve the following constrained optimization,

and let θ
∗

be one solution which is further viewed as a reference point to define the regret:

minimize
θ∈∆

T−1∑
t=0

〈f t, θ〉, subject to 〈gi, θ〉 ≤ ci, ∀i ∈ {1, 2, . . . , I}, (1)

where
∑T−1
t=0 〈f t, θ〉 =

∑T−1
t=0 E[

∑L−1
k=0 f

t(sk, ak, sk+1)|π, P ] is the overall loss in T episodes and
constraints are enforced on the budget cost 〈gi, θ〉 = E[

∑L−1
k=0 gi(sk, ak, sk+1)|π, P ] based on the

expected budget consumption functions gi,∀i ∈ [I]. To measure the regret and the constraint violation
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respectively for solving the above problem in an online setting , we define the following two metrics:

Regret(T ) :=

T−1∑
t=0

〈
f t, θ

t − θ∗
〉
, and Violation(T ) :=

∥∥∥∥∥
[
T−1∑
t=0

(
g(θ

t
)− c

)]
+

∥∥∥∥∥
2

, (2)

where the notation [v]+ denotes the entry-wise application of max{·, 0} for any vector v. For
abbreviation, we let gt(θ) := [〈gt1, θ〉 , · · · , 〈gtI , θ〉]>, and c := [c1, · · · , cI ]>.

The goal is to attain a sublinear regret bound and constraint violation on this problem w.r.t. any fixed
stationary policy π, which does not change over episodes. In another word, we compare to the best
policy π∗ in hindsight whose corresponding occupancy measure θ

∗ ∈ ∆ solves problem (1). We
make the following assumption on the existence of a solution to (1).
Assumption 2.2. There exists at least one fixed policy π such that the corresponding occupancy
measure θ ∈ ∆ is feasible, i.e., 〈gi, θ〉 ≤ ci,∀i ∈ {1, 2, · · · , I}.

Then, we assume boundedness on function values for simplicity of notations without loss of generality.
Assumption 2.3. We assume the following quantities are bounded. For any t ∈ {1, 2, . . . , T}, (1)
sups,a,s′ |f t(s, a, s′)| ≤ 1, (2)

∑I
i=1 sups,a,s′ |gti(s, a, s′)| ≤ 1, (3)

∑I
i=1 |ci| ≤ L.

When the transition model P is known and Slater’s condition holds (i.e., existence of a policy
which satisfies all stochastic inequality constraints with a constant ε-slackness), this stochastically
constrained online linear program can be solved via similar methods as Wei et al. [2018], Yu et al.
[2017] with a regret bound that depends polynomially on the cardinalities of state and action spaces,
which is highly suboptimal especially when the state or action space is large. The main challenge
we will address in this paper is to solve this problem without knowing the model P , or losses and
constraints before making decisions, while tightening the dependency on both state and action spaces
in the resulting performance bound.

3 Proposed Algorithm

In this section, we introduce our proposed algorithm, namely, the upper confidence primal-dual
(UCPD) algorithm, as presented in Algorithm 1. It adopts a primal-dual mirror descent type algorithm
solving constrained problems but with an important difference: we maintain a confidence set via past
sample trajectories, which contains the true MDP model P with high probability, and choose the
policy to minimize the proximal Lagrangian using the most optimistic model from the confidence set.
Such an idea, known as optimism in the face of uncertainty, is reminiscent of the upper confidence
bound (UCB) algorithm [Auer et al., 2002] for stochastic multi-armed bandit (MAB) and first
proposed by Jaksch et al. [2010] to obtain a near-optimal regret for reinforcement learning problems.

In the algorithm, we introduce epochs, which are back-to-back time intervals that span several
episodes. We use ` ∈ {1, 2, · · · } to index the epochs and use `(t) to denote a mapping from the
episode index t to the epoch index, indicating which epoch the t-th episode lives. Next, let N`(s, a)
and M`(s, a, s

′) be two global counters which indicate the number of times the tuples (s, a) and
(s, a, s′) appear before the `-th epoch. Let n`(s, a), m`(s, a, s

′) be two local counters which indicate
the number of times the tuples (s, a) and (s, a, s′) appear in the `-th epoch. We start a new epoch
whenever there exists (s, a) such that n`(t)(s, a) ≥ N`(t)(s, a). Otherwise, set `(t+ 1) = `(t). Such
an update rule follows from Jaksch et al. [2010]. Then, we define the empirical transition model P̂` at
any epoch ` > 0 as P̂`(s′|s, a) := M`(s, a, s

′)/max{1, N`(s, a)}, ∀s, s′ ∈ S, a ∈ A. As shown
in Remark 5.8, introducing the ‘epoch’ is necessary to achieve an Õ(

√
T ) constraint violation.

The next lemma shows that with high probability, the true transition model P is contained in a
confidence interval around the empirical one no matter what sequence of policies taken.
Lemma 3.1 (Lemma 1 of Neu et al. [2012]). For any ζ ∈ (0, 1), we have that with probability at
least 1− ζ , for all epoch ` and any state and action pair (s, a) ∈ S ×A,

∥∥P (·|s, a)− P̂`(·|s, a)
∥∥

1
≤

εζ` (s, a), with the error εζ` (s, a) being

εζ` (s, a) :=

√
2|Sk(s)+1| log(T |S||A|/ζ)

max{1, N`(s, a)}
, (3)

where k(s) is a mapping from state s to the layer index k, indicating whe layer the state s belongs to.
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Algorithm 1 Upper-Confidence Primal-Dual (UCPD) Mirror Descent
1: Input: Let V, α > 0, λ ∈ [0, 1) be some trade-off parameters. Fix ζ ∈ (0, 1).
2: Initialize: Qi(0) = 0, ∀i = 1, . . . , I . θ0(s, a, s′) = 1/(|Sk||Sk+1||A|), ∀(s, a, s′) ∈ Sk ×
A × Sk+1. `(1) = 1. n1(s, a) = 0, N1(s, a) = 0, ∀(s, a) ∈ S × A. m1(s, a, s′) =

0, M1(s, a, s′) = 0, f0(s, a, s′) = 0, g0(s, a, s′) = 0, P̂1(s′|s, a) = 0, ∀(s, a, s′) ∈ S ×A×S .
3: for t = 1, . . . , T do
4: Compute θt via (6) and the corresponding policy πt via (4).
5: Sample a path (st0, a

t
0, · · · , stL−1, a

t
L−1, s

t
L) following the policy πt.

6: Update each dual multiplier Qi(t) via (5) and update the local counters:

n`(t)(s
t
k, a

t
k) = n`(t)(s

t
k, a

t
k) + 1, m`(t)(s

t
k, a

t
k, s

t
k+1) = m`(t)(s

t
k, a

t
k, s

t
k+1) + 1.

7: Observe the loss function f t and constraint functions {gti}Ii=1.
8: if ∃(s, a) ∈ S ×A, n`(t)(s, a) ≥ N`(t)(s, a), then
9: Start a new epoch:

10: Set `(t+ 1) = `(t) + 1, and update the global counters for all s, s′ ∈ S, a ∈ A by
N`(t+1)(s, a) = N`(t)(s, a) + n`(t)(s, a),

M`(t+1)(s, a, s
′) = M`(t)(s, a, s

′) +m`(t)(s, a, s
′).

11: Construct the empirical transition P̂`(t+1)(s
′|s, a) :=

M`(t+1)(s,a,s
′)

max{1,N`(t+1)(s,a)} ,∀(s, a, s
′).

12: Initialize n`(t+1)(s, a) = 0, m`(t+1)(s, a, s
′) = 0, ∀(s, a, s′) ∈ S ×A× S .

13: else
14: Set `(t+ 1) = `(t).
15: end if
16: end for

3.1 Computing Optimistic Policies

Next, we show how to compute the policy at each episode. Formally, we introduce a new occupancy
measure at episode t, namely θt(s, a, s′), s, s′ ∈ S, a ∈ A. It should be emphasized that this is
different from the θ

t
(s, a, s′) defined in the previous section as θt(s, a, s′) is chosen by the decision

maker at episode t to construct the policy. In particular, θt(s, a, s′) does not have to satisfy the local
balance equation (c). Once getting θt(s, a, s′) (which will be detailed below), we construct the policy:

πt(a|s) =

∑
s′ θ

t(s, a, s′)∑
s′,a θ

t(s, a, s′)
, ∀a ∈ A, s ∈ S. (4)

Next, we demonstrate the proposed method computing θt(s, a, s′). First, we introduce an online dual
multiplier Qi(t) for each constraint in (1), which is 0 when t = 0 and updated as follows for t ≥ 1

Qi(t) = max{Qi(t− 1) +
〈
gt−1
i , θt

〉
− ci, 0}. (5)

At each episode, we compute the occupancy measure θt(s, a, s′) by solving an optimistic regularized
linear program (ORLP) with tuning parameters λ, V, α > 0. Specifically, we update θt by

θt = argmin
θ∈∆(`(t),ζ)

〈
V f t−1 +

I∑
i=1

Qi(t− 1)gt−1
i , θ

〉
+ αD(θ, θ̃t−1), (6)

which introduces extra notations ∆(`(t), ζ), θ̃t−1, and D(·, ·) that will be elaborated below. Specif-
ically, we denote by D(·, ·) the unnormalized Kullback-Leibler (KL) divergence, which is de-
fined as D(θ, θ′) :=

∑
s,a,s′ [θ(s, a, s

′) log θ(s,a,s′)
θ′(s,a,s′) − θ(s, a, s′) + θ′(s, a, s′)], ∀θ, θ′. In ad-

dition, for ∀k = {0, . . . , L − 1} and ∀s ∈ Sk, a ∈ A, s′ ∈ Sk+1, we compute θ̃t−1 via
θ̃t−1(s, a, s′) = (1− λ)θt−1(s, a, s′) + λ

|Sk||Sk+1||A| , where 0 ≤ λ ≤ 1. This equation introduces a
probability mixing, pushing the update away from the boundary and encourage explorations.

Furthermore, since for any epoch ` > 0, we can compute the empirical transition model P̂` with the
confidence interval size εζ` as defined in (3), we let every θ ∈ ∆(`, ζ) satisfy that∥∥∥∥ θ(s, a, ·)∑

s′ θ(s, a, s
′)
− P̂`(·|s, a)

∥∥∥∥
1

≤ εζ` (s, a), ∀s ∈ S, a ∈ A, (7)
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such that we can define the feasible set ∆(`, ζ) for the optimization problem (6) as follows

∆(`, ζ) := {θ : θ satisfies conditions (a), (b), and (7) }. (8)

By this definition, we know that θt ∈ ∆(`(t), ζ) at the epoch `(t). On the other hand, according to
Lemma 3.1, we have that with probability at least 1 − ζ, for all epoch `, ∆ ⊆ ∆(`, ζ) holds. By
Rosenberg and Mansour [2019a], the problem (6) is essentially a linear programming with a special
structure that can be solved efficiently (see details in Section A of the supplementary material).

4 Main Results

Before presenting our results, we first make assumption on the existence of Lagrange multipliers. We
define a partial average function starting from any time slot t as f (t,τ) := 1

τ

∑τ−1
j=0 f

t+j . Then, we
consider the following static optimization problem (recalling gi := E[gti ])

minimize
θ∈∆

〈f (t,τ), θ〉 s.t. 〈gi, θ〉 ≤ ci, ∀i ∈ {1, . . . , I}. (9)

Denote the solution to this program as θ∗t,τ . Define the Lagrangian dual function of (9) as

q(t,τ)(η) := min
θ∈∆

〈f (t,τ), θ〉+

I∑
i=1

ηi(〈gi, θ〉 − ci),

where η = [η1, . . . , ηI ]
> ∈ RI is a dual variable. We are ready to state our assumption.

Assumption 4.1. For any time slot t and any time period τ , the set of primal optimal solution to (9)
is non-empty. Furthermore, the set of Lagrange multipliers, which is V∗t,τ := argmaxη∈RI+q

(t,τ)(η),
is non-empty and bounded. Any vector in V∗t,τ is called a Lagrange multiplier associated with (9).
Furthermore, let B > 0 be a constant such that for any t ∈ {1, . . . , T} and τ =

√
T , the dual

optimal set V∗t,τ defined above satisfies maxη∈V∗t,τ ‖η‖2 ≤ B.

As is discussed in Section B of the supplementary material, Assumption 4.1 proposes a weaker
condition than the Slater condition commonly adopted in previous constrained online learning works.
The following lemma further shows the relation between Assumption 4.1 and the dual function:

Lemma 4.2. Suppose Assumption 4.1 holds, then for any t ∈ {0, . . . , T − 1} and τ =
√
T , there

exists constants ϑ, σ > 0 such that for any η ∈ RI satisfying 1 dist(η,V∗t,τ ) ≥ ϑ, we have

q(t,τ)(η∗t,τ )− q(t,τ)(η) ≥ σ · dist(η,V∗t,τ ), ∀ η∗t,τ ∈ V∗t,τ .

Based on the above assumptions and lemmas, we present results of the regret and constraint violation.
Theorem 4.3. Consider any fixed horizon T ≥ |S||A| with |S|, |A| > 1. Suppose Assumption 2.2,
2.3, 4.1 hold and there exist absolute constants σ and ϑ such that σ ≥ σ and ϑ ≤ ϑ for all σ, ϑ in
Lemma 4.2 over t = {0, 1, . . . , T − 1} and τ =

√
T . If setting α = LT, V = L

√
T , λ = 1/T and

ζ ∈ (0, 1/(4 + 8L/σ)] in Algorithm 1, with probability at least 1− 4ζ, we have

Regret(T ) ≤ Õ
(
L|S|

√
T |A|

)
, Violation(T ) ≤ Õ

(
L|S|

√
T |A|

)
,

where the notation Õ(·) hides the logarithmic factors log3/2(T/ζ) and log(T |S||A|/ζ).

5 Theoretical Analysis

5.1 Proof of Regret Bound

Lemma 5.1. The updating rules in Algorithm 1 ensure that with probability at least 1− 2ζ,

T−1∑
t=0

∥∥θt − θt∥∥
1
≤ (
√

2 + 1)L|S|

√
2T |A| ln T |S||A|

ζ
+ 2L2

√
2T ln

L

ζ
.

1We let dist(η,V∗t,τ ) := minη′∈V∗t,τ
1
2
‖η − η′‖22 as Euclidean distance between a point η and the set V∗t,τ .
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Lemma 5.2. The updating rules in Algorithm 1 ensure that with probability at least 1− ζ,

T−1∑
t=0

〈
f t, θt − θ∗

〉
≤4L2T + (λT + 1)αL log |S|2|A|

V
+ 2λLT +

LT

2α
+

1

V

T−1∑
t=0

〈Q(t),gt(θ
∗
)− c〉.

Here we let Q(t) := [Q1(t), Q2(t), · · · , QI(t)]>. Next, we present Lemma 5.3, which is one of the
key lemmas in our proof. Then, this lemma indicates that ‖Q(t)‖2 is bounded by O(

√
T ) with high

probability when setting the parameters τ, V, α, λ as in Theorem 4.3. Thus, introducing stochastic
constraints retains the O(

√
T ) regret. Moreover, this lemma will lead to constraint violation in the

level of O(
√
T ). Lemma 5.3 is proved by making use of Assumption 4.1 and Lemma 4.2.

Lemma 5.3. Letting τ =
√
T and ζ satisfy σ/4 ≥ ζ(σ/2 + 2L), the updating rules in Algorithm 1

ensure that with probability at least 1− Tδ, the following inequality holds for all t ∈ {1, . . . , T},

‖Q(t)‖2 ≤ ω := ψ + τ
512L2

σ
log

(
1 +

128L2

σ2 eσ/(32L)

)
+ τ

64L2

σ
log

1

δ
,

where we define ψ := (2τL + CV,α,λ)/σ + 2αL log(|S|2|A|/λ)/(στ) + τσ/2 and CV,α,λ :=

2(σB + σ ϑ)V + (6 + 4ϑ)V L+ V L/α+ 4LλV + 2αλL log |S|2|A|+ 8L2.

Remark 5.4. We discuss the upper bound of the term log
(
1 + 128L2

σ2 eσ/(32L)
)

in the following way:
(1) if 128L2

σ2 eσ/(32L) ≥ 1, then this term is bounded by log
(

256L2

σ2 eσ/(32L)
)

= σ
32L + log 256L2

σ2 ; (2)
if 128L2

σ2 eσ/(32L) < 1, then the term is bounded by log 2. Thus, combining the two cases, we have
log
(
1 + 128L2

σ2 eσ/(32L)
)
≤ log 2 + σ

32L + log 256L2

σ2 . This discussion shows that the log term in the
result of Lemma 5.3 will not introduce extra dependency on L except a logL term.

With the bound of ‖Q(t)‖2 in Lemma 5.3, we further obtain the following lemma.
Lemma 5.5. By Algorithm 1, if σ/4 ≥ ζ(σ/2 + 2L), then with probability at least 1− 2Tδ,

T−1∑
t=0

〈Q(t),gt(θ
∗
)− c〉 ≤ 2Lω

√
T log

1

Tδ
,

with ω defined as the same as in Lemma 5.3.

Proof of Regret Bound in Theorem 4.3. Recall that θt is the probability vector chosen by the decision
maker, and θ

t
is the true occupancy measure at time t while θ

∗
is the solution to the problem (1). The

main idea is to decompose the regret as follows

T−1∑
t=0

〈
f t, θ

t − θ∗
〉

=

T−1∑
t=0

(〈
f t, θ

t − θt
〉

+
〈
f t, θt − θ∗

〉)
≤
T−1∑
t=0

∥∥θt − θt∥∥
1︸ ︷︷ ︸

Term (I)

+

T−1∑
t=0

〈
f t, θt − θ∗

〉
︸ ︷︷ ︸

Term (II)

,
(10)

where we use Assumption 2.3 such that
〈
f t, θ

t − θt
〉
≤ ‖f t‖∞

∥∥θt − θt∥∥
1
≤
∥∥θt − θt∥∥

1
. Thus, it

suffices to bound the Term (I) and Term (II).

We first show the bound for Term (I). According to Lemma 5.1, by the fact that L ≤ |S| and
|S|, |A| ≥ 1, we have that with probability at least 1− 2ζ, the following holds

Term (I) ≤ O
(
L|S|

√
T |A| log

1
2 (T |S||A|/ζ)

)
. (11)

For Term (II), setting V = L
√
T , α = LT , τ =

√
T , and λ = 1/T , by Lemma 5.2, we obtain

Term (II) ≤ 8L
√
T |S||A|+ 1

L
√
T

T−1∑
t=0

〈Q(t),gt(θ
∗
)− c〉,

7



where we use the inequality that log |S||A| ≤
√
|S||A| with the inequality

√
x ≥ log x. Thus, we

further need to bound the last term of the above inequality. By Lemma 5.5 and Remark 5.4, with
probability at least 1− 2Tδ for all t ∈ {1, . . . , T}, we have

1

L
√
T

T−1∑
t=0

〈Q(t),gt(θ
∗
)− c〉 ≤ O

(
L|S|

√
T |A| log

3
2 (T/δ)

)
,

by the facts that L ≤ |S| , |S| > 1, |A| > 1, and the assumption T ≥ |S||A|, as well as the computa-
tion of ψ as ψ = O

(
L2
√
T + L log |S||A|+ L2

√
T log(T |S||A|)

)
. Therefore, with probability at

least 1− 2Tδ, the following holds

Term (II) ≤ O
(
L|S|

√
T |A| log

3
2 (T/δ)

)
. (12)

Combining (11) and (12) with (10), and letting δ = ζ/T , by union bound, we eventually obtain
that with probability at least 1− 4ζ, the regret bound Regret(T ) ≤ Õ

(
L|S|

√
T |A|

)
holds, where

the notation Õ(·) hides the logarithmic factors. Further let ζ ≤ 1/(4 + 8L/σ) < 1/4 (such that
σ/4 ≥ ζ(σ/2 + 2L) is guaranteed). This completes the proof.

5.2 Proof of Constraint Violation Bound

Lemma 5.6. The updating rules in Algorithm 1 ensure∥∥∥∥∥
[
T−1∑
t=0

(gt(θt)− c)

]
+

∥∥∥∥∥
2

≤ ‖Q(T )‖2 +

T∑
t=1

∥∥θt − θt−1
∥∥

1
.

Lemma 5.7. The updating rules in Algorithm 1 ensure

T∑
t=1

∥∥θt − θt−1
∥∥

1
≤ 2L

√
T |S||A| log

8T

|S||A|
+

2L

(1− λ)α

T−1∑
t=0

‖Q(t)‖2 +
2V + αλ

(1− λ)α
LT.

Remark 5.8. The proof of Lemma 5.7 uses the fact that the confidence interval of P changes only√
T |S||A| log(8T/(|S||A|)) times, thanks to the doubling of epoch length in Algorithm 1. Within

each epoch where the confidence interval is unchanged, we further show ‖θt − θt−1‖1 is small.

Proof of Constraint Violation Bound in Theorem 4.3. We decompose the constraint violation as∥∥∥∥∥
[
T−1∑
t=0

(
gt(θ

t
)− c

)]
+

∥∥∥∥∥
2

≤
T−1∑
t=0

∥∥gt(θt)− gt(θ
t
)
∥∥

2
+

∥∥∥∥∥
[
T−1∑
t=0

(
gt(θt)− c

) ]
+

∥∥∥∥∥
2

≤
T−1∑
t=0

∥∥θt − θt∥∥
1︸ ︷︷ ︸

Term (III)

+

∥∥∥∥∥
[
T−1∑
t=0

(
gt(θt)− c

)]
+

∥∥∥∥∥
2︸ ︷︷ ︸

Term (IV)

,
(13)

where the second inequality is due to Assumption 2.3 that ‖gt(θt)− gt(θ
t
)‖2 = (

∑I
i=1 |〈gti , θt −

θ
t〉|2)

1
2 ≤

∑I
i=1 ‖gti‖∞‖θt − θ

t‖1 ≤ ‖θt − θ
t‖1. Thus, it suffices to bound Terms (III) and (IV).

For Term(III), we already have its bound as (11). Then, we focus on proving the upper bound
of Term(IV). Set V = L

√
T , α = LT , τ =

√
T , and λ = 1/T as in the proof of the regret

bound. By Lemma 5.6, we know that to bound Term(IV) requires bounding the terms ‖Q(T )‖2
and

∑T
t=1 ‖θt − θt−1‖1. By Lemma 5.3, combining it with Remark 5.4 and ψ = O

(
L2
√
T +

L log |S||A| + L2 log(T |S||A|)/
√
T
)

as shown in the proof of the regret bound, letting σ/4 ≥
ζ(σ/2 + 2L), with probability 1− Tδ, for all t ∈ {1, . . . , T}, the following inequality holds

‖Q(t)‖2 ≤ O
(
L2
√
T log(L/δ)

)
, (14)

where we use log x ≤
√
x. This gives the bound of ‖Q(T )‖2 that ‖Q(T )‖2 ≤ O

(
L2
√
T log(L/δ)

)
.
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Furthermore, by Lemma 5.7, we know that the the key to bound
∑T
t=1 ‖θt − θt−1‖1 is also the drift

bound for Q(t). Therefore, by (14) and the settings of the parameters α, λ, V , we have

T∑
t=1

‖θt − θt−1‖1 ≤ O
(
L|S|

√
|A|T log(T |S||A|/δ)

)
, (15)

by the facts that L ≤ |S| , |S| > 1, |A| > 1 and the condition |S||A| ≤ T . Thus combining (14) and
(15) with Lemma 5.6, and letting δ = ζ/T , then with probability at least 1− ζ, we have

Term(IV) ≤ O
(
L|S|

√
|A|T log(T |S||A|/δ)

)
.

Combining results for Term(III) and Term(IV) with (13), by union bound, with probability at least
1− 4ζ , the constraint violation Violation(T ) ≤ Õ

(
L|S|

√
T |A|

)
holds. This finishes the proof.

6 Conclusion

In this paper, we propose a new upper confidence primal-dual algorithm to solve online constrained
episodic MDPs with arbitrarily varying losses and stochastically changing constraints. In particular,
our algorithm does not require transition models of the MDPs and delivers an Õ(L|S|

√
|A|T ) upper

bounds of both the regret and the constraint violation. The analysis builds upon a Lagrange multiplier
condition on a sequence of time varying constrained problems. Such a condition enables a new
drift analysis making use of the upper confidence bound together with the Lazy update nature of the
sequence of confidence interval constructions on the models.

Broader Impact

The wide application of reinforcement learning urges researchers to design models with certain
constraints enforcing the fairness and safety so that the learned policy is under control. In this line of
research, there have been many empirical studies focusing on constrained Markov decision process,
including autonomous vehicle control, power systems, robotics, and social fairness. However, their
theoretical understandings are rather limited. In this paper, we aim at providing theoretical analysis of
constrained Markov decision process, helping researchers to better understand how to design effective
constrained reinforcement learning algorithms and what their theoretical guarantees are.
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A. Nedić and A. Ozdaglar. Approximate primal solutions and rate analysis for dual subgradient
methods. SIAM Journal on Optimization, 19(4):1757–1780, 2009.

M. J. Neely. Dynamic optimization and learning for renewal systems. IEEE Transactions on
Automatic Control, 58(1):32–46, 2012.

10



G. Neu, A. Gyorgy, and C. Szepesvári. The adversarial stochastic shortest path problem with unknown
transition probabilities. In Artificial Intelligence and Statistics, pages 805–813, 2012.

A. Rosenberg and Y. Mansour. Online convex optimization in adversarial markov decision processes.
arXiv preprint arXiv:1905.07773, 2019a.

A. Rosenberg and Y. Mansour. Online stochastic shortest path with bandit feedback and unknown
transition function. In Advances in Neural Information Processing Systems, pages 2209–2218,
2019b.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
International conference on machine learning, pages 1889–1897, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung. Dynamic service migration and
workload scheduling in edge-clouds. Performance Evaluation, 91:205–228, 2015.

L. Wang, Q. Cai, Z. Yang, and Z. Wang. Neural policy gradient methods: Global optimality and rates
of convergence. arXiv preprint arXiv:1909.01150, 2019.

S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung. Dynamic service migration in
mobile edge-clouds. In 2015 IFIP Networking Conference (IFIP Networking), pages 1–9. IEEE,
2015.

X. Wei, H. Yu, and M. J. Neely. Online learning in weakly coupled markov decision processes: A
convergence time study. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 2(1):12, 2018.

X. Wei, H. Yu, and M. J. Neely. Online primal-dual mirror descent under stochastic constraints.
arXiv preprint arXiv:1908.00305, 2019.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

H. Yu, M. Neely, and X. Wei. Online convex optimization with stochastic constraints. In Advances in
Neural Information Processing Systems, pages 1428–1438, 2017.

J. Y. Yu, S. Mannor, and N. Shimkin. Markov decision processes with arbitrary reward processes.
Mathematics of Operations Research, 34(3):737–757, 2009.

L. Zheng and L. J. Ratliff. Constrained upper confidence reinforcement learning. arXiv preprint
arXiv:2001.09377, 2020.

A. Zimin and G. Neu. Online learning in episodic markovian decision processes by relative entropy
policy search. In Advances in neural information processing systems, pages 1583–1591, 2013.

11


